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ANHARMONIC NONCOMMUTATIVE OSCILLATOR AT FINITE
TEMPERATURE

H. Sarvari Karaj-Abad,!, A. Jahan?

Classical and quantum anharmonic noncommutative oscillators with quartic
self-interacting potential are considered and the effect of self-interaction term on the
free energy and partition function of both models is calculated to first order in coupling
constant.
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1. Introduction

A d-dimensional (2 < d) noncommutative oscillator is an oscillator with a set of

mutually noncommutating spatial degrees of freedom. In recent years, the dynamics and
thermodynamics of the classical and quantum noncommutative harmonic oscillators have
been studied by several authors mainly due to the renewed interest in the noncommutative
field theories [1-16]. The central subject in most of these studies is the harmonic oscillator
and the effects due to the presence of anharmonic terms are neglected by most authors. The
present letter is an attempt to consider the effect of anharmonic terms on the thermody-
namic of a noncommutative harmonic oscillator. To this end we consider a two dimensional
noncommutative harmonic oscillator perturbed by a quartic potential. The paper is orga-
nized as follow:
In next section, we derive the partition function and free energy of a classical model. It
is found that the thermodynamic of a classical harmonic oscillator is not influenced by the
noncommutativity of its coordinates. But in presence of the anharmonic terms the noncom-
mutativity affects the thermodynamic quantities. In Sec. 2, the partition function and free
energy of a quantum noncommutative anharmonic oscillator is calculated. At zero temper-
ature, the free energy yields the ground-state energy of the model. The peculiar behavior
of the quantum model emerges when one fails to get the analogous results for the usual
(commutative) anharmonic oscillator starting from the noncommutative one.

2. Classical Anharmonic Oscillator

The model we assume for an anharmonic oscillator has the following Hamiltonian

H = Hy+ H;:
2
_ b 1 2.2 , A4
= o T X X (1)
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with x = (21, 22) and p = (p1,p2). The coupling constant is denoted by A. The noncom-
mutative version of this model is
2

_ b 1 222 | Aa

with generalized canonical structure given [1]

?ﬂ\l‘,?ﬂ\j} = 061']‘ Z,j = 1, 2 (3)
{Zi,p;} = 6 (4)

Here 60 stands for noncommutativity parameter. The antisymmetric tensor €;; normalized as
€12 = 1. The standard canonical structure can be maintained with the aid of the so-called
Bopp shift, namely [1]

2

N N 1
T, > T =x; + 59 Z €i5D; (6)

j=1

Thus due to the Bopp shift, equation (3) modifies to the standard form, i.e.
{zi, 2} = 0i; — {zi,2;} =0 (7)
Using the Bopp shift, one arrives at
~ 1
2 - xX= 102p2 +x? - 0L, (8)
1 2
- xi= <492p2 +x% — OLZ) (9)

where L, = x1p2 — x2op1. Inserting the equations (8) and (9) in (2), give rise to the free and
interaction Hamiltonians of the form

1 1,z

Hy = Qizp2+§mw2x2+§mw29'x><p (10)
0 A 4 2 272 1 222 1 3,2 1 4.4

Hiy = p|x* = 20x°Le +6°L2 + 0%p?x” — S0°p?L. + -0"p (11)

with the total Hamiltonian given by

H® = H{ + H,

int

(12)

In (10) we have introduced x = 1+ $m?w?6? and 6= (0,0,6). It is clear that equation (12)
reproduces the Hamiltonian (1) when 6 — 0. In equations (10), (11) and (12), the subscript
0 appears to indicate the dependence of the results on the noncommutativity parameter. To
avoid the notational complexity, we shall discard it in the following calculations.

2.1. Partition function

The classical partition function is

Z(ﬂ) — Tre*ﬁ(HoJert)

—+o00 —+o0
= / d2p/ d?z e~ P(HotHint) (13)
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To evaluate this integral, we introduce the generating function defined to be

+oo 400
G[Jza']p] = / d2p/ dee—ﬂ(Ho-'r.]m.x_;,__]p_p)

2 . =
(21) o7 (2535 4m I3 —m?6. (3. xT,)]
Bw

which could be evaluated straightforwardly with the help of Gaussian integral

2

2 b s

/+00 dre— +bx e \/>
—oo a

Then equation (14) allows us to write

Tr(x?p;ﬁe—BHO) _ o G0, 0]
prtm onJy ;0m™Jp

The partition function can be calculated perturbatively starting from
Z = Tre AHotHint)
= Tre Mo - gTe(e 00 Hyy ) + O(N?)
= Zo+ 72y

When the anharmonic term is absent (A = 0), the partition function becomes [1]

oo

- (5)

+oo +oo 2,1 2.2, 1 27
ZO — / de/ de 675(ﬁp +3mw x4+ smw 0-xXPp)
- —oc0
2

(14)

(16)

(17)

(18)

The integral is straightforwardly calculated using (15). Alternatively, from (14) one finds

Zy = GJ0,0]
T 2
- ()

(19)

We observe that the result is independent of the noncommutativity parameter 8. So the
partition function of a classical noncommutative harmonic oscillator is unaffected by the
noncommutativity [1]. To obtain the the first order partition function Zi, from (11), (16)

and (17) we find

4 _—BH _
Tr(:):le 0) = Zy
2
2 2 _BH K2 Sy
Tr(xl-xje 0) = 2B Zy, (i # j)
2

_ m . .
Tr(pizp?e ﬁHO) = ?ZO, (i # j)
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and

Tf(ffjpjwipie_
T (prajae”
r(przjzie

Tr(xkpjpfe*

BHo

[3k — 2 —2(k — 1)d;5] Zo

3202
1
= ﬁ%ﬂ [1 — K+ (2l€ — 1)(5”]Z0
K0
T 9522 (2€ix6ij + €jk) Zo
Om?

= W (2€ik51’j + Ejk)ZO

The terms of interaction Hamiltonian (11) read now

Tr(x%fﬁHO)

Tr(p4e_ﬁH°)

Tr (Lze_ﬂHC’)

Tr(x2LZe_’6H°)

Tr(szze*'BHC’)

Tr (x2p2e*5H°)

Z Tr (mfefﬁH‘)) + Z (a:fx?efﬁH‘))

i#j
8k?
m2 32wt Zo
> TT(p?e_ﬁH") +)° (p?pfe_ﬁH“)
i i#]
8m?
gz %0

Z Eiijan<$ipj$mpn€_5Ho>
ijmn
2(4k — 3)
322
Z ejkTr(pkxjac?e_ﬁHo)
ijk
4k0
_ﬁ%ﬂ Zo
Z €x; Ir (xkpjp?e*BHO)
ijk
40m?

—?Zo

Z Tr (m?p?eiﬁm))
ij

42k — 1)
s

Zo

Zy

(28)

(29)

(31)

(33)

where in (30) we have used €;j€p; = 0;0;; — 0;16;5. Therefore, form (11) and (17) one is left

with the first order partition function

Z1(B)

*5Tr<67ﬁH°Hint>
1 X\0? 16k% — 24k +9

- Z
12 Buw? K—1 0

(34)

When the noncommutativity vanishes, we get the correct limit, namely the partition function

of the commutative oscillator

Z1(B) =

1 A
3 Bm2wt 70

(35)
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2.2. Free Energy

The Helmholtz free energy F(3) is related to the (classical or quantum) partition
function Z(8) via

e =2(8) (36)
By expanding it as F' = Fy + F} + ..., one obtains the zeroth and first order free energies as
1
Fo = —5mZ(6) (37)
T (e #H0 Hyp )
ho= Tre—#AHo
17,
= ——— 38
B Zo (38)

Therefore, for the first order free energy with the partition functions (18) and (34) one
obtains

1 0% 16K% — 24Kk +9

R(B) =15 5202 ) (39)

Once again, when the noncommutativity disappears, the first order free energy of a usual
anharmonic oscillator is recovered

A
lim F1 =

1
60 3 B2m2wt (40)

3. Quantum Anharmonic Oscillator

The noncommutative quantum oscillator is characterized by a generalized canonical
structure of the form

(@i, 7] i0;  (h=1) (41)
(@i, p;] 103 (42)
[pip;] = 0 (43)
Once again, the Bopp shift of the form [1, 2]
.2
B w =3+ ;egquj (44)

allows us to shift from the noncommutative coordinates to commutative degrees of freedom
fulfilling [:clv, :cj} = 0. Now to consider the quantum noncommutative anharmonic oscillator,
we follow [3] to introduce the quantum mechanical operator K as

2
K= %pQ +x? - 0L, (45)

Thus upon implementing the Bopp shift, Eq. (44), and using (9) one obtains
' —x' = K? (46)

So, the Hamiltonian (2) for a quantum anharmonic oscillator in terms of operator K becomes

H = Hy+ %KQ (47)
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which implies H;,; = %K 2. For the eigen-ket |n,n_) the operator K and Hamiltonian Hy
satisfy [3-5]
Klng,no) = 0@2n_+1)ny,n_) (48)
Holng,no) = w[(Ve+vVE—1)ng+We—Ve—1)n_ +vk]lny,no)  (49)

The eigen-ket |ny,n_) is given by

(al)n+ (al)m-

|n+7n—> =
\/’I’L+!’I’L,!

where |0,0) is the vacuum state of a two dimensional harmonic oscillator and ajt stands for
the creation operator. Therefore, equations (48) and (49) imply that the Hamiltonian (47)
is diagonal with respect to the state |n4,n_). But this not always the case and as shown in

|0, 0) (50)

[3, 4] in the absence of the harmonic term in (1), i.e. w = 0, there is a non-diagonal term

given by —m292 x2. From (48) the first order shift in the ground-state energy is found to be

AEQO = <O7 O‘HiTLt|07 O>
Ao
= o9 (51)

When the noncommutativity disappears the above result vanishes. Thus it does not lead to
the shift in the ground-state energy of the commutative model. This peculiar behavior of
equation (51) is a generic feature of the noncommutative models [4].

3.1. Partition Function

On using (49), the free part of the Hamiltonian yields the zeroth-order order quantum
mechanical partition function [1-3]

Zy = Tre Ao

oo

= > e g n )

n4,n_=0

1
4sinh = sinh =~

where we have defined a4 = Bw(\/ﬁ + VK — 1). With H;,p = %KQ from (17) we find the
first order partition function as

1 S -
Zy = —@ﬂ)\ Z (ny,n_le PHOK?n, n_)
ny,n_=0
1 2
= — MO 1+ ——)Z 53
™ ( +smh2°g> ’ (59)

where we have used (47) and

a_tay QP 1 1
0a” 9o 1 —e - 1 —e o+

Tr(e_BHOnfni) = (=1)PTe”
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3.2. Free Energy

From (52), the zeroth-order free energy reads
1 _
Fo = g (4 sinh 0‘7* sinh 0‘7) (55)

At zero temperature, the above expression reproduce the unperturbed ground-state energy
(1, 2]
lim Fy(B) = wvk (56)

B—00
The first-order free energy can be calculated straightforwardly with the aid of (38) and (53).
We arrive at
1 2
Fi = =M1+ —F— 57
' 4! < +sinh2°‘2> (57)
Again when § — oo, the above expression leads to the first order shift in the ground-state
energy, in agreement with (51)

lim F(3) = %92 (58)

B—00
4. Conclusion

We considered a two dimensional noncommutative harmonic oscillator perturbed by
a quartic potential. Then we derived the partition function and free energy of the classical
model up to first order in coupling constant. The zeroth order partition function does not
depend on the noncommutativity and coincides with the partition function of the usual
commutative harmonic oscillator. The effect of the noncommutativity appears when one
considers the first (or higher) order partition function. In contrast to the classical model, the
zeroth order partition function of a quantum oscillator is affected by the noncommutativity.
We obtained the first order free energy of the quantum oscillator. At zero temperature, it
leads to the first order shift in the ground state energy of the model.
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