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DYNAMICAL SYSTEM TECHNIQUE FOR SOLVING QUASI
VARIATIONAL INEQUALITIES

Muhammad Aslam Noor!, Khalida Inayat Noor?

In this paper, we introduce and consider second order dynamical system associated
with quasi variational inequalities. Using the forward finite difference schemes, we suggest
some iterative methods for solving the quasi variational inequalities. These new methods can
be viewed as refinement of the extragradient methods of Korpelevich and Noor. Convergence
analysis is investigated under certain mild conditions. Since the quasi variational inequalities
include variational inequalities and complementarity problems as special cases, our results
continue to hold for these problems. It is an interesting problem to compare these methods
with other technique for solving quasi variational inequalities for further research activities.
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1. Introduction

Variational inequality theory, which was introduced by Stampacchia [45] in potential
theory, provides us with a simple, natural, unified, novel and general framework to study
an extensive range of unilateral, obstacle, free, moving and equilibrium problems arising in
fluid flow through porous media, elasticity, circuit analysis, transportation, oceanography,
operations research, finance, economics, and optimization. It is worth mentioning that the
variational inequalities can be viewed as a significant and novel generalization of the varia-
tional principles. It is very simple fact that the minimum of a differentiable convex functions
on the convex sets can be characterized by an inequality, which is called the variational in-
equality. It is amazing that variational inequalities have influenced various areas of pure
and applied sciences and are still continue to influence the recent research, see [5, 6, 7, 8, 13,
17,18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46]. If the
convex set in the variational inequalities depends upon the solution explicitly or implicity,
then the variational inequality is called quasi variational inequality. Benssousan and Lions
[5] studied the quasi variational inequalities in the impulse control theory. Quasi-variational
inequalities are being used as a mathematical programming tool in modeling various equilib-
ria in economics, operations research, optimization, and regional and transportation science,
see [5, 7, 14, 15, 16, 18, 27, 28, 32, 33, 36, 44].

One of the most difficult and important problems in variational inequalities is the devel-
opment of efficient numerical methods. Several numerical methods have been developed
for solving the variational inequalities and their variant forms. These methods have been
extended and modified in numerous ways. Noor [25] proved that the quasi variational in-
equalities are equivalent to the fixed point problem. This alternative formulation has been
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used to consider the existence of a solution, iterative schemes, sensitivity analysis, merit
functions and other aspects of the quasi variational inequalities. Noor [12] used this equiv-
alent form to suggest an iterative projection method for solving a class of quasi variational
inequalities. Antipin et al. [3] proposed gradient projection and extra gradient methods for
finding the solution of quasi variational inequality when the involved operator is strongly
monotone and Lipschitz continuous. Mijajlovic et al. [22] introduced a more general gradient
projection method with strong convergence for solving the quasi variational inequality in a
real Hilbert spaces. It is very important to develop some efficient iterative methods for solv-
ing the quasi variational inequalities. Alvarez [1] and Alvarez et al. [2] used the inertial type
projection methods for solving variational inequalities. Noor [33] suggested and investigated
inertial type projection methods for solving general variational inequalities. These inertial
type methods have been modified in various directions for solving variational inequalities
and related optimization problems. Jabeen et al. [14, 15, 16] and Noor et al [39] analyzed
some inertial projection methods for some classes of general quasi variational inequalities.
Convergence analysis of these inertial type methods has been considered under some mild
conditions.

Dupuis and Nagurney [10] introduced and studied the projected dynamical systems associ-
ated with variational inequalities using the equivalent fixed point formulation. The novel
feature of the projected dynamical system is that the its set of stationary points corresponds
to the set of the corresponding set of the solutions of the variational inequality problem.
Thus the equilibrium and nonlinear programming problems, which can be formulated in the
setting of the variational inequalities, can now be studied in the more general framework of
the dynamical systems. It has been shown [4, 10, 11, 12, 14, 18, 30, 31, 32, 33, 38, 39, 47, 48]
that these dynamical systems are useful in developing efficient and powerful numerical tech-
niques for solving variational inequalities.

Motivated and inspired by ongoing research in these fascinations areas, we consider
a second order dynamical system associated with quasi variational inequalities. Using the
finite difference schemes, we suggest and analyzed some new iterative methods for solving
quasi variational inequalities. Some special cases are also pointed as potential applications of
the obtained results. We have only considered theoretical aspects of the suggested methods.
It is an interesting problem to implement these methods and to illustrate the efficiency.
Comparison with other methods need further research efforts. The ideas and techniques of
this paper may be extended for other classes of quasi variational inequalities and related
optimization problems.

2. Basic definitions and results

Let K be a set in a real Hilbert space H with norm || - | and inner product (-, -).
Let T : H— H be nonlinear operator. Let K : H — H be a set-valued mapping which, for
any element p € H, associates a convex-valued and closed set K(u) C H.

We consider the problem of finding p € K(u), such that
<(.T,U,7I/—,LL>ZO, VVE:K(#)7 (1)

which is called the quasi variational inequality, introduced by Bensoussan and Lions [5]. For
more details, see [5, 7, 14, 15, 16, 18, 27, 28, 32, 33, 36, 44] and the references therein.
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2.1. Applications

To convey an idea of the applications of the quasi variational inequalities, we consider
the second-order implicit obstacle boundary value problem, which have been discussed in
Noor et al. [37]. For the sake of completeness and to convey the main ideas, we include all
the details.

We consider the problem of finding i such that

—u(z) = f(x) on Q = [a,b]

:u( ) ( ) OHQ:[a’b] (2)
[—u"(z) — f(@)][p —M(p)] =0  onQ=]a,b

pw(a) =0, plb)=0.

where f(x) is a continuous function and M (u) is the cost (obstacle) function. The prototype
encountered is

M () =k + inf{u'}. (3)

In (3), k represents the switching cost. It is positive when the unit is turned on and equal to
zero when the unit is turned off. Note that the operator M provides the coupling between
the unknowns p = (u', p?, ..., u%). We study the problem (2) in the framework of general
quasi variational inequality approach. To do so, we first define the set K as

K(p)={v:ve H}(Q):v>MUpu), onQ},

which is a closed convex-valued set in H{ (€2), where H{(€2) is a Sobolev (Hilbert) space, see
[5, 13, 19]. One can easily show that the energy functional associated with the problem (2)

W - /ab <Z;> deZ/abf(;z:)yd:c, Vo € K(u)
- /ab (j;)gdm—2/abf(x)udx
= (Tv,v) —2(f,v) (4)

where

b2
d“p d,udl/
T = - — Jvdzr = —d
(Ty,) /a(d:vQ)V v= | (5)

t = ' flapw

It is clear that the operator T defined by (5) is linear, symmetric and positive. Using the
technique of Noor [29, 33] and Noor et al.[39, 40], one can show that the minimum of the
functional I[v] defined by (4) associated with the problem (2) on the closed convex-valued
set K (u) can be characterized by the inequality of type

<T/1'7V_/~L> > <f’V_;U'>v Vv e K(’LL), (6)

which is exactly the quasi variational inequality (1).
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Special cases

We now discuss some special cases of general quasi variational inequalities (1)

If K(u) = K, then problem (1) is equivalent to finding p € H: g(u) € K such that
<TN7V7,U'>207 VV€K7 (7)

which is called the variational inequality, introduced and studied by Stampacchia
[45]. It has been shown a wide class of obstacle boundary value and initial value
problems can be studied in the general framework of variational inequalities (6). For
the applications, numerical methods, sensitivity analysis, dynamical system, merit
functions and other aspects of variational inequalities, see[l, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 25, 26, 36, 37, 38, 44, 45] and the references
therein.

If K*(u) = {p € H: (u,v) > 0,Yv € K(p)} is a polar (dual) cone of a convex-valued
cone K(p) in H, then problem (7) is equivalent to finding p € H such that

peKp), TpeK (p) and (Tp,p) =0, (8)

which is known as the quasi complementarity problem. For K(p) = m(u) + K, where
m is a point-to-point mapping, the problem(8) is called the implicit complementarity
problem, see Noor [28]. The complementarity problems and their variant forms have
been studied extensively in recent years, see [8, 17, 21, 23, 28, 33, 36, 39, 40] and the
references therein

For a different and appropriate choice of the operators and spaces, one can obtain

several known and new classes of variational inequalities and related problems. This clearly
shows that the problem (1) considered in this paper is more general and unifying one.

We need the following well-known definitions and results in obtaining our results.

Definition 2.1. Let T : H — H be a given mapping.

i.

ii.

iii.

The mapping T is called strongly monotone, if there exists a constant o > 0 such that
(Tu—Tv, p—v)>alp—v|? YV p, v € H
The mapping T is called monotone, if
<TM—TV,M—U> >0, u,v €H

The mapping T is called n— Lipschitz continuous, if there exists a constant n > 0 such
that

[T =Tv| < nllp—vl Vi, v € R

The following projection result plays an indispensable role in achieving our results.

Lemma 2.1. [12, 14] For a given w € H, find p € K (1), such that

(p—w,v—p) >0, YveK(n),

if and only if

n= HK(;L) [W] )

where Tk, is the implicit projection of H onto the closed conver-valued set X (u) in H.

The implicit projection operator Il(,) is nonexpansive and has the following characteriza-

tion.
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Assumption 2.1. [14] The implicit projection operator Ily(,), satisfies the condition
[ Mgy (W] =gy Wl < v fp=vI] Vi, v,weH, (9)
where v > 0, is a constant.

In many important applications, the convex-valued set K(u) is of the form

K(p) = m(p) +K, (10)

where m is a point-to-point mapping and K is a closed convex set. The convex-valued set
K(p) = m(u) 4+ K defined by (10) is called the moving set-valued convex set.
In this case,

Pr(uyw = Ppy+x(w) = m(p) + Pxw —m(p)], Vp,w € H
If m is a Lipschitz continuous with constant 3, then
Im(p) —m(v) + Pg[w —m(p)] — Pxw —m(v)]|
[m(p) = m@)|| + | Px [w — m(u)] — Px[w —m(@)]]|
2|jm () = m(v)|| < 28
This show that the Assumption 2.1 holds.

| Pr(uyw — P yw||

INIA

3. Main Results

In this section, we suggest some new inertial-type approximation schemes for solving
the quasi variational inequality (1) using the dynamical systems techniques. One can easily
show that the quasi variational inequality (1) is equivalent to fixed point problem by using
Lemma 2.1.

Lemma 3.1. The function p € H: p € K(u) is solution of quasi variational inequality (1),
if and only if, p € H: g(p) € K(u) satisfies the relation

p= gy [n = pTp], (11)
where p > 0 is a constant and Ik, is the projection of H onto the convex-valued set K(u).

Lemma 3.1 implies that the problem (1) is equivalent to a fixed point problem (11).
This alternate form is very useful from both numerical and theoretical point of views.

In this section, we use the fixed point formulation to suggest and consider a new
second order projection dynamical system associated with quasi variational inequalities (1).
We use this dynamical system to suggest and investigate some inertial proximal methods for
solving the quasi variational inequalities (1). These inertial implicit methods are constructed
using the central finite difference schemes and its variant forms.

To be more precise, we consider the problem of finding u € H such that

Vit it p= g [p = pT (1)), plte) = o, fi(te) = B, (12)
where v >0, 7 >0 and p > 0 are constants. Problem (12) is called second order dynami-
cal system.

If v = 0, then dynamical system (12) reduces to

4 p= gy — pT(w)],  plto) = a, (13)
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where p > 0 is a constant. Problem (13) is called dynamical system associated with quasi
variational inequalities.

We discretize the second-order dynamical systems (12) using central finite difference
and backward difference schemes to have

Hont1 — 2Hp + fn— Hn — Hn—
RS g PP i = Tl — pT ()], (1)

where h is the step size.

If v = 1,h = 1, then, from equation( 14) we have
Algorithm 3.1. For a given uy € H, compute pi,4+1 by the iterative scheme
Hn+1 :HK(un)[,u‘n 7/)‘3‘(#71-"—1)]’ n=0,1,2,....

which is the the extragradient method of Kopervelich [20] for solving the quasi vari-
ational inequalities.

Algorithm 3.1 is an implicit method. To implement the implicit method, we use the
predictor-corrector technique to suggest the two-step inertial method.

Algorithm 3.2. For given o, pu1 € H, compute pin11 by the iterative scheme
Yn = (]- - gn),ufn + 6nﬂn71
Hn+1 = HK(},L,,L)[,MH - p‘I(yn)]a n = 07 1a 27 ce

where 6,, € [0.1] is a constant.

Similarly, we suggest the following iterative method.
Algorithm 3.3. For given pg € H, compute pn41 by the iterative scheme
ping1 = () [nt1 = pT (pns1)], n=0,1,2,....
which is known as the double projection method, introduced and studied by Noor
[29, 33] and can be written as
Algorithm 3.4. For a given ug, u1 € H, compute p,4+1 by the iterative scheme
yn = (L= 0n)pn + Opn
fnil = Hx(un)[yn —pT(yn)], n=0,1,2,....

which is called the two-step inertial iterative Noor method.
Problem (12)can be rewritten as

Vit ot = Hga—o,)p+0,u) (1 = On)p+ Onp = pT((1 = Op)p + On )],
where 7 > 0,6, > 0 and p > 0 are constants.

Discretising the system (15), we have

Hn+1 — 2,Ufn + Hn—1 HUn — Un—1
T + T
= HK((l_en)lln,+071Hn—1)[(1 — O pin + Onpin—1 — pT((1 = O ) pory + O p—1)]

from which, for y =0, h =1, we have
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Algorithm 3.5. For a given ug, u1 € H, compute p,41 by the iterative scheme
1 = Hk1—-0,) 010, ) [(1 = On)tun + Onpin—1 — pT((1 — 0p) pin, + O fin—1)]
or equivalently

Algorithm 3.6. For a given ug, 1 € H, compute p,4+1 by the iterative scheme

yn = (1=0n)pn + Onpin
i1 = ke, [Yn — pTyn]

which is called the new inertial iterative method for solving the quasi variational in-
equality.

We discretize the second-order dynamical systems (12) using central finite difference
and backward difference schemes to have

1= 2fy + fp—1 — Hp—1
,}/:un-‘r }i;n Hn " Hn hﬂn + fing1 = HK(u,,L)[,un — PT(,Un—&-l)]y

where h is the step size.

Using this discrete form, we can suggest the following an iterative method for solving the
quasi variational inequalities (1).

Algorithm 3.7. For given g, 1 € H, compute pn11 by the iterative scheme

YHn _27_hﬂn+ ’Y_hﬂn—
pins1 = g [tn — pT (1) — ( })Lz a=h -,

n=0,1,2,....

Algorithm 3.7 is called the inertial proximal method for solving the quasi variational
inequalities and related optimization problems. This is a new proposed method.

We can rewrite the Algorithm 3.7 in the equivalent form as follows:

Algorithm 3.8. For a given pug € H, compute p,4+1 by the iterative scheme
(v + B ptng1 — (27 — b+ W) i + (7 — h)pin—1
12

We note that, for v = 0, Algorithm 3.8 reduces to the following iterative method for
solving quasi variational inequalities (1).

(T pn 1 + U = Uny1) > 0,V € K(p). (16)

Algorithm 3.9. For given pg, p1 € H, compute pny1 by the iterative scheme

Hn — Hn—1 ]

Hn+1 = HK(LL")[NWL - pTMn+1 - h n=0,1,2,....

We again discretize the second-order dynamical systems (12) using central difference
scheme and forward difference scheme to suggest the following inertial proximal method for
solving (1).

Algorithm 3.10. For a given ug € H, compute p1,41 by the iterative scheme

(v + Mtns1 — (29 + h) i + Yn—1
h2

Algorithm 3.10 is quite different from other inertial proximal methods for solving the

quasi variational inequalities.
If v = 0, then Algorithm 3.10 collapses to:

Pt = gy 1 — pT (ng1) — l, n=0,1,2,....

Algorithm 3.11. For a given pg € H, compute p,41 by the iterative scheme

M] n=0.1.2

Hnt1 = HK(un)[Un-&-l — pT (1) — h
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Algorithm 3.10 is an proximal method for solving the quasi variational inequalities.
Such type of proximal methods were suggested by Noor[33] using the fixed point problems.
In brief, by suitable descritization of the second-order dynamical systems (12), one can con-
struct a wide class of explicit and implicit method for solving inequalities.

We now consider the convergence criteria of the Algorithm 3.8 using the technique of
Alvarez and Attouch [2], Noor [33] and Noor et al.[39].

Theorem 3.1. Let p € H be the solution of quasi variational inequality (1). Let pn41 be
the approximate solution obtained from (16). If T is monotone, then

(h+h) = pna | < (VR = pn | = (v 4+ 1) esr = pral P+ (v = B) =1 = pa 2. (17)
Proof. Let p € H be the solution of quasi variational inequality (1). Then
(pT(v), v —p) >0, Vve K(u), (18)

since T' is a monotone operator.

Setting v = pin41 in (18), we have
(PT(knt1)s 1 — p) = 0. (19)
Taking v = p in (16), we have

+ ) g1 — 2y =R+ A pn + (v — R) p—
<p:r(un+1)+(v Jin+1 — (29 & Jin + (v = h)p L= ) > 0. (20)

From (19) and (20), we obtain
(Y + W) pimg1 = 2y = h 4+ D) pn + (v = D)1, it = pimt1) > 0.

Thus

(Y + ) (pnsr = i = pnr) + (v = B){fn—1 = s 1t = fing1)

(v + 2l = pnll® = (v + B pnsr = pnll® = (v + 2|1t = pnia |

+(v = W) lpn—1 = pall® + (v = D) lpp = prngr |12

v+ 1) = pall® = (O + 22 tngr = pall® + (v = 1) i1 — panl|®
—h(1+h)||p = pnia |, (21)

where we have used the following inequalities

IN A

2(u,v) = [l +ol* = [lull® = [lo]®, Vo.pen
and
2(u, v) < |lull® = o).
From (21), we have
(h+ W)l = i | < (v + 22 = pnl® = Oy + ) s = pinl* + (7 = Bl 1 = oI,
the required (18). O

We also need the following assumption.

Assumption 3.1.  (i).for any sequence p, with p, — p, and for any v € K(u),there exists
a sequence{vy,} such that v, € K(u,))and v, — v as n — oo.
(ii). For all sequences {un} and {v,} with v, € K(u,), then v € K(u).



Dynamical system and quasi variational inequalities 63

Theorem 3.2. Let p € K(u) be a solution of variational inequality (1). Let pi,y1 be the
approzimate solution obtained from (16). If Assumption 3.1 holds and the operator T is
monotone, then 1 converges to p € K(u) satisfying (1).

Proof. Let € K(p) be a solution of (1). From (18), it follows that the sequence {||p— ;| }
is non-increasing and consequently,{ ., } is bounded. Also from(18), we have

oo
vy—nh
D b = sl <l = gl + o = m,
=1
which implies that
lm g1 — piall® = 0. (22)
n— oo

Since sequence {p; 152, is bounded, so there exists a cluster point fi to which the subsequence
{14, 132, converges. From Assumption 3.1, replacing i, by fi,, in (3.2) and taking the limit
as nj — 0o, we have

(T(i),0— ) 20, Vo€ K(),
which implies that i solves (1) and

v+ h?

¥—h
el pin—t1l” < i — pall-

Using this inequality, one can show that the cluster point /i is unique and

[t — pl)* <

ity =

4. Applications

In this section, we show that the quasi variational inequalities are equivalent to the
general variational inequalities, which were introduced and investigated by Noor [26].
In many applications, the convex-valued set K (u) is of the form (10). Let p € K(u) be a
solution of problem (1). Then, from Lemma 3.1, it follows that pu € K (u) such that

no= Prgylp—oTu]
= Pr(mu ) (10— pT1]
= m(p) + P [ —m(p) — pTul. (23)

This implies that

p—m(p) = Pr [pp —m(p) — pTp].
which is equivalent to finding i € K such that

(Tw,g(v) —g(pu)) 20, Vv €K, (24)

where g(p) = p — m(p). Conversely, if g(u) = pu — m(u), then the general variational in-
equality (24) is equivalent to the quasi variational inequality (1). It is worth mentioning
that general variational inequality (24) was introduced and investigated by Noor [26]. It
has been shown by Noor [33] that odd-order and nonsymmetric obstacle boundary value
problems can be studied in the general variational inequalities. Thus all the results proved
for quasi variational inequalities continue to hold for general variational inequalities of the
type (24) with suitable modifications and adjustment. Despite the recent research activates,
very few numerical results are available. The development of efficient numerical methods
requires further efforts.
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Conclusion: In this paper, we have used a second-order resolvent dynamical systems to
suggest some inertial proximal methods for solving quasi variational inequalities. The con-
vergence analysis of these methods have beeb considered under some weaker conditions.
Our method of convergence criteria is very simple as compared with other techniques. Com-
parison and implementation of these new methods need further research efforts. We have
only discussed the theoretical aspects of the proposed iterative methods. It is an interesting
problem to discuss the implementation and performance of these new methods with other
methods. Similar methods can be suggested for stochastic variational inequalities, which
is another interesting and challenging problem. The ideas and techniques presented in this
paper may be starting point for further developments.
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