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CLASSIFICATION OF GOOD AND BAD RESPONDERS IN 
LOCALLY ADVANCED RECTAL CANCER AFTER 
NEOADJUVANT RADIO-CHEMOTHERAPY USING 

RADIOMICS SIGNATURE 
Calin Gh. BUZEA 1, Camil C. MIRESTEAN 1, Maricel AGOP2,                     

Viorel Puiu PAUN3*, Dragos T. IANCU 1,4 
We present and discuss here, a study on 22 patients diagnosed with locally 

advanced rectal cancer proposed for neo-adjuvant radio-chemotherapy, by 
evaluating their CT-simulator images using radiomics signature. Programs were 
written in Python, first, to perform the initial stages of image processing and second, 
to build and save a model using a deep convolutional neural network (CNN) which 
in the end, proved to be able to evaluate good and bad responders from unseen CT 
images within a high level of prediction accuracy (over 95.0 %).   

Keywords: radiomics, unsupervised learning, rectal cancer, tumor regression 
grading, radiotherapy. 

1. Introduction 

Colorectal cancer is the third leading cause of cancer-related mortality in Western 
countries and in approximately one-third of cases the tumor is localized in the 
rectum [1]. A standard for the therapeutic scheme in locally advanced rectal 
cancer (LARC) may be represented by surgical resection, preceded by 
neoadjuvant chemo-radiotherapy (CRT) or radiotherapy only (RT) [2,3]. 
Neoadjuvant treatment can lower the risk of local recurrence, decrease the tumor 
size, and facilitate subsequent successful R0 resection and sphincter – preserving 
surgery [4]. After CRT, pathological complete response (pCR) is achieved for 
approximately 15% to 30% of the patients [3,4] and in these cases a wait-and-see 
strategy is becoming a viable therapeutic option [5].  
To improve patient management and/or stratification, it could be advantageous to 
determine the likelihood of pCR or near pCR before treatment also to allow 
clinicians to tailor therapy. Importantly, patients predicted as non-responders 
could benefit from alternative treatments or up-front surgery, avoiding toxicity 
and side effects of CRT/RT. Also, it might be important to provide physicians 
with accurate information using noninvasive approaches to identify complete 
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responders for an alternative surgical treatment such as sphincter-saving local 
excision. 

Previous studies have highlighted several imaging modalities for their 
capability to distinguish good responders from others for LARC. Examples are 
FDG-PET [6], T2-weighted magnetic resonance imaging (T2w-MRI) [7], 
dynamic contrast-enhanced MR (DCE-MRI) [8] and diffusion-weighted imaging 
(DWI) [9,10].  

In the past 10 years, medical digital image analysis has grown dramatically 
as advancement of the pattern recognition tools and increase of the data collection. 
Furthermore, medical digital imaging could give a whole picture of the tumor 
shape, texture and volume, and it is also a noninvasive way to get comprehensive 
tumor information [11]. A relatively new field of medical investigation, known as 
Radiomics, is expected to be central to precision medicine due to its ability to 
gather detailed information describing tumour phenotypes [12]. 

Radiomics is a promising area of medical research that uses state-of-the-
art machine learning (ML) techniques for image characteristics extraction from 
different types of medical imaging such as computed tomography (CT), nuclear 
magnetic resonance (MRI) and positron emission tomography (PET) for objective 
and computable characterization of tumor phenotypes. It was formally introduced 
by Lambin and collaborators in 2012 [13,14]. It is about extracting and studying a 
huge amount of radiological imaging features, using either supervised, or 
unsupervised learning and these data are then used to predict or decode hidden 
genetic and molecular traits in decision support [11,15-20]. Radiomic features 
include useful spatial and textural information about black and white images and 
correlations between pixels in images. Further, these characteristics can be 
modeled by computerized systems, thus supplementing as an adjuvant instrument 
the individual diagnosis and treatment guidance [21]. 

Fig. 1 depicts the processes involved in the Radiomics workflow. The first 
step involves the acquisition of high quality and standardized imaging, for 
diagnostic or planning purposes. From this image, the macroscopic tumour is 
defined, either with an automated segmentation method or alternatively by an 
experienced radiologist or radiation oncologist. Quantitative imaging features are 
subsequently extracted from the previously defined tumour region. These features 
involve descriptors of intensity distribution, spatial relationships between the 
various intensity levels, texture heterogeneity patterns, descriptors of shape and of 
the relations of the tumour with the surrounding tissues. The extracted image traits 
are then subjected to a feature selection procedure. The most informative features 
are identified based on their independence from other traits, reproducibility and 
prominence on the data. The selected features are then analyzed for their 
relationship with treatment outcomes or gene expression. The ultimate goal is to 
provide accurate risk stratification by incorporating the imaging traits into 
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predictive models for treatment outcome and to evaluate their added value to 
commonly used predictors. 

 
Fig. 1 - typical workflow of Radiomics 

 
In the last few years, the literature on automated classification of images 

has been extensive, with applications covering different anatomical parts other 
than colon, such as brain, breast, prostate and lungs. Most of the proposed 
approaches rely on automated texture analysis, where a limited set of local 
descriptors are computed from patches of the original input images and then fed 
into a classifier. Among the most frequently used, statistical features based on 
grey level co-occurrence matrix (GLCM), local binary patterns (LBP), Gabor and 
wavelet transforms, etc. The texture descriptors, eventually encoded into a 
compact dictionary of visual words, are used as input of machine learning 
techniques such as Support Vector Machines (SVM), Random Forests or Logistic 
Regression classifiers [22]. In spite of the good level of accuracy obtained by 
some of these works, the dependence on a fixed set of handcrafted features is a 
major limitation to the robustness of the classical texture analysis approaches. 
First, because it requires a deep knowledge of the image characteristics that are 
best suited for classification, which is not obvious. Second, because it puts severe 
constraints to the generalization and transfer capabilities of the proposed 
classifiers, especially in presence of inter-dataset variability. 

As an answer to such limitations, in the recent years the use of deep 
learning (DL) architectures, and more specifically Convolutional Neural 
Networks (CNNs), has become a major trend [23,24]. In CNNs a number of 
convolutional and pooling layers learns by backpropagation a set of features that 
are best for classification, thus avoiding the extraction of hand-crafted texture 
descriptors. Nonetheless, the necessity of training the networks with a huge 
number of independent histological samples is still an open issue, which limits the 
usability of the approach in the everyday clinical setting.  

Radiomics has been extensively studied in oncology, with a substantial 
contribution from the quantitative imaging network (QIN) and the National 
Cancer Institute (NCI) [11]. There are studies and reports, especially for breast 
cancer [25], glioblastoma [18], head and neck cancers [26], lung cancer [14], 
esophageal cancer [27], prostate cancer [28] and rectal cancer [29]. In addition, 
radiomics was also used in dermatological studies [30]. 
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 All computer programs in this work were written in Python, an interpreted, 
object-oriented, high-level programming language with dynamic semantics. 
Python supports modules and packages, which encourages program modularity 
and code reuse. The Python interpreter and the extensive standard library are 
available in source or binary form without charge for all major platforms, and can 
be freely distributed.  
 In this paper, we evaluate a deep learning convolutional neural network 
(CNN) approach, which trains, validates and saves a classifier for predicting 
tumor regression grading of rectal tumors after neoadjuvant chemoradiotherapy. 
The computer program works by extracting characteristic features from the 320 
CT - simulator images of a number of 22 patients diagnosed with LARC proposed 
for neo-adjuvant radio-chemotherapy. The images are first converted from 
DICOM to JPEG format and a square region of interest (ROI) is defined in each 
of the CT-simulator pictures, for each patient, to delimitate the image of interest 
from the noisy background. Note the set of images used for each patient were 
previously contoured by a highly trained radiation oncologist as defining the 
tumor. We find that the saved model, even using a simple CNN architecture, 
succeeds to evaluate good and bad responders (identified using Dworak tumor 
regression grade (TRG) system obtained after surgery of these patients) from new 
CT- simulator images within a high degree of classification accuracy. The results 
are encouraging, suggesting the wealth of imaging radiomics should be further 
explored to help tailoring the treatment into the era of personalized medicine. 

2. Materials and Methods 

Twenty-two patients with LARC treated between 13.07.2015 and 
22.07.2016 with photon radiotherapy were included in the study. A 8 - 12 weeks 
resting interval is suggested before surgery to get a maximum effect of radio-
chemotherapy.  

Treatment was planned using CT-based simulation with patient lying in 
supine position. Image fusion between the diagnostic MRI and the planning CT 
images was made. Target volumes and radiosensitive organs at risk were 
delineated on images obtained from CT simulation fused with diagnostic imaging 
with contrast agent and the treatment plan was created and delivered by 3D 
conformal technique.  

All patients benefited from total excision of mesorectum and Dworak’s 
degree of regression was evaluated on the pathological sample. 

For each of the 22 patients we extracted from the CT simulator DICOM 
images only those contoured by an experienced radiation oncologist as defining 
the PTV-T (target volume of the primary rectal tumor) and PTV-N (target volume 
of lymph nodes) (Phase I)  (see Table 1) where :      
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S1=(x1-x2)/Step+1;      S2=(x2-x3)/Step+S1   (1) 
are the first and the last slide contoured, respectively, x4, x3, x2, x1 the 
coordinates of the slide on the Oy axis, along the patient, Step is the step of the 
slices taken within the CT simulator.  

Commonly used tumor regression grading (TRG) for rectal cancer is the 
Dworak grading system (which is used here too). TRGs provides important 
prognostic information since complete or subtotal tumor regression has shown to 
be associated with better patient’s outcome. The prognostic value of TRG may 
even exceed those of currently used staging systems (e.g., TNM staging) for 
tumors treated by neoadjuvant therapy. 

Table 1  
Number of CT simulator slides extracted for each patient, the associated Dworak index and 

their groups (G =good or B = bad responders) 
  

Patient 
number Step x4 x3 x2 x1 S1 S2 

Number 
of 

Slides 

TRG 
(Dworak) 

Responders 
(good/bad) 

1 0,3 -18,9 -7,2 13,8 24,9 38 108 71 2 B 

2 0,3 -19,25 -2,75 15,85 21,25 19 81 63 2 B 

3 0,3 -15,2 -3,2 9,7 22,6 44 87 44 1 B 

4 0,3 -11,4 -6 10,5 21 36 91 56 1 B 

5 0,3 -18,1 -7,3 6,8 17,6 37 84 48 3 G 

6 0,3 -16,2 -7,2 10,5 24,3 47 106 60 1 B 

7 0,3 -12 -4,2 11,7 25,2 46 99 54 3 G 

8 0,3 -18,9 -9 9,3 24,6 52 113 62 1 B 

9 0,3 -15,1 -3,1 11 23,9 44 91 48 3 G 

10 0,3 -12,3 -0,9 15 27,3 42 95 54 2 B 

11 0,3 -12,25 -1,45 12,65 27,05 49 96 48 1 B 

12 0,5 -16,85 -8,85 15,15 29,65 30 78 49 2 B 

13 0,3 -15,75 -5,85 15,15 28,05 44 114 71 1 B 

14 0,5 -14,4 -1,4 14,6 20,6 13 45 33 4 G 

15 0,3 -14,1 -4,2 17,1 24,9 27 98 72 2 B 

16 0,3 -15,9 -4,8 9,6 21,3 40 88 49 1 B 

17 0,5 -16,35 -3,35 16,65 24,15 16 56 41 2 B 

18 0,3 -21 -9,9 5,4 15,9 36 87 52 4 G 

19 0,3 -12,45 -10,05 12,45 21,75 32 107 76 progression B 

20 0,3 -18 -8,7 5,4 18,6 45 92 48 2 B 

21 0,3 -16,65 -4,65 13,35 23,25 34 94 61 2 B 

22 0,3 -18,9 -7,2 8,7 21,9 45 98 54 3 G 
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Computer Program #1 (CP1) was used to convert the DICOM images 
selected as mentioned above, into JPEG images. Furthermore, a square region of 
interest (ROI) (see Fig. 2) was created for each of the CT images, for all patients, 
to delimitate the image of mesorectum from the noisy background. This program 
also generated images with the same ROIs’ sizes (256 x 256 pixels) and excluded 
all noises from the acquired digital images. For the main Computer Program #2 
(CP2) to be able to process these images, the ROIs were placed onto a black 
background. These images were stored as JPEG files for further image processing 
and complex measurements with dedicated software tools. Also, CP1 stored the 
features and labels into two pickle files “X_rect.pickle” and "y_rect.pickle", for 
the main program CP2 to be able to load and further process. 

Using Dworak system, good responders were defined as Dworak 
TRG3+TRG4; bad responders were defined as Dworak TRG2+TRG1. The two 
groups (good responders versus bad responders) were defined to evaluate 
outcome results. CT images from the two groups were stored into two different 
subfolders: 160 images in GOOD, and 160 images in BAD. The program creates 
the DATADIR folder from the 320 images stored by us into the subfolders (BAD, 
GOOD). 

 
Fig. 2 – Example of ROI image of mesorectum 

 
A Convolutional Neural Network (CNN) is made up of multiple locally 

connected trainable stages, piled one after the other, with two or more fully-
connected layers as the last step. The first part of the network is devoted to 
learning the image representation, with successive layers learning features at a 
progressively increasing level of abstraction, while the last fully-connected part is 
devoted to classification and acts like a traditional multilayer perceptron. From a 
computational point of view, a CNN architecture is characterized by two main 
types of building blocks:  

(i) Convolutional (CONV) blocks, that perform a 2D convolution 
operation (i.e. kernel filtering) on the input image and apply a non-linear transfer 
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function, such as Rectified Linear Unit (ReLU). Based on the trainable parameters 
of the kernels, the stage detects different types of local patterns on the input 
image.  

(ii) Pooling (POOL) blocks that perform a non-linear down-sampling of 
the input (e.g. by applying a max function). This has the double effect of reducing 
the amount of parameters of the network to control overfitting and of making the 
image representation (i.e. the local pattern descriptors learnt by the network) 
spatially invariant.  

The number of CONV and POOL blocks (i.e. the depth) of the network is 
directly related to the level of detail that can be achieved in the hierarchical 
representation of the image. Nonetheless, a higher depth also translates into a 
higher number of parameters, and hence on a higher computational cost.  

The training paradigm chosen for the CNN is a classic backpropagation 
scheme: an iterative process that involves multiple passes of the whole input 
dataset until the model converges. At each training step, the whole dataset flows 
from the first to the last layer in order to compute a classification error, quantified 
by a loss function. Such error flows backward through the net, and at each training 
step the model parameters (i.e. the network weights) are tuned in the direction that 
minimizes the classification error on the training data. 

As a trade-off between representation capabilities and computational costs, 
in our work we used a simple CNN model, which is represented in Table 2. It 
adopts a very simple architecture, based on piling up only 3x3 convolution and 
2x2 pooling blocks. More specifically, the model consists of 2 CONV layers that 
can be conceptually grouped into 2 macro-blocks ending with one POOL layer 
each, and of a final 1-layered fully-connected (FC) stage. Nonlinearities are all 
based on ReLU, except for the fully-connected layer (FC) that has a sigmoid 
activation function. The convolution stride and the padding are fixed to 1 pixel 
and the maxpooling stride to 2. The net was built within Keras framework [31] 
and trained with a backpropagation paradigm. More specifically, we applied an 
ADAM gradient descent, as iterative optimization algorithm to minimize the 
categorical cross-entropy function between the two classes of interest (GOOD, 
BAD). To monitor the training and optimize the choice of hyper-parameters of the 
net, we used 30% of the training set as validation data i.e. from the total of 320 
samples used, we train on 224 and validate on 96. This subset is completely 
independent from the images used for testing purposes, and was solely used to 
compute the validation accuracy metric upon which the training process is 
optimized. Based on validation, we selected a learning rate (LR) of 0.001, a 
momentum (M) of 0.9 and a batch size (BS) of 32 images.  

The CNN was trained for 20 epochs on our colorectal cancer training 
dataset, which lasted  2min26sec on our computer : system manufacturer: 
LENOVO; model: 20354; processor: Intel(R) Core(TM) i7-4510U CPU @ 
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2.00GHz (4 CPUs), ~2.6GHz; memory: 8192MB RAM; BIOS: InsydeH2O 
Version 03.73.069BCN26W; card name: NVIDIA GeForce 840M; Operating 
System: Windows 10.  

Fig. 3 shows the loss (a) and accuracy (b) curves on both the training and 
validation datasets. From the graphs of Fig. 3 we can derive the following 
observations: (i) The model seems to converge quite quickly. Indeed, while 
training accuracy is still increasing, the value of validation accuracy saturates 
within 12 epochs. (ii) The decay speed of the validation loss curve indicates that 
the learning rate is appropriate. (iii) The similarity of validation and training 
accuracies after about 10 epochs reasonably rules out overfitting. 

 
Table 2 – used CNN architecture 

 
Layer (type)                                         Output Shape              Param #    
================================================================= 
conv2d (Conv2D)                                (None, 98, 98, 64)        640        
_________________________________________________________________ 
activation (Activation)                         (None, 98, 98, 64)        0          
_________________________________________________________________ 
max_pooling2d (MaxPooling2D)        (None, 49, 49, 64)        0          
_________________________________________________________________ 
conv2d_1 (Conv2D)                             (None, 47, 47, 64)        36928      
_________________________________________________________________ 
activation_1 (Activation)                      (None, 47, 47, 64)        0          
_________________________________________________________________ 
max_pooling2d_1 (MaxPooling2D)     (None, 23, 23, 64)        0          
_________________________________________________________________ 
flatten (Flatten)                                      (None, 33856)             0          
_________________________________________________________________ 
dense (Dense)                                         (None, 64)                  2166848    
_________________________________________________ ________________ 
activation_2 (Activation)                        (None, 64)                 0          
_________________________________________________________________ 
dense_1 (Dense)                                      (None, 1)                  65         
_________________________________________________________________ 
activation_3 (Activation)                         (None, 1)                  0          
 
================================================================= 
Total params: 2,204,481 
Trainable params: 2,204,481 
Non-trainable params: 0 
_________________________________________________________________ 
 
Train on 224 samples, validate on 96 samples 
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a)                                                           b) 

Fig. 3 – loss and validation curves for the training of the CNN classifier. 

3. Results and Discussion 

In a study from 2016, in a systematic analysis of multiparametric MR 
imaging features in predicting pathologic response after preoperative 
chemoradiation therapy (CRT) for locally advanced rectal cancer (LARC), 
authors Ke Nie et al, enrolled forty-eight consecutive patients, and built models 
with improved predictive value over conventional imaging metrics. For each 
patient, a total of 103 imaging features were extracted and analyzed using both 
volume averaged and voxelized methods. Artificial neural network with 4-fold 
validation technique was used to select the best predictor sets to classify different 
response groups and the predictive performance was calculated using receiver 
operating characteristic (ROC) curves. The conventional volume-averaged 
analysis could provide an area under ROC curve (AUC) ranging from 0.54 to 0.73 
in predicting pCR. Moreover, if the models were replaced by voxelized 
heterogeneity analysis, the prediction accuracy measured by AUC improved to 
0.71–0.79 and combining all information together, the AUC could be further 
improved to 0.84 for pCR and 0.89 for GR prediction, respectively. [32] 

Zhenyu Liu et al in 2017 enrolled 222 patients (152 in the primary cohort 
and 70 in the validation cohort) with clinicopathologically confirmed LARC who 
received chemoradiotherapy before surgery and extracted from T2- weighted and 
diffusion-weighted imaging, 2252 radiomic features before and after treatment. 
The radiomics signature comprised 30 selected features and showed good 
discrimination performance in both the primary and validation cohorts. The 
individualized radiomics model, which incorporated the radiomics signature and 
tumor length, also showed good discrimination, with an area under the receiver 
operating characteristic curve of 0.9756 (95% confidence interval, 0.9185–
0.9711) in the validation cohort, and good calibration. Using pre- and 
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posttreatment MRI data, they developed a radiomics model with excellent 
performance for individualized, noninvasive prediction of pCR. [33] 

In a 2018 study on ninety-five patients, 49 males (52%) and 46 females 
(48%), with twenty-two patients (23%) having pathologic complete response after 
chemoradiation, Jean-Emmanuel Bibault et al extracted one thousand six hundred 
eighty-three radiomics features for the tumor volume from the treatment planning 
CT Scan. A Deep Neural Network (DNN) was created to predict complete 
response, as a methodological proof-of-principle. The results were compared to a 
baseline Linear Regression model using only the TNM stage as a predictor and a 
second model created with Support Vector Machine on the same features used in 
the DNN. The DNN predicted complete response with an 80% accuracy, which 
was better than the Linear Regression model (69.5%) and the SVM model 
(71.58%). This model correctly predicted complete response after neo-adjuvant 
rectal chemoradiotherapy in 80% of the patients of this multicenter cohort. [34] 

In this paper, we build a computer program in Python using the Keras 
framework based on a CNN simple architecture to develop a classifier for tumor 
regression grading of rectal tumors after neoadjuvant chemoradiotherapy. Using 
features extracted from a set of CT for radiotherapy planning images, used for 
training and validation, this model succeeded to evaluate good and bad responders 
from new CT for radiotherapy planning images with a loss function val_loss: 
0.1537 and  overall accuracy val_acc: 0.9688. Notice also, the results we found 
are in the range of those presented in the literature 69.5 - 96%. 

In Machine Learning, performance measurement is an essential task. So 
when it comes to a classification problem, we can count on an AUC - ROC Curve. 
When we need to check or visualize the performance of the multi - class 
classification problem, we use AUC (Area Under The Curve) ROC (Receiver 
Operating Characteristics) curve. It is one of the most important evaluation 
metrics for checking any classification model’s performance. It is also written as 
AUROC (Area Under the Receiver Operating Characteristics). Generally 
speaking, ROC describes the discriminative power of a classifier independent of 
class distribution and unequal prediction error costs (false positive and false 
negative cost). ROC is a probability curve and AUC represents degree or measure 
of separability. It tells us how much the model is capable of distinguishing 
between classes. Higher the AUC, better the model is at predicting 0s as 0s and 1s 
as 1s. By analogy, higher the AUC, better the model is at distinguishing between 
patients with disease and no disease. The ROC curve is plotted with true positive 
rate (TPR) against the false positive rate (FPR) where TPR is on y-axis and FPR 
is on the x-axis. The question it answers is the following: “When it is actually the 
negative result, how often does it predict incorrectly?” 
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We give in Figure 4 the AUROC for our problem. With a value of 0.998 
for the AUC we are sure the model distinguishes very well between patients with 
GOOD and BAD responders. 

 
Fig. 4 - Receiver Operating Characteristics curve for the trained classifier 

 
 A confusion matrix (in unsupervised learning usually called matching 

matrix) is a table that is often used to describe the performance of a 
classification model (or "classifier") on a set of test data for which the true values 
are known. The confusion matrix itself is relatively simple to understand, but the 
related terminology can be confusing. In figure 5 we print the confusion matrix 
for our model. 

 
a)                                                  b) 

Fig. 5 – confusion matrix without normalization a) and normalized b) for the model 
classifier trained in this study.   

 
As can be seen from the results in Fig. 5 the expected values are 

represented by rows and predicted values by columns. The diagonal represents the 
elements where the predicted values where equal to the expected values, and the 
off-diagonal values represent the elements where the classifier got the prediction 
wrong. The higher the proportion of values on the diagonal of the matrix in 
relation to values off of the diagonal, the better the classifier is. High number of 
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values off the diagonal indicate problem areas. In the model developed in this 
paper the classifier literally confused BAD with GOOD responders in 6 out of 160 
instances, and GOOD with BAD responders in 3 out of 160 instances. Out of 320 
images, the classifier predicted correctly 311 of them.  

In what follows TP stands for true positive, TN for true negative, FP for 
false positive and FN for false negative. From the matrix above if we calculate the 
“accuracy” defined as the ratio (TP+TN)/(TP+TN+FP+FN), we obtain again that 
97% of the predicted outputs were correctly classified. Precision calculated as the 
ratio TP/(TP+FP) is 0.963 and it answers the question: “When it predicts the 
positive result, how often is it correct?” and it is usually used when the goal is to 
limit the number of  FP. Recall, or TPR  defined as the ratio TP/(TP+FN) is 0.981 
and it answers the question: “When it is actually the positive result, how often 
does it predict correctly? Recall, usually is used when the goal is to limit the 
number of FN. 

4. Conclusions 

According to the results of this study, in practice, we can ultimately feed 
diagnostic, anatomic and metabolic (CT, RMN, PET CT) and/or CT simulator 
images of patients with rectal tumors to a specially built computer 
program/algorithm and the resulted classifier could predict, with a quite high 
precision rate, the  tumor regression grading of these patients, after neoadjuvant 
chemoradiotherapy.  
 Basically, the possibility of predicting a response to the treatment based on 
images correlated to clinical, biological and pathological factors (e.g., tumor 
stage, histology, lymphovascular invasion) can lead to a stratification of patients 
in order to intensify or lessen the neoadjuvant therapy. Moreover, the system can 
help medical experts in completing a superior assessment of medical pictures, by 
indicating out patterns related to the disease. 
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