

GENERALIZED Ω -DISTANCE MAPPINGS AND SOME FIXED POINT THEOREMS

K.ABODAYEH¹, A.BATAIHAH² and W. SHATANAWI^{1,3}

In this article, we introduce the concept of generalized Ω -distance mappings by using the concepts of G_b -metric spaces and Ω -distance mappings. Also, we introduce the notions of generalized Ω -Banach contraction and generalized Ω -Kannan contraction. We use such contractions to prove the existence and uniqueness fixed point.

Keywords: generalized Ω -distance, generalized b-metric space, Ω_b -distance, G_b -metric space, b-metric space, fixed point.

1. Introduction

In 1989, Bakhtin [1] introduced the concept of b-metric spaces as a generalization of the standard concept of metric spaces, while the result of Bakhtin became known more by Czerwinski [2]. For some results in b-metric spaces, we refer the reader to [3]–[8]. The notion of generalization of metric spaces, called a G-metric space was investigated by Mustafa and Sims [9] in 2006. After that many authors studied many results on fixed and common fixed point in G-metric spaces; for example see [10]–[15]. In 2012 Jleli and Samet et al. [16] derived some known fixed point theorems in G-metric spaces by using the concept of quasi metric spaces. The clever paper of Jleli and Samet et al [16] reduces some fixed point theorems from G-metric spaces to standard metric spaces. In 2010 Saadati et al. [17] introduced the concept of Ω -distance as a generalization of Ω -distance [18] and studied some fixed point results. Recently, many authors [19]–[23], [25] obtained many fixed point results by using the concept of Ω -distance mappings.

On the other hand, Aghanjaniet.al. [24] utilized the concept of G-metric spaces and the concept of b-metric spaces to introduce the concept of G_b -metric spaces. The concept of generalized Ω -distance mappings (Ω_b -distance) will be considered in more details where some fixed point results using such concept will be obtained.

¹ Department of Mathematics and general courses, Prince Sultan University Riyadh, Saudi Arabia, E-mail: kamal@psu.edu.sa, wshatanawi@psu.edu.sa

² Department of Mathematics, Faculty of Science, University of Jordan, Amman, Jordan, email: anwerbataihah@gmail.com

³ Department of Mathematics and general courses, Prince Sultan University Riyadh, Saudi Arabia, E-mail: kamal@psu.edu.sa, wshatanawi@psu.edu.sa and Department of Mathematics, Faculty of Science, Hashemite University, Zarqa, Jordan, email: swasfi@hu.edu.jo, wshatanawi@yahoo.com

2. Preliminary

The concept of G_b -metric spaces is defined as follows:

Definition 2.1. [24] Let X be a nonempty set and $s \geq 1$ be a given real number. Suppose that a mapping $G: X \times X \times X \rightarrow \mathbb{R}^+$ be a function satisfies:

- (G_b 1) $G(x, y, z) = 0$ if $x = y = z$;
- (G_b 2) $G(x, x, y) > 0$ for all $x, y \in X$, with $x \neq y$;
- (G_b 3) $G(x, y, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $y \neq z$;
- (G_b 4) $G(x, y, z) = G(p\{x, y, z\})$, where p is a permutation of x, y, z ;
- (G_b 5) $G(x, y, z) \leq s[G(x, a, a) + G(a, y, z)]$ for all $x, y, z, a \in X$.

Then the function G is called a *generalized b-metric* and the pair (X, G) is called generalized b-metric space or G_b -metric space.

It is clear that the class of G_b -metric spaces is larger than that of G-metric spaces.

Example 2.1. [24] Let (X, G) be a G-metric space, and $G_*(x, y, z) = G(x, y, z)^p$, where $p > 1$ is a real number. Then we note that G_* is a G_b -metric with $s = 2^{p-1}$. To see this it is obvious that G_* satisfies conditions $(G_b1) \dots (G_b4)$ of Definition 2.1, so it sufficient to verify Condition (G_b5) . If $1 < p < \infty$, then for $x > 0$ the convexity of the function $f(x) = x^p$ implies that $(a + b)^p \leq 2^{p-1}(a^p + b^p)$. Thus for each $x, y, z, a \in X$ we obtain

$$\begin{aligned} G_*(x, y, z) &= G(x, y, z)^p \leq (G(x, a, a) + G(a, y, z))^p \\ &\leq 2^{p-1}(G(x, a, a)^p + G(a, y, z)^p) \\ &= 2^{p-1}(G_*(x, a, a) + G_*(a, y, z)). \end{aligned}$$

So G_* is a G_b -metric.

Aghanjaniet.al. defined the G_b -convergence and G_b -Cauchy sequences as follows:

Definition 2.2. [24] Let X be a G_b -metric space. A sequence (x_n) in X is said to be

- 1) G_b -convergent to $x \in X$ if for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that for all $n, m \geq k$, $G(x, x_n, x_m) < \epsilon$.
- 2) G_b -Cauchy sequence if for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that for all $n, m, l \geq k$, $G(x_n, x_m, x_l) < \epsilon$.

Proposition 2.1. [24] Let X be a G_b -metric space. Then the following are equivalent:

- 1) the sequence (x_n) is G_b -convergent to x .
- 2) $G(x_n, x_n, x) \rightarrow 0$ as $n \rightarrow \infty$.

$$3) \quad G(x_n, x, x) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Proposition 2.2. [24] Let X be a G_b -metric space. Then the following are equivalent:

- 1) the sequence (x_n) is G_b -Cauchy .
- 2) for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \epsilon$, for all $n, m \geq k$.

Definition 2.3. A G_b -metric space X is called G_b -complete or complete G_b -metric space if every G_b -Cauchy sequence is G_b -convergent in X .

3. Generalized Ω -distance mappings (Ω_b -distance)

First, we introduce the concept of generalized Ω -distance mappings.

Definition 3.4. Let X be a G_b -metric space. Then a mapping $\Omega: X \times X \times X \rightarrow [0, \infty)$ is called a *generalized Ω -distance mapping* or Ω_b -distance mapping on X if the following conditions are satisfied:

- 1) $\Omega(x, y, z) \leq s [\Omega(x, a, a) + \Omega(a, y, z)]$, for all $x, y, z, a \in X$ and $s \geq 1$,
- 2) for any $x, y \in X$, the functions $\Omega(x, y, \cdot), \Omega(x, \cdot, y): X \rightarrow X$ are lower semi continuous,
- 3) for every $\epsilon > 0$, there is $\delta > 0$ such that $\Omega(x, a, a) \leq \delta$ and $\Omega(a, y, z) \leq \delta$ imply $G_b(x, y, z) \leq \epsilon$.

Example 3.2. Consider the G_b -metric G defined on $X = \mathbb{R}$ by $G(x, y, z) = (|x - y| + |y - z| + |x - z|)^2 \forall x, y, z \in \mathbb{R}$. Define $\Omega: X \times X \times X \rightarrow [0, \infty)$ by $\Omega(x, y, z) = (|x - y| + |x - z|)^2$ for all $x, y, z \in \mathbb{I}$. Then Ω is a generalized Ω -distance with $s = 2$. Note that it is a straightforward to verify that Conditions (1) and (2) of Definition 3.4 are satisfied. So we need to check that the last condition of the definition is valid.

Let $\epsilon > 0$ be given. Choose $\delta = \frac{\epsilon}{40}$ such that $\Omega(x, a, a) < \delta$ and $\Omega(a, y, z) < \delta$. Then

$$\Omega(x, a, a) = (|x - a| + |x - a|)^2 < \delta \Rightarrow |x - a| < \sqrt{\delta}.$$

Also,

$$\Omega(a, y, z) = (|a - y| + |a - z|)^2 < \delta \Rightarrow |y - a| < \sqrt{\delta} \text{ and } |z - a| < \sqrt{\delta}.$$

Now

$$\begin{aligned}
G(x, y, z) &= (|x - y| + |y - z| + |x - z|)^2 \\
&\leq (|x - a| + |y - a| + |y - a| + |z - a| + |x - a| + |z - a|)^2 \\
&= 4|x - a|^2 + 4|y - a|^2 + 4|z - a|^2 + 8|x - a||y - a| + 8|x - a||z - a| \\
&\quad + 8|y - a||z - a| \\
&< 4\delta + 4\delta + 4\delta + 8\delta + 8\delta \\
&= 40\delta = \varepsilon
\end{aligned}$$

Definition 3.5. Let (X, G) be a G_b -metric space and Ω be an Ω_b -distance on X . Then we say that X is Ω -*bounded* if there exists $M > 0$ such that $\Omega(x, y, z) \leq M$ for all $x, y, z \in X$.

The following result is a generalization of Lemma 1.7 in [17] for Ω_b -distance.

Lemma 3.3. Let X be a G_b -metric space and Ω_b be a generalized Ω -distance on X . Let $(x_n), (y_n)$ be sequences in X , $(\alpha_n), (\beta_n)$ be sequences in $[0, \infty)$ converging to zero and let $x, y, z, a \in X$. Then we have the following:

- 1) If $\Omega_b(y_n, x_n, x_n) \leq \alpha_n$ and $\Omega_b(x_n, y_m, z) \leq \beta_n$ for any $m > n \in \mathbb{N}$, then $G(y_n, y_m, z)$ converges to 0 and hence y_n converges to z ;
- 2) If $\Omega_b(y, x_n, x_n) \leq \alpha_n$ and $\Omega_b(x_n, y, z) \leq \beta_n$ for $n \in \mathbb{N}$, then $G(y, y, z) < \varepsilon$ and hence $y = z$;
- 3) If $\Omega_b(x_n, x_m, x_l) \leq \alpha_n$ for any $m, n, l \in \mathbb{N}$ with $n \leq m \leq l$, then (x_n) is a G_b -Cauchy sequence;
- 4) If $\Omega_b(x_n, a, a) \leq \alpha_n$ for any $n \in \mathbb{N}$, then (x_n) is a G_b -Cauchy sequence.

Proof.

- 1) Let $\varepsilon > 0$ be given. From the definition of a generalized Ω -distance, there exists $\delta > 0$ such that $\Omega_b(s, a, a) \leq \delta$ and $\Omega_b(a, t, z) \leq \delta$ imply $G_b(s, t, z) \leq \varepsilon$. Choose $n_0 \in \mathbb{N}$ such that $\alpha_n \leq \delta$ and $\beta_n \leq \delta$ for every $n \geq n_0$. Then, for any $m > n \geq n_0$, we have,

$$\Omega_b(y_n, x_n, x_n) \leq \alpha_n \leq \delta, \Omega_b(x_n, y_m, z) \leq \beta_n \leq \delta,$$

and hence $G_b(y_n, y_m, z) \leq \varepsilon$, so that (y_n) converges to z .

- 2) Part (2) follows directly from Part (1).
- 3) Let $\varepsilon > 0$ be given. As in the proof of (1), choose $\delta > 0$ and $n_0 \in \mathbb{N}$. Then, for any $m > n \geq n_0$, $\Omega_b(x_n, x_{n+1}, x_{n+1}) \leq \alpha_n \leq \delta$, $\Omega_b(x_{n+1}, x_m, x_l) \leq \alpha_{n+1} \leq \delta$, and hence $G_b(x_n, x_m, x_l) \leq \varepsilon$. Therefore, (x_n) is a G_b -Cauchy sequence.
- 4) Part (4) is a special case of Part (3). \square

4. Some fixed point results through Ω_b -distance mappings

We introduce in this section the notion of Ω_b -Banach contraction.

Definition 4.6. Let (X, G) be a G_b -metric space and Ω be an Ω_b -distance on X . A mapping $T: X \rightarrow X$ is called a Ω_b -Banach contraction if there is $k \in [0, 1)$ such that

$$\begin{aligned} \Omega(Tx, T^2x, Ty) &\leq k\Omega(x, Tx, y) \quad \text{for all } x, y \in X, \text{ with } s \geq 1 \quad \text{and} \\ &< 1. \end{aligned}$$

Theorem 4.4. Let (X, G) be a complete G_b -metric space and Ω be a generalized Ω -distance on X with a constant $s > 1$ such that X is Ω -bounded. Let T be a self-mapping on X that satisfies the following conditions:

- 1) The function T is an Ω_b -Banach contraction,
- 2) for all $u \in X$ assume that if $Tu \neq u$, then $\inf\{\Omega_b(x, Tx, u) : x \in X\} > 0$.

Then T has a unique fixed point in X .

Proof. Let $x_0 \in X$. We construct a sequence (x_n) in X such that $x_n = Tx_{n-1}$ $n \in \mathbb{N}$. Consider $t \geq 1$. Then by using the contraction condition, we get

$$\begin{aligned} \Omega(x_n, x_{n+1}, x_{n+t}) &= \Omega(Tx_{n-1}, Tx_n, Tx_{n+t-1}) \\ &\leq k \Omega(x_{n-1}, x_n, x_{n+t-1}) \\ &\leq k^2 \Omega(x_{n-2}, x_{n-1}, x_{n+t-2}) \\ &\quad \vdots \\ &\leq k^n \Omega(x_0, x_1, x_t). \end{aligned}$$

Since X is Ω -bounded, there exists $M > 0$ such that $\Omega(x, y, z) \leq M$ for all $x, y, z \in X$. Therefore,

$$\Omega(x_n, x_{n+1}, x_{n+t}) \leq k^n M. \quad (4.1)$$

Now, by using part (1) of the definition of Ω_b -distance and (4.1), we have for all $l \geq m > n$

$$\begin{aligned} \Omega(x_n, x_m, x_l) &\leq s\Omega(x_n, x_{n+1}, x_{n+1}) + s\Omega(x_{n+1}, x_m, x_l) \end{aligned}$$

$$\begin{aligned}
&\leq s\Omega(x_n, x_{n+1}, x_{n+1}) + s^2\Omega(x_{n+1}, x_{n+2}, x_{n+2}) + s^2\Omega(x_{n+2}, x_m, x_l) \\
&\quad \vdots \\
&\leq s\Omega(x_n, x_{n+1}, x_{n+1}) + s^2\Omega(x_{n+1}, x_{n+2}, x_{n+2}) + \cdots \\
&\quad + s^{m-n-1}\Omega(x_{m-2}, x_{m-1}, x_{m-1}) + s^{m-n-1}\Omega(x_{m-1}, x_m, x_l) \\
&\leq sk^nM + s^2k^{n+1}M + \cdots + s^{m-n-1}k^{m-2}M + s^{m-n-1}k^{m-1}M \\
&\leq sk^nM + s^2k^{n+1}M + s^3k^{n+2}M + \cdots \\
&= sk^nM(1 + sk + (sk)^2 + \cdots) \\
&= sk^nM \frac{1}{1 - sk}.
\end{aligned}$$

Taking the limit as $n \rightarrow \infty$, we have

$$\lim_{n,m,l \rightarrow \infty} \Omega(x_n, x_m, x_l) = 0.$$

Hence, by Lemma 3.3, (x_n) is a G_b -Cauchy sequence. Therefore there is $u \in X$ such that x_n is G_b -convergent to u . For $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\Omega(x_n, x_m, x_l) \leq \epsilon$, for all $n, m, l \geq N$. Therefore $\lim_{l \rightarrow \infty} \Omega(x_n, x_m, x_l) \leq \epsilon$.

Now, by the lower semi continuity of Ω in its third variable, we have

$$\Omega(x_n, x_m, u) \leq \lim_{p \rightarrow \infty} \Omega(x_n, x_m, x_p) \leq \epsilon, \text{ for all } m, n \geq N.$$

Let $m = n + 1$. Then $\Omega(x_n, x_{n+1}, u) \leq \lim_{p \rightarrow \infty} \Omega(x_n, x_{n+1}, x_p) \leq \epsilon$, for all $n \geq N$. If $Tu \neq u$, then for each $\epsilon > 0$, the second condition of Theorem 4.4 implies that

$$0 < \inf\{\Omega(x, Tx, u) : x \in X\} \leq \inf\{\Omega(x_n, x_{n+1}, u) : n \geq N\} \leq \epsilon,$$

which is a contradiction. Therefore $Tu = u$.

To prove the uniqueness, suppose that there exists $v \in X$ such that $Tv = v$. Then by the contraction condition, we have

$$\Omega(u, u, v) = \Omega(Tu, T^2u, Tv) \leq k\Omega(u, u, v).$$

Since $k < 1$, we have $\Omega(u, u, v) = 0$. Also, by the contraction condition, we have

$$\Omega(u, u, u) = \Omega(Tu, T^2u, Tu) \leq k\Omega(u, u, u).$$

Therefore $\Omega(u, u, u) = 0$. Part (3) of the Definition 3.4 implies that $G(u, u, v) = 0$ and hence $u = v$. \square

Now, we introduce the notion of Ω_b -Kannan contraction.

Definition 4.7. Let (X, G) be a G_b -metric space and Ω be an Ω_b -distance on X . A mapping $T: X \rightarrow X$ is called an Ω_b -Kannan contraction if there is $k \in [0, \frac{1}{2})$ such that

$$\Omega(Tx, T^2x, Ty) \leq k [\Omega(x, Tx, Tx) + \Omega(y, Ty, Ty)]$$

for all $x, y \in X$, with $s \geq 1$ and $ks < \frac{1}{2}$.

Theorem 4.5. Let (X, G) be a complete G_b -metric space and Ω be a generalized Ω -distance on X with a constant $s > 1$ such that X is Ω -bounded. Let T be a self-mapping on X that satisfies the following conditions:

- 1) T is an Ω_b -Kannan contraction.
- 2) for all $u \in X$ assume that if $Tu \neq u$, then $\inf\{\Omega_b(x, Tx, u) : x \in X\} > 0$.

Then T has a fixed point in X .

Proof. For $x_0 \in X$, we construct a sequence (x_n) in X such that $x_n = Tx_{n-1}$, $n \in \mathbb{N}$.

Consider $t \geq 1$. Then by using the contraction condition, we get

$$\begin{aligned} \Omega(x_n, x_{n+1}, x_{n+t}) &= \Omega(Tx_{n-1}, Tx_n, Tx_{n+t-1}) \\ &\leq k [\Omega(x_{n-1}, x_n, x_n) + \Omega(x_{n+t-1}, x_{n+t}, x_{n+t})]. \end{aligned}$$

Now,

$$\begin{aligned} \Omega(x_{n-1}, x_n, x_n) &= \Omega(Tx_{n-2}, T^2x_{n-2}, Tx_{n-1}) \\ &\leq k [\Omega(x_{n-2}, x_{n-1}, x_{n-1}) + \Omega(x_{n-1}, x_n, x_n)]. \end{aligned}$$

Therefore, $\Omega(x_{n-1}, x_n, x_n) \leq q \Omega(x_{n-2}, x_{n-1}, x_{n-1})$, where $q = \frac{k}{1-k} < 1$.

By applying the previous steps repeatedly, we get $\Omega(x_{n-1}, x_n, x_n) \leq q^{n-1} \Omega(x_0, x_1, x_1)$.

Since X is Ω -bounded, there exists $M > 0$ such that $\Omega(x, y, z) \leq M$, for all $x, y, z \in X$. Hence

$$\Omega(x_{n-1}, x_n, x_n) \leq q^{n-1} M.$$

Also,

$$\begin{aligned} \Omega(x_{n+t-1}, x_{n+t}, x_{n+t}) &= \Omega(Tx_{n+t-2}, T^2x_{n+t-2}, Tx_{n+t-1}) \\ &\leq k [\Omega(x_{n+t-2}, x_{n+t-1}, x_{n+t-1}) \\ &\quad + \Omega(x_{n+t-1}, x_{n+t}, x_{n+t})]. \end{aligned}$$

Therefore $\Omega(x_{n+t-1}, x_{n+t}, x_{n+t}) \leq q \cdot \Omega(x_{n+t-2}, x_{n+t-1}, x_{n+t-1})$.

Applying the previous steps repeatedly, gives us

$$\Omega(x_{n+t-1}, x_{n+t}, x_{n+t}) \leq q^{n-1} \Omega(x_t, x_{t+1}, x_{t+1}).$$

Hence

$$\Omega(x_{n+t-1}, x_{n+t}, x_{n+t}) \leq q^{n-1} M.$$

Thus $\Omega(x_n, x_{n+1}, x_{n+t}) \leq k[q^{n-1}M + q^{n-1}M] = 2kq^{n-1}M$.

Since $k < \frac{1}{2}$, we have

$$\Omega(x_n, x_{n+1}, x_{n+t}) \leq q^{n-1}M. \quad (4.2)$$

For all $l \geq m > n$, we have

$$\begin{aligned} \Omega(x_n, x_m, x_l) &\leq s\Omega(x_n, x_{n+1}, x_{n+1}) + s\Omega(x_{n+1}, x_m, x_l) \\ &\leq s\Omega(x_n, x_{n+1}, x_{n+1}) + s^2\Omega(x_{n+1}, x_{n+2}, x_{n+2}) + s^2\Omega(x_{n+2}, x_m, x_l) \\ &\quad \vdots \\ &\leq s\Omega(x_n, x_{n+1}, x_{n+1}) + s^2\Omega(x_{n+1}, x_{n+2}, x_{n+2}) + \cdots \\ &\quad + s^{m-n-1}\Omega(x_{m-2}, x_{m-1}, x_{m-1}) + s^{m-n-1}\Omega(x_{m-1}, x_m, x_l) \\ &\leq sq^{n-1}M + s^2q^nM + \cdots + s^{m-n-1}q^{m-3}M + s^{m-n-1}q^{m-2}M \\ &\leq sq^{n-1}M + s^2q^nM + s^3q^{n+1}M + \cdots \\ &= sq^{n-1}M(1 + sq + (sq)^2 + \cdots) \\ &= sq^{n-1}M \frac{1}{1 - sq}. \end{aligned}$$

Taking the limit as $n \rightarrow \infty$, gives us

$$\lim_{n,m,l \rightarrow \infty} \Omega(x_n, x_m, x_l) = 0.$$

Lemma 3.3, implies that the sequence (x_n) is a G_b -Cauchy sequence. Therefore

there exists $u \in X$ such that x_n is G_b -convergent to u . Consider $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $\Omega(x_n, x_m, x_l) \leq \epsilon$, for all $n, m, l \geq N$ and thus $\lim_{l \rightarrow \infty} \Omega(x_n, x_m, x_l) \leq \epsilon$. Note that $\Omega(x_n, x_m, u) \leq \lim_{p \rightarrow \infty} \Omega(x_n, x_m, x_p) \leq \epsilon$, for all $m, n \geq N$. Let $m = n + 1$. Then $\Omega(x_n, x_{n+1}, u) \leq \lim_{p \rightarrow \infty} \Omega(x_n, x_{n+1}, x_p) \leq \epsilon$, for all $n \geq N$.

If $Tu \neq u$, then the second condition of the theorem implies that

$$0 < \inf\{\Omega(x, Tx, u) : x \in X\} \leq \inf\{\Omega(x_n, x_{n+1}, u) : n \geq N\} \leq \epsilon,$$

for each $\epsilon > 0$ which is a contradiction. Therefore $Tu = u$.

To prove the uniqueness, assume that there exist two fixed points z, v of T . The contraction condition yields

$$\begin{aligned} \Omega(z, z, z) &= \Omega(Tz, T^2z, Tz) \\ &\leq k [\Omega(z, z, z) + \Omega(z, z, z)] \\ &= 2k \Omega(z, z, z). \end{aligned}$$

Since $k < \frac{1}{2}$, we have $\Omega(z, z, z) = 0$. Similarly, we have $\Omega(v, v, v) = 0$.

Now,

$$\begin{aligned} \Omega(u, u, v) &= \Omega(Tu, T^2u, Tv) \\ &\leq k [\Omega(u, u, u) + \Omega(v, v, v)] \\ &= k [0 + 0] = 0. \end{aligned}$$

Therefore, Definition 3.4 we have $G(u, u, v) = 0$ and hence $u = v$. \square

R E F E R E N C E S

- [1] I. A. Bakhtin, The contraction principle in quasimetric spaces, Functional Analysis, vol30, pp. 26–37 (1989)
- [2] S. Czerwinski, Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46, 263–276 (1998).
- [3] S. Czerwinski, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, Vol. 1 (1993), No. 1, 5–11
- [4] J. R. Roshan, N. Shobkolaei, S. Sedghi and M. Abbas, Common fixed point of four maps in b-metric spaces, Hacettepe Journal of Mathematics and Statistics Volume 43 (4) (2014), 613–624
- [5] A. K. Dubey, R. Shukla, and R.P. Dubey, Some Fixed Point Theorems in Complex Valued b-Metric Spaces, Journal of Complex Systems Volume 2015 (2015), Article ID 832467, 7 pages
- [6] R. George, C. Alaca, K.P. Reshma, On Best Proximity Points In b-Metric Space, Journal of Nonlinear Analysis and Application Volume 2015, No. 1 (2015), Pages 45–56

[7] *W. Shatanawi, A. Pitea and R. Lazovic*, Contraction conditions using comparison functions on b-metric spaces, *Fixed Point Theory and Applications* 2014, 2014:135

[8] *S. Sedghi, N. Shobkolaei, J. R. Roshan and W. Shatanawi*, Coupled fixed point theorems in Gb-metric spaces, *Mathematici Vesnik*, 66, 2 (2014), 190–201

[9] *Z. Mustafa and B. Sims*, A new approach to generalized metric spaces, *J. Nonlinear Convex Anal.*, Volum. 7, no. 2, (2006) 289-297.

[10] *Z. Mustafa and B. Sims*, Fixed point theorems for contractive mappings in complete G-metric spaces, *Fixed Point Theory Appl.*, (2009), ID 917175, 10 pages

[11] *H. Aydi, W. Shatanawi, and G. Vetro*, On generalized weakly G-contraction mapping in G-metric spaces, *Comput. Math. Appl.*, 62(2011),4222-4229.

[12] *W. Shatanawi, S. Chauhan, M. Postolache, M. Abbas and S. Radenovic*, common fixed points for contractive mappings of integral type in G-metric spaces, *J. Adv. Math. Stud.* Vol. 6, No. 1, (2013) 53–72.

[13] *W. Shatanawi and M. Postolache*, Some fixed point results for a G-weak contraction in G-metric spaces, *Abstract and Applied Analysis*, Vol. **2012**, (2012) Article ID 815870, 19 pages.

[14] *W. Shatanawi*, Some fixed point theorems in ordered G-metric spaces and applications, *Fixed Point Theory and Appl.*, vol. **2011**, Article ID 126205, 11 pages, (2011).

[15] *W. Shatanawi*, Fixed point theory for contractive mappings satisfying Φ -maps in G-metric spaces, *Fixed Point Theory and Appl.*, vol. **2010**, Article ID 181650, 9 pages, (2010).

[16] *M. Jleli, B. Samet*, Remarks on G-metric spaces and fixed point theorems, *Fixed Point Theory Appl.*, 2012 (2012), 7 pages.

[17] *R. Saadati, S.M. Vaezpour, P. Vetro and B.E. Rhoades*, Fixed point theorems in generalized partially ordered G-metric spaces. *Mathematical and Computer Modeling* **52** (797-801) 2010.

[18] *O. Kada, T. Suzuki and W. Takahashi*, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, *Math. Japonica*, **44**, 381–391, (1996).

[19] *L. Gholizadeh, R. Saadati, W. Shatanawi, and Vaezpour*, Contractive mapping in generalized, ordered metric spaces with application in integral equations, *Math. Probl. Eng.* 2011, Article ID 380784 (2011)

[20] *L. Gholizadeh*, A fixed point theorem in generalized ordered metric spaces with application, *J. Nonlinear Sci. Appl.* 6 (2013), 244–251.

[21] *W. Shatanawi and A. Pitea*, Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction, *Fixed Point Theory and Appl.* 2013, 2013:275.

[22] *W. Shatanawi, A. Bataihah and A. Pitea*, Fixed and common fixed point results for cyclic mappings of Ω -distance, *J. Nonlinear Sci. Appl.* 9 (2016), 727–735.

[23] *W. Shatanawi, and A. Pitea*, Ω -Distance and coupled fixed point in G-metric spaces, *Fixed Point Theory and Appl.* 2013, 2013:208

[24] *A. Aghajani, M. Abbas and J.R. Roshan*, Common fixed point of generalized weak contractive mappings in partially ordered G_b -metric spaces, *Filomat* 28:6 (2014) 1087–1101.

[25] *K. Abodayeh, W. Shatanawi and A. Bataihah*, Fixed point theorem through Ω -distance of Suzuki type contraction condition, *Gazi University Journal of Science.* (2016) **29** (1), 129-133.