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STUDYING SOME FINITE FRAMES

Azadeh Alijani ∗1, Zohreh Heydarpour2, Maryam Naderi Parizi3

The finite frame theory is an essential part of frame theory due
to its significant relevance in various branches of mathematical applications.
Studying controlled finite frames is the goal of the work. To this end, we
introduce controlled frames in a finite-dimensional Hilbert space and study
some properties of them. The main class of finite frames in frame-applied
problems is Parseval frames. By viewpoint to this, a brief discussion about
Parseval controlled frames is investigated. Afterward, the paper character-
izes all operators that construct controlled finite frames. Furthermore, con-
trolled finite frames are also considered as a proper subset of dual frames by
the equivalency relation between frames.
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1. Introduction

Nowadays, frame theory is a crucial field in all branches of science and has
diverse and exciting applications in different fields. The importance of frames
for signal processing was first revealed in 1952, and their significance has only
increased since then. Frames and their duals can be seen as the most natural
generalization of the concept of an orthonormal basis. The reconstruction of
elements in a Hilbert space is based on a given frame and its duals. In the
Parseval case, the dual can be the frame itself. Today, frame theory has an
ever-growing number of applications in both applied and pure mathematics.
Many of these applications require frames in finite-dimensional spaces. For
instance, Jamali et al. and Javanshiri et al. have obtained results that are
attractive in applications of frames [13, 14]. Given the importance of finite
frame theory, our focus is on the study of controlled finite frames. In [2],
the authors showed that controlled frames and classical frames are equivalent.
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Also, they said that the controlled frames are a generalization for considering
the frame conditions. In that study, the authors tried to enhance the numerical
efficiency of iterative algorithms for inverting the frame operator. The duals
of a frame and Equivalent frames have a critical role in application problems.

The manuscript is primarily divided into three sections that introduce
and characterize controlled finite frames, particularly Parseval controlled finite
frames, as a subset of dual frames.

The remainder of this section provides a review of various notions and
properties of operators and frames in Hilbert spaces. Section 2 is dedicated
to defining controlled finite frames and examining their properties. It also
presents the operators that can be used to construct controlled frames. The
Gramian matrix and its properties for controlled frames are also explored. In
section 3, a brief discussion is included on Parseval controlled frames. The
final section presents the study of controlled frames as a proper subset of dual
frames through equivalent frames. Finally, a result concerning controlled Riesz
basis in a finite-dimensional Hilbert space is derived.

Now, we recall a brief account of the properties of operators and finite
frames in Hilbert spaces; we refer the reader to [7, 11] for further details.

If S and T are two bounded linear operators on a Hilbert space H, both
of which are self-adjoint, and satisfy ⟨Tx, x⟩ ⩾ ⟨Sx, x⟩, for all x ∈ H, we denote
this relationship as T ⩾ S. An operator T is considered positive if ⟨Tx, x⟩ ⩾ 0,
and strictly positive if ⟨Tx, x⟩ > 0, for every x ∈ H. It is a well-established
fact that every positive operator in a complex Hilbert space is self-adjoint, but
this does not hold true in real Hilbert spaces.

Let HN be an N -dimensional Hilbert space. A sequence {fk}Mk=1 in the
Hilbert space HN is considered a frame if the following inequalities are satisfied
for some 0 < A ≤ B < ∞:

A∥f∥2 ⩽
M∑
k=1

| ⟨f, fk⟩ |2⩽ B∥f∥2, ∀f ∈ HN .

In the case where A = B, the frame is referred to as tight, and if A = B = 1,
it is called a Parseval frame.

The frame operator SF is defined as SFf =
∑M

k=1⟨f, fk⟩fk for a frame
{fk}Mk=1 on HN .

The sequence {gk}Mk=1 is defined as a dual for {fk}Mk=1 if f =
∑M

k=1⟨f, fk⟩gk
for all f ∈ HN . In the duality relation, the frame {gk}Mk=1 = {S−1

F fk}Mk=1 is
known as the canonical dual frame of {fk}Mk=1 and leads to the reconstruction
formula.

In [2], controlled frames were introduced and examined. We apply this
concept as follows. In this paper, the notations H and HN are used to denote
a Hilbert space and a finite-dimensional Hilbert space, respectively. The set
GL(H) denotes the group of all bounded linear operators with a bounded
inverse, and GL+(H) is the set of positive operators in GL(H).
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2. Notes on controlled finite frames

By attention to the applications of finite frames, Cassaza and Kutyniok
illustrated finite frames and some of their properties in detail [6]. In recent
years, there has been an introduction of controlled frames to enhance the
numerical efficiency of interactive algorithms for inverting the frame operator
and for spherical wavelets [2, 4]. Hence, Considering and studying controlled
finite frames is important and remarkable.

2.1. Controlled Finite Frames and Frame Operator

This subsection delves into the exploration of some properties of con-
trolled frames in finite Hilbert spaces.

Definition 2.1. A sequence {fk}Mk=1 in HN is considered a U-controlled frame
for an invertible operator U on HN if there exist positive constants A and B
such that

A∥f∥2 ⩽
M∑
k=1

⟨f, fk⟩⟨Ufk, f⟩ ⩽ B∥f∥2, ∀f ∈ HN .

If A = B = λ, then {fk}Mk=1 is a λ-tight U-controlled frame. For λ = 1,
{fk}Mk=1 is referred to as a Parseval U-controlled frame.

Similar to ordinary frames, the controlled frame operator (or frame op-

erator) is defined for a controlled frame on HN by SUFf =
∑M

k=1⟨f, fk⟩Ufk.
Likewise, just like ordinary frames, the controlled synthesis operator T ∗

UF :

ℓ2(M) → HN is defined by T ∗
UF ({αk}Mk=1) =

∑M
k=1 αkUfk. It is evident from

the definition of SUF that SUF = T ∗
UFTF , where TF is the analysis operator of

{fk}Mk=1.

Example 2.1. Suppose that {(1, 0), (1, 1), (0, 1)} in R2 and U is the rotation
operator 45◦. By the following computing, we see that {(1, 0), (1, 1), (0, 1)} is
a U -controlled frame with bounds 1

2
and 3 in R2. For (x, y) ∈ R2, we have

⟨(x, y), (1, 0)⟩⟨U(1, 0), (x, y)⟩+ ⟨(x, y), (1, 1)⟩⟨U(1, 1), (x, y)⟩
+ ⟨(x, y), (0, 1)⟩⟨U(0, 1), (x, y)⟩

=⟨(x, y), (1, 0)⟩⟨(1, 1), (x, y)⟩+ ⟨(x, y), (1, 1)⟩⟨(0, 1), (x, y)⟩
+ ⟨(x, y), (0, 1)⟩⟨(−1, 1), (x, y)⟩

=x2 + y2 + xy.

By utilizing the definition of a controlled frame and its frame operator, it
can be deduced that S is a positive and invertible operator. Additionally, these
properties for an operator frame corresponding to a sequence imply that the
sequence is a controlled frame. The following proposition serves to illustrate
this result.
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Proposition 2.1. Let {fk}Mk=1 be a sequence in HN and U ∈ GL(HN). Then
the following statements are equivalent.

i. {fk}Mk=1 is a U-controlled frame with bounds A and B.

ii. SUF (f) =
∑M

k=1⟨f, fk⟩Ufk is a positive and invertible operator on HN .

Proof. The proof of i ⇒ ii is clear. To prove ii ⇒ i, the given equality results
SUF ⩽ ∥SUF∥I and so S−1

UF ⩽ ∥S−1
UF∥I. Therefore,

∥S−1
UF∥

−1I ⩽ SUF ⩽ ∥SUF∥I, ∀f ∈ HN .

□

Proposition 2.1 and the properties of operators on HN obtain the follow-
ing result.

Theorem 2.1. Let {fk}Mk=1 be a frame for HN with the frame operator SF . If
U ∈ GL+(HN) is a self-adjoint operator such that USF = SFU , then {fk}Mk=1

forms a U-controlled frame.

In [2], the authors discuss necessary and sufficient conditions for a frame
to result in a controlled frame, as well as vice versa. In this work, we focus
on the necessity of these conditions for both real and complex Hilbert spaces.
Specifically, we will recall Propositions 3.2 and 3.3 from [2], which apply to
infinite-dimensional Hilbert spaces.

Proposition 2.2. [In [2] as Proposition 3.2] Suppose {fk}k∈N is a U−controlled
frame for H and U ∈ GL(H). Then {fk}k∈N is a classical frame. Furthermore,
USF = SFU

∗, which implies∑
k∈N

⟨f, fk⟩Ufk =
∑
k∈N

⟨f, Ufk⟩fk.

Proposition 2.3. [In [2] as Proposition 3.3] Let U ∈ GL(H) be self-adjoint.
The family {fk}k∈N is a U−controlled frame for H if and only if it is a (clas-
sical) frame for H, and U is positive and commutes with the frame operator
SF .

Here, we invent the readers to the following example.

Example 2.2. The frame {fk}5k=1 for R2 and the operator U are considered
as follow.

{fk}5k=1 = {(1, 0), (1, 0), (0, 1), (0, 1), (0, 1)}, U =

[
1 2
−2 1

]
.

Based on the definition of the frame operator, we can derive SF =

[
2 0
0 3

]
.

It is clear that U is positive and invertible and by the easy computations, it
is given that {fk}5k=1 is a U -controlled frame with bounds 1 and 6 whereas
USF ̸= SFU and also USF ̸= SFU

∗.
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Example 2.2 demonstrates that the conditions ”USF = SFU
∗” or ”USF =

SFU” are not satisfied in a finite-dimensional real Hilbert space. Specifically,
the proof presented for Proposition 2.2 is only valid over complex Hilbert
spaces.

Moreover, in Example 2.2, if we set U =

[
1 2
−2 1

]
, then the obtained

example shows that the results is Proposition 2.3 are valid but ”USF ̸= SFU”.
Now, the following proposition demonstrates the same outcome for a real

or complex finite-dimensional Hilbert space, even if the conditions ”USF =
SFU

∗” and ”USF = SFU” are not satisfied.

Proposition 2.4. If {fk}Mk=1 is a U−controlled frame for HN with the frame
operator SUF , then {fk}Mk=1 is a frame for HN with the frame operator U−1SUF .

Proof. Firstly, we define the following operator as the frame operator for
{fk}Mk=1 :

SFf =
M∑
k=1

⟨f, fk⟩fk, ∀f ∈ HN .

The operator SF is well-defined and SFf = U−1SUFf , so SF is invertible.
Therefore, for f ∈ HN , we have

f =
M∑
k=1

⟨S−1
F f, fk⟩fk =

M∑
k=1

⟨f, (S−1
F )∗fk⟩fk.

This equality shows that {fk}Mk=1 is a generator for HN , and so {fk}Mk=1 is a
frame for HN with the frame operator U−1SUF . □

Hint. Assuming {fk}Mk=1 is a U -controlled frame forHN , we can conclude
that {Ufk}Mk=1 is a spanning set for HN , and for f ∈ HN , one obtains f =∑M

i=1⟨S
−1
UFf, fk⟩Ufk. Therefore, T

∗
UF is surjective.

In the subsequent analysis, we aim to characterize U -controlled frames
for an N -dimensional Hilbert space by a generator set. The following theorems
will assist in determining an operator U that constructs a U -controlled frame.

Theorem 2.2. Assuming {fk}Mk=1 is a U-controlled frame and the controlled
frame operator SUF is a normal operator such that USUF = SUFU , the operator
U is uniquely determined and is positive.

Proof. By Proposition 2.4, {fk}Mk=1 is a frame with the frame operator SF =
U−1SUF . Since SUFU = USUF , we have SFU = USF and also SUFSF =
USFSF = SFUSF = SFSUF . Now, the operators SUF and SF are diagonaliz-
able and commute with each other, then there exists a set of common orthonor-
mal eigenvectors of SUF and SF as {ek}Nk=1. Suppose that {λk}Nk=1 and {αk}Nk=1

are eigenvalues of operators SUF and SF , respectively. Now, for k ∈ {1, ..., N},
the linear operator U is defined by Uek = (SUFS

−1
F )(ek) = α−1

k λkek, and then

Uf =
∑N

k=1 α
−1
k λk⟨f, ek⟩ekon HN . It is clear that U is a positive operator. □
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In the previous theorem, we can substitute the normal condition of SUF

with the normal condition for U because if USUF = SUFU , then SUF is normal
if and only if U is normal. In [2], the authors show that for a given frame, we
can construct different controlled frames by different controlled operators; it
means that the controlled operators are not necessarily unique (See [2], Propo-
sition 3.3). Here, we have the uniqueness property for controlled operators for
some special class of controlled frames by Theorem 2.2 in the following.

Corollary 2.1. For every Parseval U-controlled frame, the operator U is
uniquely determined.

Proposition 2.5. Suppose {fk}Mk=1 is a frame for HN with the frame operator
SF . Let {ei}Ni=1 and {αi}Ni=1 be the set of orthonormal eigenvectors and the
set of eigenvalues of SF , respectively. Then, for any set {λi}Ni=1 ⊆ (0,+∞),
{fk}Mk=1 is a U-controlled frame, where U is defined as Uei = λiei for i =
1, ..., N .

Proof. First, we demonstrate that U commutes with SF . Assume f ∈ HN .
Then

USFf =
N∑
i=1

αi⟨f, ei⟩Uei =
N∑
i=1

αi⟨f, ei⟩λiei

=
N∑
i=1

λi⟨f, ei⟩SF ei

= SF (
N∑
i=1

⟨f, ei⟩Uei) = SFUf.

Based on the definition of U , we can conclude that U = U∗, and since all
eigenvalues of U are positive, this shows that U is positive and invertible.
Furthermore, U and SF commute with each other. So, USF is invertible and
positive that USFf =

∑N
i=1⟨f, fk⟩Ufk, on HN , and it shows that {fk}Mk=1 is a

U -controlled frame with the frame operator USF . □

The subsequent area of focus in the study of controlled frames is dedi-
cated to the investigation of operators that preserve controlled frames. The
following theorem illustrates that certain invertible operators uphold the con-
trolled frame property.

Theorem 2.3. Let {fk}Mk=1 be a U-controlled frame with frame operator SUF

and T ∈ GL(HN) such that TU = UT . Then {Tfk}Mk=1 is a U-controlled frame
with frame operator TSUFT

∗. Moreover, if T is also positive, then {T rfk}Mk=1

is a U-controlled frame for any r ∈ R with frame operator T rSUF (T
r)∗.

Proof. The operator SUTF corresponding to {Tfk}Mk=1 is SUTF = TSUFT
∗ and

then SUTF is invertible. Also, SUTF is positive because SUF is positive and

⟨TSUFT
∗f, f⟩ = ⟨SUFT

∗f, T ∗f⟩ ⩾ 0, ∀f ∈ HN .
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Hence {Tfk}Mk=1 is a U -controlled frame. It is well-know if T is positive, in-
vertible, and TU = UT, then T rU = UT r, and so according to the first
part of theorem {T rfk}Mk=1 is a U -controlled frame with the frame operator
T rSUF (T

r)∗. □

Corollary 2.3. If {fk}Mk=1 is a U-controlled frame such that USF = SFU, then

{S
r−1
2

F fk}Mk=1 is a U-controlled frame for any r ∈ R, with frame operator USr
F .

2.2. Controlled Finite Frames and Grammian Matrix

The concept of the Gramian matrix or Gramian operator for a frame
{fk}Mk=1 has been introduced in [6]. Furthermore, we have dedicated our efforts
to introducing the Gramian operator for a U -controlled frame and examining
its properties.

Definition 2.2. Let {fk}Mk=1 be a U-controlled frame with analysis operator TF

and synthesis operator T ∗
UF . The operator GUF is defined as GUF = TFT

∗
UF and

is referred to as the U-Gramian operator. The canonical matrix representation
of the Gramian operator of a U-controlled frame {fk}Mk=1 is obtained as follows. ⟨Uf1, f1⟩ ⟨Uf2, f1⟩ . . . ⟨UfM , f1⟩

...
...

...
⟨Uf1, fM⟩ ⟨Uf2, fM⟩ . . . ⟨UfM , fM⟩


M×M

Remark 2.4. If {fk}Mk=1 is a Parseval U -controlled frame with the Gramian
operator GUF , then GUF is an idempotent operator. This can be seen by using
the relation I = SUF = T ∗

UFTF and observing that G2
UF = TFT

∗
UFTFT

∗
UF =

TFT
∗
UF = GUF .

In [6], the authors demonstrated that the invertibility of the Gramian
matrix of a given frame is connected to the number of elements in the primary
frame. In the subsequent section, we explore the relationship between the
Gramian matrix of a frame and a constructed controlled frame using a primary
sequence.

Theorem 2.4. Let {fk}Mk=1 be a U-controlled frame for HN . Then the follow-
ing conditions are equivalent:

(i) GUF is invertible;
(ii) GF invertible;
(iii) M = N .

Proof. In [6], the equivalence of parts ii and iii has already been demonstrated.
Now, to establish the equivalence of i and ii, we begin by assuming that GUF

is invertible. Then, T ∗
UF is injective. Additionally, T ∗

UF is surjective because
{fk}Mk=1 is a U -controlled frame. Specifically, T ∗

UF is an invertible operator
between ℓ2(M) and HN , leading to the conclusion that M = N .

Now, suppose M = N . Proposition 2.4 asserts that the U -controlled
frame {fk}Mk=1 is a frame, and therefore TF is injective. Furthermore, the
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synthesis operator T ∗
UF of the U -controlled frame {fk}Mk=1 is surjective. There-

fore, under the assumption M = N , the operators TF and T ∗
UF are invertible,

implying that GUF is also invertible. □

In Theorem 2.3, it is revealed that certain operators can transform U -
controlled frames into other U -controlled frames. The subsequent theorem
delves into the analysis of the Gramian matrix of these transferred U -controlled
frames.

Theorem 2.5. Let {fk}Mk=1 be a U-controlled frame for HN , and let T be a
linear operator that commutes with U . Then T is unitary if and only if the
U-Gramian matrix of {Tfk}Mk=1 is equal to GUF .

Proof. Assume T is unitary. Then we have

GU(TF ) = {⟨UTfk, T fj⟩}j,k = {⟨TUfk, T fj⟩}j,k
= {⟨Ufk, fj⟩} = GUF .

Conversely, let GUF = GU(TF ). Then the equality ⟨UTfk, T fj⟩ = ⟨Ufk, fj⟩
holds and so

⟨T ∗UTfk − Ufk, fj⟩ = 0, ∀k, j ∈ N.
We fix k ∈ N and the equality ⟨(T ∗UT − U)fk, fj⟩ = 0 holds for every j ∈ N.
Since {fk}Mk=1 is a complete sequence, we have (T ∗UT − U)fk = 0, for every
k ∈ N. Now, this result is obtained for every f ∈ HN by the reconstruction
formula; it means that T ∗UT = U . Therefore T ∗T = I by the invertibility of
U and UT = TU . □

Remark 2.5. If {fk}Mk=1 is a U -controlled frame for HN , and λ is a non-
zero eigenvalue of SUF with the corresponding eigenvector f ∈ H, then if
{αi}Mi=1 := TFf , where TF is the analysis operator of {fk}Mk=1, then λ and
{αi}Mi=1 are the eigenvalue and eigenvector of GUF , respectively. Because

GUF ({αi}Mi=1) = TFT
∗
UF (TFf) = TF (SUFf) = TF (λf) = λ{αi}Mi=1.

Please note that if f ̸= 0, then {αi}Mi=1 ̸= 0 due to the injectivity of TF . The
converse relation also holds. To demonstrate this, assume that λ is a nonzero
eigenvalue of GUF corresponding to the eigenvector {αi}Mi=1 ∈ ℓ2(M). Similar
to the previous equalities, it can be shown that λ and f := T ∗

UF ({αi}Mi=1) are
the eigenvalue and eigenvector for SUF , respectively.

3. Parseval controlled frames

In applied problems, Parseval frames (tight frames) are of great impor-
tance compared to other types of frames because they are the closest family
to orthonormal bases. The section delves into the study of some properties
of Parseval-controlled frames in a finite-dimensional Hilbert space. Now, the
concept of a Parseval controlled frame is being studied, followed by the pre-
sentation of several properties of this sequence family.
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Proposition 3.1. Let {fk}Mk=1 be a Parseval U-controlled frame for HN . Then

M∑
k=1

⟨Ufk, fk⟩ = N.

Proof. Let {ei}Ni=1 be an orthonormal basis for HN . By the hypotheses,

ei = SUF ei =
M∑
k=1

⟨ei, fk⟩Ufk.

Then

N =
N∑
i=1

∥ei∥2 =
N∑
i=1

M∑
k=1

⟨ei, fk⟩⟨Ufk, ei⟩ =
M∑
k=1

⟨Ufk, fk⟩.

□

To investigate operators that maintain the controlled frame property,
such as those outlined in Theorem 2.3, orthogonal projections play a crucial
role. In a finite-dimensional Hilbert space, orthogonal projections can preserve
controlled frames. The following proposition demonstrates this.

Proposition 3.2. Suppose {fk}Mk=1 constitutes a U-controlled frame for HN ,
where W is a subspace of HN and P represents an orthogonal projection of
HN onto W with the property UP = PU . Then {Pfk}Mk=1 is a U-controlled
frame for W . Furthermore, if {fk}Mk=1 is a Parseval U-controlled frame for
HN , then {Pfk}Mk=1 is a Parseval U-controlled frame for W .

Proof. Since P is orthogonal projection for every f ∈ W, one obtains that

A∥f∥2 = A∥Pf∥2 ⩽
M∑
k=1

⟨Pf, fk⟩⟨Ufk, Pf⟩ ⩽ B∥Pf∥2 = B∥f∥2,

By the assumption UP = PU, and the above equality, f ∈ W, we have

A∥f∥2 ⩽
M∑
k=1

⟨Pf, fk⟩⟨PUfk, f⟩ =
M∑
k=1

⟨Pf, fk⟩⟨UPfk, f⟩ ⩽ B∥f∥2,

then {Pfk}Mk=1 is a U -controlled frame for W . Now, suppose {fk}Mk=1 is a
Parseval U -controlled frame. Then for every f ∈ W,

SUPF (f) =
M∑
k=1

⟨f, Pfk⟩UPfk = P
M∑
k=1

⟨Pf, fk⟩Ufk = P 2f = f.

Therefore, it shows that {Pfk}Mk=1 is a Parseval U -controlled frame for W . □

Just as with original frames, for every U -controlled frame, there exists
a corresponding Parseval controlled frame. The subsequent remark serves to
illustrate this concept.
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Remark 3.1. If {fk}Mk=1 is a U -controlled frame with the controlled frame

operator SUF , then SUF = USF and so one obtains f =
∑M

k=1⟨f, fk⟩(S
−1
UFU)f

for every f ∈ HN . It shows that {fk}Mk=1 is a Parseval S−1
UFU -controlled frame.

More precisely, {S−1
UFUfk}Mk=1 = {S−1

F fk}Mk=1 is the canonical dual of {fk}Mk=1.

The following example constructs a Parseval U -controlled frame by a
non-Parseval frame.

Example 3.1. The presented sequence in Example 2.1 is not a Parseval frame
because

SF (x, y) = (x− y, 2(x+ y)), ∀(x, y) ∈ R2.

Hence, by Remark 3.1, the sequence {(1, 0), (1, 1), (0, 1)} is a Parseval
S−1
F -controlled frame.

Now, all of the constructed tight controlled frames can be characterized
by a frame. The following theorem serves to illustrate this characterization.

Theorem 3.1. For a frame {fk}Mk=1 with the frame operator SF , the collection
of all constructed tight controlled frames by {fk}Mk=1 corresponds to λS−1

F for
every λ ∈ C. This implies that every tight controlled frame {fk}Mk=1 is precisely
a λ-tight λS−1

F -controlled frame for λ ∈ C.

Proof. Assume that {fk}Mk=1 is a λ-tight U -controlled frame, for λ ∈ C. Then
for f ∈ HN , λf =

∑M
k=1⟨f, fk⟩Ufk, so λI = SUF = USF , and then U = λS−1

F .
It shows that {fk}Mk=1 is a λ-tight λS−1

F -controlled frame. □

It is a well-known fact that an important property of an operator is its
trace. In operator theory, the trace of an operator is typically determined
by the orthogonal bases of the framework spaces. However, it can also be
computed using frames and Parseval controlled frames. Subsequently, the
focus is on investigating the trace properties of an operator. To do so, it is
necessary to briefly recall the properties of the trace of linear operators on HN

and then consider the trace of an operator using controlled frames. The trace
of a linear operator T ∈ L(HN) is defined as follows:

Tr(T ) =
N∑
j=1

⟨Tej, ej⟩,

where {ej}Nj=1 is an orthonormal basis for HN . In [8], Coope demonstrated
that if T1 and T2 are self-adjoint positive operators, then 0 ⩽ Tr(T1T2) ⩽
Tr(T1).T r(T2).

Now, we are prepared to examine some propositions regarding the trace
of operator controlled frames.



Studying some finite frames 95

Proposition 3.3. Let {fk}Mk=1 be a U-controlled frame such that U ∈ GL+(HN)
be a self-adjoint operator. Then

Tr(SUF ) ⩽ Tr(U)
M∑
i=1

∥fi∥2.

Proof. Suppose {λi}Ni=1 is the set of eigenvalues of the operator frame SF . By
Theorem 1.6 [6], one concludes that

Tr(SUF
) = Tr(USF ) ⩽ Tr(U)Tr(SF ) = Tr(U)

N∑
i=1

λi = Tr(U)
M∑
i=1

∥fi∥2.

□

In a specific scenario, the trace of an operator can be accurately computed
using Parseval controlled frames. This concept is demonstrated in the following
proposition.

Proposition 3.4. Let {fk}Mk=1 be a Parseval U-controlled frame for HN and

F be a linear operator on HN . Then Tr(F ) =
∑M

k=1⟨FUfk, fk⟩.

Proof. For an orthonormal basis {ej}Nj=1, Tr(F ) =
∑N

j=1⟨Fej, ej⟩, and for

j ∈ {1, 2, ...N}, we have Fej =
∑M

k=1⟨Fej, fk⟩Ufk, by {fk}Mk=1 is a Parseval
U -controlled frame. Then

Tr(F ) =
N∑
j=1

⟨
M∑
k=1

⟨Fej, fk⟩Ufk, ej⟩

=
N∑
j=1

M∑
k=1

⟨ej, F ∗fk⟩⟨Ufk, ej⟩

=
M∑
k=1

⟨
N∑
j=1

⟨Ufk, ej⟩ej, F ∗fk⟩

=
M∑
k=1

⟨Ufk, F
∗fk⟩ =

M∑
k=1

⟨FUfk, fk⟩.

□

4. Dual frames and controlled frames

The key property of frames is the frame decomposition in the applied
problems. Dual frames play a crucial and practical role. With attention to
the relation between dual frames and controlled frames, also controlled frames
are important. The key advantage of using controlled frames and induced
dual frames lies in the flexibility they provide for signal reconstruction: The
control operator U can be designed to introduce redundancy in a controlled and
structured way. Think of U as a linear transformation that maps the signal
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into a higher-dimensional space before the frame analysis takes place. This
redundancy is crucial for robust signal reconstruction in the presence of noise
or erasures., for example, in compressed sensing, resilience to local distortions
or missing data [3, 16]. To delve deeper into the study of controlled frames,
we utilize dual frames and the equivalence relation between frames. Initially,
we review the definition of equivalent frames, and then, using the presented
relation, we investigate controlled frames as a subset of the duals of a given
frame.

A frame {gk}Mk=1 is considered equivalent to a frame {fk}Mk=1 if there exists
an invertible operator Λ ∈ B(HN) such that gk = Λfk for every f ∈ HN .

Remark 4.1. Every λ-tight U -controlled frame {fk}Mk=1 induces a Parseval
controlled frame because for f ∈ HN , we have

λf =
M∑
k=1

⟨f, fk⟩Ufk, =⇒ f =
M∑
k=1

⟨f, fk⟩(λ−1U)fk.

This shows that {fk}Mk=1 is a Parseval (λ
−1U)-controlled frame and is equivalent

to {(λ−1U)fk}Mk=1 and also {(λ−1U)fk}Mk=1 is a dual for {fk}Mk=1. Then every
λ-tight U -controlled frame of {fk}Mk=1 induces a dual frame for {fk}Mk=1 such
that it is equivalent to {fk}Mk=1.

The above result applies to every controlled frame of {fk}Mk=1. This is
illustrated by the following theorem.

Theorem 4.1. Let {fk}Mk=1 be a U-controlled frame. Then {fk}Mk=1 has a dual
frame that is equivalent to {fk}Mk=1.

Proof. Assume SUF is the frame operator of {fk}Mk=1. Then for f ∈ HN , one

obtains that SUFf =
∑M

k=1⟨f, fk⟩Ufk, and also f =
∑M

k=1⟨f, fk⟩(S
−1
UFU)fk. The

aforementioned equality indicates that {fk}Mk=1 is a Parseval controlled frame,
and the frame {S−1

UFUfk}Mk=1 is a dual frame for {fk}Mk=1, which is equivalent
to {fk}Mk=1. □

By the assumptions in Theorem 4.1, we assert that {S−1
UFUfk}Mk=1 is in-

duced dual by the U -controlled frame {fk}Mk=1.
Now, the question arises: ”Is every dual of {fk}Mk=1 induced as a controlled

frame for {fk}Mk=1?” This means that if {gk}Mk=1 is a dual of {fk}Mk=1, then ”Does
there exist an invertible operator Λ ∈ B(HN) such that gk = Λfk for every
k ∈ {1, ...,M} and {fk}Mk=1 is a Λ-controlled frame?”

In general, the answer to this question is not true. In the following
example, we consider this statement.

Example 4.2. Consider two sequences {fk}3k=1 and {gk}3k=1 in R2 as follows.

{fk}3k=1 = {(1, 0), (1, 0), (1,−1)}, and {gk}3k=1 = {(0, 0), (1, 1), (0,−1)}.
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{gk}3k=1 is a dual for {fk}3k=1. However, there does not exist an invertible
operator U ∈ B(HN) such that gk = Ufk for k ∈ {1, 2, 3}, and {gk}3k=1 cannot
induce a controlled frame of {fk}3k=1.

We have observed that not every dual of a given frame can induce a
controlled frame by the primary frame. The following proposition presents
some duals of a given frame with this property.

Proposition 4.1. If {gk}Mk=1 is a dual of {fk}Mk=1 and is equivalent to {fk}Mk=1,
then {gk}Mk=1 induces a Parseval controlled frame of {fk}Mk=1.

Proof. Let {gk}Mk=1 be a dual of {fk}Mk=1 such that is equivalent to {fk}Mk=1.
Then there exists the invertible operator U such that gk = Ufk for every
k ∈ {1, ...,M} and f =

∑M
k=1⟨f, fk⟩Ufk for f ∈ HN . This relation shows that

{fk}Mk=1 is a Parseval U -controlled frame. □

Next, we present a sample of a dual {gk}Mk=1 as in the previous proposi-
tion.

Example 4.3. Let {fk}Mk=1 be a frame with frame operator S. The canonical
dual {S−1fk}Mk=1 of {fk}Mk=1 is equivalent to {fk}Mk=1 and by the reconstruction
formula, {fk}Mk=1 is a Parseval S−1-controlled frame.

Finally, we present two results for controlled Riesz bases in a finite-
dimensional Hilbert space. To see this, we first briefly discuss Riesz bases
for a finite-dimensional Hilbert space.

Remark 4.4. If {fk}Mk=1 is a Riesz basis forH
N , then there exists Λ ∈ GL(HN)

such that Λek = fk, k ∈ {1, ...,M} for some orthonormal basis {ek}Nk=1, and
so M = N . Also, every Riesz basis {fk}Nk=1 has the following properties.

(i) {fk}Nk=1 is a generator for HN .
(ii) {fk}Nk=1 is linearly independent.

Then {fk}Nk=1 is a Schauder basis forH
N . But it cannot be concluded that

{fk}Mk=1 is an orthonormal basis. A counterexample for this is the Schauder
basis {(1, 1

2
), (1

2
, 1)} for R2, which is not an orthogonal set.

Finally, a result about U -controlled Riesz bases is obtained. Similar to
the definition of controlled frames, U -controlled Riesz bases can be defined. If
for a U -controlled frame {fk}Mk=1, the frame {fk}Mk=1 is a Riesz basis, then we
say that {fk}Mk=1 is a U -controlled Riesz basis. Now, we are ready to present
the final corollary.

Corollary 4.5. Suppose {ek}Nk=1 is an orthonormal basis for HN , and let V
and U be invertible operators on HN . Then the following statements hold true.

(i) For every nonzero scalar λ, the sequence {V ek}Nk=1 forms a λ2-tight
λ(V V ∗)−1-controlled Riesz basis for HN .

(ii) If UV = V U , then {V ek}Nk=1 is a λ(UU∗)-controlled Riesz basis for HN .
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