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SPLITTING RELAXED S-SUBGRADIENT PROJECTION ALGORITHM
FOR NON-CONVEX SPLIT FEASIBILITY PROBLEMS

Jinzuo Chen', Tzu-Chien Yin?

In this paper, we suggest an algorithm based on subgradient projection method
for solving non-convex split feasibility problems in finite dimensional spaces. The step-
size of the proposed sequence is chosen according to Armijo-type line rule. Convergence
result is proved under some additional conditions.

Keywords: nonconvex split feasibility problems, S-subdifferentiable, S-subgradient pro-
jection, Armijo-type line rule.

MSC2020: 47J25, 47TN10, 65J15, 90C25.

1. Introduction
Find an element x € R” satisfying
x € C with Az € Q, (1)

where C' C R™ and @ C R™ are closed convex non-empty sets and A is a matrix from R"
into R™. This problem is called split feasibility problem (abbr. SFP). Since the problem
(1) was raised by Censor and Elfving [6] in 1994, it has been successfully applied to signal
processing, image restoration, especially in the field of intensity modulated radiation therapy
(IMRT) [3-5, 7]. Many algorithms have been proposed for solving the SFP and the related
problems, please see [1, 6, 8-13, 15-37] and their references therein. Byrne [4, 5] suggested
the C'@Q algorithm:

Trp+1 = Po (xk — QkAT (] — PQ) Axk) , k>1, (2)

where Pc and FPg are the metric projections onto C' and @, respectively and the step gy, is in
(0,2/8) with § being the spectral radius of matrix AT A (or g € (0,2/||A||?) equivalently).
Compared with the algorithm in [6] where the inverse A~! (suppose it exists) is needed, the
so-called C'Q algorithm (2) is easy to implement due to it only deals with metric projections.
To perform the CQ algorithm (2), the form of given closed convex subsets C' and @ should
be very simple so that the metric projections Pc and Py can be calculated easily. Now we
consider the level sets as follows:

Co={z €R":c(z) <0} and Qo = {y € R™ : q(y) <0},

where ¢ : R" — R and ¢ : R™ — R are convex functions. As far as we know, the efficiency
of the CQ algorithm (2) would be affected extremely whenever the closed convex sets are
constructed by level sets because the metric projection onto level set do not have closed
form, in other word, the computation of metric projection onto such set is not an easy task.
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To overcome this difficulty, Yang [26] presented relaxed CQ algorithm that computes
the metric projection onto half-space containing the level set instead of the latter one itself.
The relaxed CQ algorithm [26] is as follows:

Thr1 = Poy o (v — o AT (I = Po, ) Azy), k> 1, (3)

where o5, € (0,2/[|A|?) and Cr,0, Qx,0 are given by
Cro ={z € R" : (¢p, T — xx) + c(z)) < 0},

and

Qro=1{y € R™ : (pr,y — Azg) + q(Axy) < 0},
in which ¢ € Oc(xy) and ¢ € 9dg(Axy). Obviously, Ci o and Qo are half-spaces and
hence the metric projections onto Cy ¢ and Qo have the closed form, this makes algorithm
(3) easy to implemented in practice. However, the step-size gj in (3) depends on matrix

norm ||Al|, this greatly affects the applicability of the algorithm, see [14]. Thus, Lépez [16]
defined a function as follows

1
ful@) = 5 |[Az — Po,,(42)|", k> 1.

We can rewrite algorithm (3) as

Tpy1 = Poy o (@r — 0V fr(2r)), (4)
where step-size
ok = Mo (@) [IV fr(an)|?, 0 <A <2, (5)
and gradient
Vi) =A" (I - Pg,,) Ax.
The convergence of algorithm (4) with step-size (5) is guaranteed under the computation of
metric projection onto half-space. In this case, they did not need to calculate the value of
the matrix norm ||A|. Moreover, the method of avoiding calculating matrix norm can also
use the Armijo-type line rule. Inspired by the relaxed projection method and the Tseng’s
modified forward-backward splitting method, Wang [24] suggested the following algorithm:

yr = Pe, (xr — T fr(Tr))
rr1 = Po, (yr — Te(fr(yr) — fr(2r)))

the step-size 7 here is selected by the Armijo-type line rule. In this case, the matrix norm
||A]| does not need to be estimated. See also [15, 17, 21] for more details about Armijo-type
line rule.

On the other hand, the relaxed CQ algorithm (4) can be rewritten as subgradient
projection algorithm when the concept of subgradient projection is introduced. Guo [13]
denoted by G. the subgradient projector associated with (¢, 0) and by G, the subgradient
projector associated with (f, 0). Guo [13] proposed the following iterative step:

Trp1 = Ge (R, 5, (k) (6)

where R, ¢, = I+, (G, — I) is arelaxation of G, , A is chosen in the interval (0, 2), then
algorithm (6) converges to the solution of problem (1) in which the original closed convex
subsets are replaced by level sets.

There is a natural question: Can the algorithm (6) and its variants be constructed in
which the step-size is chosen by the Armijo-type line rule?

Motivated by the works of Wang [24] and Guo [13], we suggest in the paper a new
form of subgradient projection algorithm to solve the SFP in which the step-size is chosen
according to the Armijo-type line rule. Moreover, the functions ¢ and ¢ in (1) we consider
are both continuous, S-subdifferential, locally Lipschitzian, not necessarily convex instead
of the original convex.
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2. Preliminaries

Let S C R™ be nonempty closed set, denote by Ps the orthogonal (metric) projection
from R”™ onto S; that is,

Ps(z) := argmin cgllz —y|, = e€R™

Definition 2.1 ([2]). Let f : R™ — R be a real function. We use Levf = {x € R : f(z) < &}
to denote the level set of f.

Definition 2.2 ([13]). Given S C R"™ and vy > 0, a vector u € R"™ is said to be an
S-subgradient of function f:R™ — R at x if
T T
(v —zu) + f(2) + dy(2) < fy) + S d3(y), yeR™
The set of all S-subgradients of function f at x is called S-subdifferential of f at x and is
denoted by
T T

Osr, (@) = {u e R" s (y—w,u) + f(2) + Ldd(a) < fy) + L)y e R"}  (7)

where dg(z) = infyeg ||z — y|| is the usual distance from the point x to the set S.

If ry = 0 in (7), the S-subdifferential turns out to be the Fenchel subdifferential. If
S = R"™, the above result is still valid.

Definition 2.3 ([2]). Given a (not necessarily convez) function f : R" — R, define its
Fenchel subdifferential at x by

Of(z) :={u e R": (y —z,u) + f(x) < f(y),YVy € R"}.
When f is convex, Of(x) is the usual subdifferential.
Lemma 2.1 ([13]). Let S be closed and convex and C¢ = Levf be a non-empty set such
that C¢ € S CR™. Let f : R" — R be S-subdifferential on R™ with respect to S. Then there
exists a constant vy > 0 such that for any x ¢ C¢,
sf(x) € Osr, f(x) = sp(x) #0.

Definition 2.4 ([13]). Assume that f : R™ — R is continuous and S-subdifferential on R™
with respect to S. Let S be closed and convex and C¢ = Levf be a non-empty set such that
Ce € S CR". Assume that Os,, f(x) is the S-subdifferential of f with respect to S and
sy(x) € Osr, f(x). The S-subgradient projector onto Ce¢ related to (f,§) is

GS,fﬂR”—)R"
oo | T TS @), 2 ¢ Ce
T, IEECE.

Lemma 2.2 ([13]). Let S C R™ be closed and convex and f : R™ — R be S-subdifferential
on R™ with respect to S. Then, there exists a constant ry > 0 such that

u € Jsr, f(x) & u € df(x)+ry(I — Ps)(x).
3. Split Feasibility Problem in Non-convex Case

Let’s now consider the split feasibility problem defined on non-convex level sets which
is formulated as finding an element x satisfying the form:

x € Cy and Az € Qo,

where A : R — R™, Cj and Qq are stated in (1) in which ¢ : R™ - R and ¢ : R™ — R
are continuous, S-subdifferential and locally Lipschitzian. In the sequel, we assume that the
solution set ' := {x € Cy : Az € Qp} is non-empty.
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Assume that S,, C R™ and S,, € R™ are closed convex sets such that Cy C S,, and
Qo C S,,. Since ¢: R™ — R and ¢ : R™ — R are continuous and S-subdifferential, we use
0s,r.c(x) and Js,,r,q(y) to denote S-subdifferential of ¢ and ¢ with respect to S,, and S,
respectively. Let s.(x) € Os,,.c(x) be S-subgradient of c at z € R™ and let s,(y) € 0s,,r,9()
be S-subgradient of ¢ at y € R™. By definition 2.4, the S-subgradient projector onto C
associated with (¢, 0) can be defined by

Gs,.c:R" - R"

. a:—&—ﬁsc(x)7 z ¢ Cy
x, z € CY.

We can also define the S-subgradient projector Gg,, ;, : R™ — R™ by the same way.
On the other hand, given s.(xx) € Js,r.c(xx) and sq(Axy) € Os,,r,q(Axy), set

Cro={ueR": (sc(x),u —z) + c(zx) <0},

and

Qro ={v e R™: (sq(Axy),v — Azxy) + q(Azi) <0}, k> 1.

Write fi(z) = %Hx—Pck)O(x)HQ and gi(z) = %HAx—PQk,O(Ax)||2 for all x € R™ and
their Lipschitz gradients are V fi(z) =  — Pg, () and Vgi(z) = AT (Az — Py, ,(Ax))
for all # € R™. Denote the subgradient projector related to (fx, 0) by Gy, and denote the
subgradient projector associated with (gx, 0) by Gy, .

Set Ry, . = I+ pi (Gy, —I) and Ry, g, = I + A\ (Gg, — I).. Now we construct the

following recursive procedure: for any x; € R™,

Rk = Rukfk (R)\kgk (xk))v
yr = Gs, e (2 — VR (21)) , (8)
i1 = Gs, e (U — T(Var(yx) — Var(zx)))

for all £ > 1, where 7, = 4™+ with v > 0, ¢ > 0 and my is the smallest nonnegative integer
m such that

TlIV gk (i) — Var(zi)ll < V1= kllye — 2, & € (0,1).
We now give the convergence analysis of the algorithm (8).

Theorem 3.1. The sequence {x} generated by algorithm (8) converges to x* € T' provided
/\kalffk € (072)

Proof. Let 7 € T' and s,(Axy) € 0s,,r,q(Azy). From (7) and the fact Qo C S,,, we have
r r
(sq(Awy), AT — Awy) + q(Azx) < q(A7) + T1dg,, (A7) = THdg,, (Azk) <0

for any A7 € Qo. Thus, we have AT € Qy 0, or equivalently, gi(7) = 0. In the same way,
we get fi(1) =0.

According to the definition of G, , we consider two cases. If Axy € Q, one can
show that

<G9k (xk) - T, ng (:Ck) - $k> = <ng (:Ck) — T, Tk — ij> = 0.
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If Azy ¢ Qk.0, by the fact gi(7) = 0, we obtain from (7) and (2.3) that

(Gyy (1) — T, Gy (x1) — 1) = <xk _— ”V%E‘”’;)lzv%(x)> + m
o 7 T+ m
<y o (7) ~ gt + n%;((x)ﬂ
Hence, B
(G (1) = 7, Gy (1) — 1) < 0. o)

Set WE = R)Uegk(xk), Ve = Yk — Tk(ng(yk) — ng(zk)) and U = 2k — Tngk(zk).
Using the same argument as that of (9), we have

(G (wi) = 7,G g (wr) —wy) <0, (10)
(Gs, .c(vk) — 7,Gs,, c(v) —vi) <0, (11)
and
(Gs, c(ur) = 7,Gs,, c(ur) —ug) <0,
respectively, and the last inequality can be rewritten as
(e = 7oyk — 21) < =70 (Y — 7, Vgr(2x)) - (12)
Also using (9), we achieve
lw = 71 =llzg — 7I* + 20 (21, — Gy, (1), Gy, (k) — 1)
+ 20 (G, (1) — 7, Gy () — 2x) + AT |Gy () — )
<k = 7)1 = A2 = M) |Gy (k) — 2]
This together with (8) and (10) implies that
Iz = 71 =llwg = 7I* + 245 (w — G, (wy), G, (wy,) — wy)
+ 2 (G (wi) — 7, G, (wi) = wi) + i, |G, (wie) — wi]|?
<llwk — 7)1* = k(2 = i) |Gy, (wie) — wie®
<llzk =71 = M2 = M) G () = 2il|* = (2 = pan) |Gy (wr) — w] |
By (11), it follows that
IGs, c(vr) = 7|* = vk + Gs, (vr) — v — 7|
=[x = 7[1* + 2 (vx — G5, c(vr), Gs, e (k) — Vi)
+2(Gs, c(vr) = 7, Gs,, o(vk) — vk) + | Gs,, c(vr) — vic]|* (14)
<llok = 71> = |G, .c(vx) — vi?
<ok = 7.
By (8), (3) and (14), we get
|rr1 = 711 <llye = 7l1* + 71V gr(yr) — Vor(zp) |
=275 Yk — 7, Vg (yr) — Var(2x))
Ly =71 + (1 = #)llys — z&l?
— 27 (yx — 7, Var(yx) — Var (1)) -
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Note that
lye = 71% =Nz — 71> + llyr — 261> + 2 (2 — 7, U0 — 21)

=[lze = 7I1* = lluw — 2ll* + 2 (yp — 7o 95 — 28) -
Using (12) and (16) in (15), we have
ks —7)1* < 2w — 711 = Kllyr — 26l — 275 (e — 7, Vg (yr)) -
Since Vg, is monotone, it follows that
(Var(yr),yr — 1) 2 (Vgr(7),yr — 1) = 0.
This together with (13) implies that
k1 = 7II* <[k = 71> = A(2 = Me) |G () — 2 ®
— (2 = i) |G, (wr) — wie] |
By the assumptions 0 < A\ < 2 and 0 < i < 2, we get
lzpr1 = 7I* < Jlag — 72

for all £ > 1. This shows that {zx} is bounded due to its Fejer monotonicity. Moreover, we
conclude that

T |Gy () — 2| = lim (G, () — wi | = 0. (17)
Therefore,
G ax) — 2l = s+ 2T G ) | = TR g
IV gr(zr) |l Vg (zr) |l

Observe that
Vg (@)l = Vgr(zr) — Var()l < A2 ||z — 7.
This shows that {Vgg(zx)} is bounded. We get from (17) and (18) that
klirrgo |Azy, — P, (Azi)|| = 0.
The locally boundedness of dq is obtained from the locally Lipschitzian of ¢ and hence

0q is bounded on bounded sets and so is [ — Pg,,. By Lemma 2.2, we get Jg, ,_g is bounded
on bounded sets. Thus,

q(Azy) < (sq(Axk), Az — Pg, o (Azy)) <1 || Az — Pg, o (Azy)|| -

mTq

where 7 > 0 such that ||s;(Azy)|| < 1. Since {zx} is bounded, there exists a subsequence
{zk,} C {2k} such that x, — =*. The continuity of ¢ yields

q(Az*) = lim q(Axy,) <0,
71— 00

which implies Az* € Q.
Since wy = Ry, g, (x1), it follows from (17) that

lim ||wg, — x| = 0.
1—> 00

So, wy, — x*.
Next, according to the definition of G ¢, , we consider two possible cases. If wy, € Cy, o.
Then ¢(z*) < 0 and hence z* € Cy. If wy, ¢ C, 0. Using the same argument as that of

(18), we get lim Hwk — Po,. U(wki)H = 0. Consequently, we have z* € C.
1—00 v

Finally, we have 2* € Cy and Az* € Qg and the proof is completed. a
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4. Conclusion

The split feasibility problem in convex case has been studied extensively. In this

paper, we devote to solve non-convex split feasibility problems in finite dimensional spaces.
We suggest an iterative algorithm based on subgradient projection method for solving this
split problem. The step-size of the proposed sequence is chosen according to Armijo-type
line rule. We show that the sequence generated by the proposed algorithm converges to a
solution of the split feasibility problem under some mild conditions.
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