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ANHARMONIC NONCOMMUTATIVE OSCILLATOR AT FINITE

TEMPERATURE

H. Sarvari Karaj-Abad,1, A. Jahan2

Classical and quantum anharmonic noncommutative oscillators with quartic

self-interacting potential are considered and the effect of self-interaction term on the

free energy and partition function of both models is calculated to first order in coupling

constant.
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1. Introduction

A d-dimensional (2 ≤ d) noncommutative oscillator is an oscillator with a set of

mutually noncommutating spatial degrees of freedom. In recent years, the dynamics and

thermodynamics of the classical and quantum noncommutative harmonic oscillators have

been studied by several authors mainly due to the renewed interest in the noncommutative

field theories [1-16]. The central subject in most of these studies is the harmonic oscillator

and the effects due to the presence of anharmonic terms are neglected by most authors. The

present letter is an attempt to consider the effect of anharmonic terms on the thermody-

namic of a noncommutative harmonic oscillator. To this end we consider a two dimensional

noncommutative harmonic oscillator perturbed by a quartic potential. The paper is orga-

nized as follow:

In next section, we derive the partition function and free energy of a classical model. It

is found that the thermodynamic of a classical harmonic oscillator is not influenced by the

noncommutativity of its coordinates. But in presence of the anharmonic terms the noncom-

mutativity affects the thermodynamic quantities. In Sec. 2, the partition function and free

energy of a quantum noncommutative anharmonic oscillator is calculated. At zero temper-

ature, the free energy yields the ground-state energy of the model. The peculiar behavior

of the quantum model emerges when one fails to get the analogous results for the usual

(commutative) anharmonic oscillator starting from the noncommutative one.

2. Classical Anharmonic Oscillator

The model we assume for an anharmonic oscillator has the following Hamiltonian

H = H0 +Hint

=
p2

2m
+

1

2
mω2x2 +

λ

4!
x4 (1)
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with x = (x1, x2) and p = (p1, p2). The coupling constant is denoted by λ. The noncom-

mutative version of this model is

H =
p2

2m
+

1

2
mω2x̂2 +

λ

4!
x̂4 (2)

with generalized canonical structure given [1]{
x̂i, x̂j

}
= θϵij i, j = 1, 2 (3){

x̂i, pj
}

= δij (4){
pi, pj

}
= 0 (5)

Here θ stands for noncommutativity parameter. The antisymmetric tensor ϵij normalized as

ϵ12 = 1. The standard canonical structure can be maintained with the aid of the so-called

Bopp shift, namely [1]

x̂i → xi = x̂i +
1

2
θ

2∑
j=1

ϵijpj (6)

Thus due to the Bopp shift, equation (3) modifies to the standard form, i.e.

{x̂i, x̂j} = θij −→ {xi, xj} = 0 (7)

Using the Bopp shift, one arrives at

x̂2 −→ x2 =
1

4
θ2p2 + x2 − θLz (8)

x̂4 −→ x4 =

(
1

4
θ2p2 + x2 − θLz

)2

(9)

where Lz = x1p2 − x2p1. Inserting the equations (8) and (9) in (2), give rise to the free and

interaction Hamiltonians of the form

Hθ
0 =

κ

2m
p 2 +

1

2
mω2x 2 +

1

2
mω2θ⃗ · x× p (10)

Hθ
int =

λ

4!

[
x4 − 2θx 2Lz + θ2L2

z +
1

2
θ2p2x2 − 1

2
θ3p2Lz +

1

16
θ4p4

]
(11)

with the total Hamiltonian given by

Hθ = Hθ
0 +Hθ

int (12)

In (10) we have introduced κ = 1+ 1
4m

2ω2θ2 and θ⃗ = (0, 0, θ). It is clear that equation (12)

reproduces the Hamiltonian (1) when θ → 0. In equations (10), (11) and (12), the subscript

θ appears to indicate the dependence of the results on the noncommutativity parameter. To

avoid the notational complexity, we shall discard it in the following calculations.

2.1. Partition function

The classical partition function is

Z(β) = Tre−β(H0+Hint)

=

∫ +∞

−∞
d2p

∫ +∞

−∞
d2x e−β(H0+Hint) (13)
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To evaluate this integral, we introduce the generating function defined to be

G[Jx,Jp] =

∫ +∞

−∞
d2p

∫ +∞

−∞
d2xe−β(H0+Jx·x+Jp·p)

=
( 2π

βω

)2

e
β

2m [ κ
ω2J

2
x+m2J2

p−m2θ⃗·(Jx×Jp)] (14)

which could be evaluated straightforwardly with the help of Gaussian integral∫ +∞

−∞
dxe−ax2+bx = e

b2

4a

√
π

a
(15)

Then equation (14) allows us to write

Tr
(
xn
i p

m
j e−βH0

)
=

1

βn+m

∂n+m

∂nJx,i∂mJp,j
G[0,0] (16)

The partition function can be calculated perturbatively starting from

Z = Tre−β(H0+Hint)

= Tre−βH0 − βTr
(
e−βH0Hint

)
+O(λ2)

= Z0 + Z1 (17)

When the anharmonic term is absent (λ = 0), the partition function becomes [1]

Z0 =

∫ +∞

−∞
d2p

∫ +∞

−∞
d2x e−β( κ

2mp 2+ 1
2mω2x 2+ 1

2mω2θ⃗·x×p)

=
( 2π

βω

)2

(18)

The integral is straightforwardly calculated using (15). Alternatively, from (14) one finds

Z0 = G[0,0]

=
( 2π

βω

)2

(19)

We observe that the result is independent of the noncommutativity parameter θ. So the

partition function of a classical noncommutative harmonic oscillator is unaffected by the

noncommutativity [1]. To obtain the the first order partition function Z1, from (11), (16)

and (17) we find

Tr
(
x4
i e

−βH0

)
=

3κ2

m2β2ω4
Z0 (20)

Tr
(
p4i e

−βH0

)
=

3m2

β2
Z0 (21)

Tr
(
x2
ix

2
je

−βH0

)
=

κ2

m2β2ω4
Z0, (i ̸= j) (22)

Tr
(
p2i p

2
je

−βH0

)
=

m2

β2
Z0, (i ̸= j) (23)
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and

Tr
(
x2
i p

2
je

−βH0

)
=

1

β2ω2

[
3κ− 2− 2(κ− 1)δij

]
Z0 (24)

Tr
(
xjpjxipie

−βH0

)
=

1

β2ω2

[
1− κ+ (2κ− 1)δij

]
Z0 (25)

Tr
(
pkxjx

2
i e

−βH0

)
= − κθ

2β2ω2

(
2ϵikδij + ϵjk

)
Z0 (26)

Tr
(
xkpjp

2
i e

−βH0

)
=

θm2

2β2

(
2ϵikδij + ϵjk

)
Z0 (27)

The terms of interaction Hamiltonian (11) read now

Tr
(
x4e−βH0

)
=

∑
i

Tr
(
x4
i e

−βH0

)
+

∑
i̸=j

(
x2
ix

2
je

−βH0

)
=

8κ2

m2β2ω4
Z0 (28)

Tr
(
p4e−βH0

)
=

∑
i

Tr
(
p4i e

−βH0

)
+

∑
i ̸=j

(
p2i p

2
je

−βH0

)
=

8m2

β2
Z0 (29)

Tr
(
L2
ze

−βH0

)
=

∑
ijmn

ϵijϵmnTr
(
xipjxmpne

−βH0

)
=

2(4κ− 3)

β2ω2
Z0 (30)

Tr
(
x 2Lze

−βH0

)
=

∑
ijk

ϵjkTr
(
pkxjx

2
i e

−βH0

)
= − 4κθ

β2ω2
Z0 (31)

Tr
(
p 2Lze

−βH0

)
=

∑
ijk

ϵkjTr
(
xkpjp

2
i e

−βH0

)
= −4θm2

β2
Z0 (32)

Tr
(
x2p2e−βH0

)
=

∑
ij

Tr
(
x2
i p

2
je

−βH0

)
=

4(2κ− 1)

β2ω2
Z0 (33)

where in (30) we have used ϵijϵkl = δikδjl − δilδjk. Therefore, form (11) and (17) one is left

with the first order partition function

Z1(β) = −βTr
(
e−βH0Hint

)
= − 1

12

λθ2

βω2

16κ2 − 24κ+ 9

κ− 1
Z0 (34)

When the noncommutativity vanishes, we get the correct limit, namely the partition function

of the commutative oscillator

Z1(β) = −1

3

λ

βm2ω4
Z0 (35)
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2.2. Free Energy

The Helmholtz free energy F (β) is related to the (classical or quantum) partition

function Z(β) via

e−βF = Z(β) (36)

By expanding it as F = F0 + F1 + ..., one obtains the zeroth and first order free energies as

F0 = − 1

β
lnZ0(β) (37)

F1 =
Tr

(
e−βH0Hint

)
Tre−βH0

= − 1

β

Z1

Z0
(38)

Therefore, for the first order free energy with the partition functions (18) and (34) one

obtains

F1(β) =
1

12

λθ2

β2ω2

16κ2 − 24κ+ 9

κ− 1
(39)

Once again, when the noncommutativity disappears, the first order free energy of a usual

anharmonic oscillator is recovered

lim
θ→0

F1 =
1

3

λ

β2m2ω4
(40)

3. Quantum Anharmonic Oscillator

The noncommutative quantum oscillator is characterized by a generalized canonical

structure of the form [
x̂i, x̂j

]
= iθij (~ = 1) (41)[

x̂i, pj
]

= iδij (42)[
pi, pj

]
= 0 (43)

Once again, the Bopp shift of the form [1, 2]

x̂i → xi = x̂i +
i

2
θ

2∑
j=1

ϵijpj (44)

allows us to shift from the noncommutative coordinates to commutative degrees of freedom

fulfilling
[
xi, xj

]
= 0. Now to consider the quantum noncommutative anharmonic oscillator,

we follow [3] to introduce the quantum mechanical operator K as

K =
θ2

4
p2 + x2 − θLz (45)

Thus upon implementing the Bopp shift, Eq. (44), and using (9) one obtains

x̂4 −→ x4 = K2 (46)

So, the Hamiltonian (2) for a quantum anharmonic oscillator in terms of operatorK becomes

H = H0 +
λ

4!
K2 (47)
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which implies Hint =
λ
4!K

2. For the eigen-ket |n+, n−⟩ the operator K and Hamiltonian H0

satisfy [3-5]

K|n+, n−⟩ = θ(2n− + 1)|n+, n−⟩ (48)

H0|n+, n−⟩ = ω
[
(
√
κ+

√
κ− 1 )n+ + (

√
κ−

√
κ− 1 )n− +

√
κ
]
|n+, n−⟩ (49)

The eigen-ket |n+, n−⟩ is given by

|n+, n−⟩ =
(a†+)

n+(a†−)
n−√

n+!n−!
|0, 0⟩ (50)

where |0, 0⟩ is the vacuum state of a two dimensional harmonic oscillator and a†± stands for

the creation operator. Therefore, equations (48) and (49) imply that the Hamiltonian (47)

is diagonal with respect to the state |n+, n−⟩. But this not always the case and as shown in

[3, 4] in the absence of the harmonic term in (1), i.e. ω = 0 , there is a non-diagonal term

given by − 2
mθ2x

2. From (48) the first order shift in the ground-state energy is found to be

∆E0,0 = ⟨0, 0|Hint|0, 0⟩

=
λ

4!
θ2 (51)

When the noncommutativity disappears the above result vanishes. Thus it does not lead to

the shift in the ground-state energy of the commutative model. This peculiar behavior of

equation (51) is a generic feature of the noncommutative models [4].

3.1. Partition Function

On using (49), the free part of the Hamiltonian yields the zeroth-order order quantum

mechanical partition function [1-3]

Z0 = Tre−βH0

=

∞∑
n+,n−=0

⟨n+, n−|e−βH0 |n+, n−⟩

=
1

4 sinh α+

2 sinh α−
2

(52)

where we have defined α± = βω
(√

κ ±
√
κ− 1

)
. With Hint =

λ
4!K

2 from (17) we find the

first order partition function as

Z1 = − 1

4!
βλ

∞∑
n+,n−=0

⟨n+, n−|e−βH0K2|n+, n−⟩

= − 1

4!
λβθ2

(
1 +

2

sinh2 α−
2

)
Z0 (53)

where we have used (47) and

Tr
(
e−βH0np

−n
q
+

)
= (−1)p+qe−

α−+α+
2

∂p+q

∂αp
−∂α

q
+

1

1− e−α−

1

1− e−α+
(54)
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3.2. Free Energy

From (52), the zeroth-order free energy reads

F0 =
1

β
ln
(
4 sinh

α+

2
sinh

α−

2

)
(55)

At zero temperature, the above expression reproduce the unperturbed ground-state energy

[1, 2]

lim
β→∞

F0(β) = ω
√
κ (56)

The first-order free energy can be calculated straightforwardly with the aid of (38) and (53).

We arrive at

F1 =
1

4!
λθ2

(
1 +

2

sinh2 α−
2

)
(57)

Again when β → ∞, the above expression leads to the first order shift in the ground-state

energy, in agreement with (51)

lim
β→∞

F1(β) =
λ

4!
θ2 (58)

4. Conclusion

We considered a two dimensional noncommutative harmonic oscillator perturbed by

a quartic potential. Then we derived the partition function and free energy of the classical

model up to first order in coupling constant. The zeroth order partition function does not

depend on the noncommutativity and coincides with the partition function of the usual

commutative harmonic oscillator. The effect of the noncommutativity appears when one

considers the first (or higher) order partition function. In contrast to the classical model, the

zeroth order partition function of a quantum oscillator is affected by the noncommutativity.

We obtained the first order free energy of the quantum oscillator. At zero temperature, it

leads to the first order shift in the ground state energy of the model.
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