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DUAL JET TIME-DEPENDENT HAMILTON GEOMETRY
AND THE LEAST SQUARES VARIATIONAL METHOD

Mircea Neagu', Vladimir Balan?, Alexandru Oana?

In this paper we geometrize on the 1-jet space J**(R, M) the time-
dependent Hamiltonians, in the sense of canonical nonlinear connections,
Cartan N-linear connections, d-torsions and d-curvatures. Some time-
dependent Hamiltonian field-like geometrical models (electromagnetic-like
and gravitational-like) depending on momenta are also constructed.
An application related to the time-dependent Hamiltonian of the least squares
variational method is also studied.

Keywords: dual 1-jet spaces; Cartan N-linear connection; d—torsions;
d—curvatures; momentum electromagnetic-like geometry; momentum grav-
itational-like geometry.

MSC2010: 53B40, 53C60, 53C07.

1. Introduction

We further confine to the opinion expressed by Peter Olver in his cele-
brated work [13], which says that 1-jet spaces and their duals are appropriate
fundamental ambient mathematical spaces used to model classical and quan-
tum field theories. In such a physical and geometrical context, suggested by
the cotangent bundle framework of Atanasiu ([1, 2]) and Miron et al. (see,
e.g., [6, 8]), followed papers like [10] and [12] which are devoted to developing
the time-dependent covariant Hamilton geometry on dual 1-jet spaces (in the
sense of d—tensors, time-dependent semisprays of momenta, nonlinear connec-
tions, N-linear connections, d—torsions and d—curvatures), which is a natural
dual jet extension of the Hamilton geometry on the cotangent bundle. The
geometrical study from the papers [10] and [12] is realized on the dual 1-jet
vector bundle J*(R, M) = RxT*M — R x M, whose local coordinates are de-
noted by (¢, 2%, p;). Here M™ is a smooth real manifold of dimension n, whose
local coordinates are (z?) The coordinates p} are called momenta, and
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the dual 1-jet space J*(R, M) is called the time-dependent phase space of mo-
menta. The transformations of coordinates (¢,z",p}) «— (¢, 7", p}), induced
from R x M on the dual 1-jet space J*(R, M), have the expressions

t=1(t)

@ =) 1)
1_ aﬂ@ 1

Pi= gz athi

where dt /dt # 0 and det(9%'/027) # 0. Consequently, in our dual jet geometri-
cal approach, we use a ” relativistic’ time t. As an example, in the Hamiltonian
approach from the monograph (8], the authors use the trivial bundle R x 7% M
over the base cotangent space T* M, whose coordinates induced by T*M are
(t,2°, p;). The changes of coordinates on the trivial bundle R x T*M — T*M
are

t=t

F =7 (27)
_ 0

pi = %Pj,

pointing out the absolute character of the time variable .

2. Time-dependent Hamiltonians of momenta

Let us start with a time-dependent Hamiltonian H : E* = J™*(R, M) —
R, locally expressed by
E* 5 (t,2',pi) = H(t.2',p;) € R,
whose fundamental vertical metrical d—tensor is given by
WG _ 1 0°H
(1 1H,1°
M@ 9 op} apj
Let h = (h11(t)) be a semi-Riemannian metric on the time manifold R,

together with a d—tensor g¥(t, 2% pl) on the dual 1-jet space E*, which is
symmetric, has the rank n = dim M and has a constant signature.

Definition 2.1. A time-dependent Hamiltonian H : E* — R, having the
fundamental vertical metrical d—tensor of the form
i 1 9’°H y
Gl (k) = 5grpr = (07 (1. ) (2)

15 called a Kronecker h-regular time-dependent Hamiltonian function.
In this geometrical context, we can introduce the following notion:

Definition 2.2. A pair of mathematical objects H" = (E*, H), consisting of
the dual 1-jet space E* = J*(R, M) and a Kronecker h-regular time-dependent
Hamiltonian H : E* — R, is called a time-dependent Hamilton space.
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Example 2.1. If hyy(t) (respectively ¢;;(x)) is a semi-Riemannian metric on
the time (respectively spatial) manifold R (respectively M) having the physi-
cal meaning of gravitational potentials, while m, ¢ and e are the well-known
constants from Theoretical Physics representing the mass of the test body,
speed of light and electric charge, then let us consider the Kronecker h-reqular
time-dependent Hamiltonian Hy : E* — R, defined by

1

_ ¥ 1,1
Hy = mhn(t)@](%’)pipj

2
(& i (&
— A @)p} - F(ta) = P(to),  (3)
where Ag))(a:) 1s a d—tensor on E* having the physical meaning of a potential
d—tensor of an electromagnetic field, P(¢,z) is a potential function and the
function F(t,x) is given by

F(t,2) = B (0 (1) AL () AR (@),

Then the Hamilton space EDH"™ = (E*, Hy) defined by the time-dependent
Hamiltonian (3) is called the time-dependent Hamilton space of electrody-
namics of autonomous type. This is natural, since in the particular case of the
metric h = § = 1, we recover the classical Hamilton space of electrodynamics
studied in the monograph [8]. The non-dynamical character (i.e., the inde-
pendence on the temporal coordinate t) of the spatial gravitational potentials
©ij(x) motivated us to use the term ”autonomous”.

Example 2.2. More generally, if we take on E* a symmetric d—tensor field
9i;(t, ) having the rank n and a constant signature, we can define the Kro-
necker h-reqular time-dependent Hamiltonian Hs : E* — R, by putting

Hy = hyi(t)g” (t, 2)pip} + U (t, 2)p} + F(t, @), (4)

where Ug;(t,x) is a d—tensor field on E* and F(t,x) is a function on E*.
Then the Hamilton space NEDH™ = (E*, Hs) defined by the affine quadratic
time-dependent Hamiltonian (4) is called the non-autonomous time-dependent
Hamilton space of electrodynamics. The dynamical character (i.e., the de-
pendence on the temporal coordinate t) of the gravitational potentials g;;(t, )
motiated us to use the word "non-autonomous” .

3. Canonical nonlinear connections on H"-spaces

In the sequel, following the geometrical ideas from (Miron, [6]), we will
prove that any Kronecker h-regular time-dependent Hamiltonian H produces
a natural nonlinear connection on the dual 1-jet bundle E*, which is deter-
mined by H alone. In order to do that, let us consider a Kronecker h-regular
time-dependent Hamiltonian H, whose fundamental vertical metrical d—tensor
is given by (2). Also, let us introduce the generalized Christoffel symbols
of the inverse spatial metrical d—tensor g;;(t, 2", pi), where g¥(t,a* pi) =
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h“(t)GE%% (t, 2% pt), via the formulas
Tk — g_kl g | Ogi; _ 99i
Y2 \ 029 Oxt Ozt )

In this context, by using the notations from above, we can state the following
result:

Theorem 3.1. The pair of local functions N = (NQ) N(D) on E*, where

1 (D1 %9 (4)j
NGy = Hipl = (W1 /2)(dha /dt)p},
) W' [0gy OH  dgy; OH 92H 82H } (5)

N 1 _ e -
2 Wi 4 | oxk Opt  Op). OxF tg kaxﬂﬁp}C + gjkf):}c"(()p}C

represents a nonlinear connection on E*, which is called the canonical nonlin-
ear connection of the time-dependent Hamilton space H" = (E*, H).

Proof. Taking into account the transformation rule of the Christoffel symbol
H{, of the temporal semi-Riemannian metric hyy, by direct local computations,

we deduce that the temporal components ]}f 8))1 from (5) verify the transfor-
mation rules of a temporal nonlinear connection (see [10] or [12, p.100]).
The spatial components from (5) become (except the multiplication fac-

tor h'!) exactly the canonical nonlinear connection from the classical Hamilton
geometry (see [6] or [8, p.127]). O

4. Cartan canonical connection in H"-spaces

Let H* = (E* = J*(R, M), H) be a time-dependent Hamilton space,
whose fundamental vertical metrical d—tensor is given by (2). Let
1) 1)
N = (fqu)l» Jy(m)
be the canonical nonlinear connection of the time-dependent Hamilton space
H™, given by (5).

Theorem 4.1 (the Cartan canonical N-linear connection). On the time-
dependent Hamilton space H" = (E*, H) endowed with the canonical nonlinear
connection (5), there exists a unique h-normal N-linear connection

CT(N) = (H}, Ay, Hy, O, (6)

having the following metrical properties:

. ii(k

(i) gijie = 0, gj|8 =0,

il

i 9" 0g i i ik) k(D)

(i) Aj =5 Hip=Hiy, Gy = G,
where 7,17, "7 and ”|E’f§ 7 represent the local covariant derivatives induced by
the h-normal N -linear connection CT'(N).
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Proof. Let CT'(N) = (Hlll, Al H! Oj(1 > be an h-normal N-linear connec-

Jb Jk’
tion, whose local coefficients are defined by the relations
h't dh , Log,;
Ail = H111 - 5 117 Al = g_ﬂa
2 dt J 2 Ot

8Gir  OQrr 0 ; o (07" Oghm OgT*
sz : g]k 4 gk‘ 995k 7 Cg((lig)) _Yir g 4 91 99 ‘
J 2 \ oz ox’ ox” 2 Ipi Op; Op}

Taking into account the local expressions of the local covariant derivatives
induced by the h-normal N-linear connection CT'(N), by local computations,
we infer that CT'(N) satisfies conditions (i) and (ii).

Conversely, let us consider an h-normal N-linear connection

éP(N) = <A%1’ A;h ~]Z:Im é;g?;) )

which satisfies conditions (i) and (ii). It follows that we have

zl k)
A Ai 9ij
Ah: H111a Ajl = 2 5tj
Moreover, the metrical condition g;;; = 0 is equivalent with
5gz‘j
Sek Grj HY, ikt QWH

Applying now a Christoffel process to the indices {1, j, k}, we get
i g" (593'7« N Ogkr 593'1@).

T ol ox”

By analogy, using the relations C’Z(k = C’f((f; and g”|glg = 0, together with a

Christoffel process applied to the 1ndlces {i, 4, k}, we find
gir (09" 09" _ Og'"
2 \op, " opt opl )

In conclusion, the uniqueness of the Cartan canonical connection CT'(N)
on the dual 1-jet space E* = J™*(R, M) is obvious. O

CJ

2(1

Remark 4.1. The Cartan canonical connection CT'(N) of the time-dependent
Hamilton space H™ also verifies the metrical properties

hii1 = hup = hufglf)) =0, gy =0.

5. d—Torsions and d—curvatures

By applying the formulas of the local d—torsions and d—curvatures of
an h-normal N-linear connection DI'(N) (see Tables and formulas from [5])
to the Cartan canonical connection CT'(N), we get the following important
geometrical results:
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Theorem 5.1. The torsion tensor T of the Cartan canonical connection CT(N)
of the time-dependent Hamilton space H™ is determined by the local d—com-
ponents

hR h]\/[ (%
hghg |0 [0 [0
hahe [0 [T | RO
vhe [0 [0 [P
harhar [0 [0 | R,
vha [0 [ P | Py
VY 0 |0 0
where T{; = — A}y, Py ])) C;((f)),
1) (1)
O e LAl s, PO - O L
m1(1) rii1l r)i(l) — 1 )
(1) T Tgpl () Op;
1) (1) (1)
o ONon SN o e 0wy
R = —
M~ S 515 B L S ozt

Theorem 5.2. The curvature tensor R of the Cartan canonical connection
CT(N) of the time-dependent Hamilton space H™ is determined by the follow-
ing adapted local curvature d—tensors:

h]}g hM v
hrhg |0 |0 0
1)
farks (0 LRy, ~Rigl =~

T (% N0 k) _ Ik
vhg 0 Pl1(1) _P((¢1)§(1[))1(1) = _Pil(l)

! _ [
haal |9 RZJ(IZ) —REQ))((llgj(i)_ _Rijlk(k)
th [0 Ry L Pogun =T

J NE) _ U
v 10 1S0m | —Semmm = ~Sina

where
5A£,1 5ka r T
Rzlk‘ Sk - 5t +A11H1lﬂk_szAf"l—i_C(l)R(r)lw
SH.:.  SH!
1 ij ik r 7l r 7l I(r) p(1)
szk Sk - S +Hinrk_szH +C R?")jk?
l
Ly 0AY i) pl1)
Fawy = 5,0 Cittyn + i Ponay

H!.
Lo _ O ) p) ®
Faoy = g1~ G + G Finsy
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1)
S0 _ oCih) _ 9y £ O _ ol
() (h . ,

i(1(1) opy apj

6. Momentum field-like geometrical models

In what follows, we create a large geometrical framework on the dual
1-jet space E* for a time-dependent Hamiltonian approach of the electromag-
netic and gravitational physical fields. Our geometric-physical construction
is achieved starting only from a given time-dependent Hamiltonian function
H, which naturally produces a canonical nonlinear connection N, a canonical
Cartan N-linear connection CT'(N) and their corresponding local d—torsions
and curvatures. In this context, we construct some geometrical time-dependent
Hamiltonian electromagnetic-like and gravitational-like field theories, governed
by some natural geometrical momentum Maxwell-like and Einstein-like equa-
tions.

6.1. Geometrical momentum Maxwell-like equations

Let H" = (E*, H) be a time-dependent Hamilton space, endowed with
its canonical nonlinear connection (5), Which produces the adapted verti-

cal distinguished 1-forms dp! = dp} + N dt + N(l) dz?. Let CT(N) be

the Cartan canonical linear connection of the space H " locally defined by
(6). Let us also consider the canonical Liouville-Hamilton d—tensor field
of momenta C*= p;(9/dp;), together with the fundamental vertical metrical
d—tensor (2). All these geometrical objects allow us to define the metrical
deflection d—tensors

(i) 0) G _ () (j) (@) | (4)
Adn =pon A0 =Pay YHhy =Polay

77 ” oM

where p GEZI)(I pyand”, ;; and” \8” are the local covariant derivatives
mduced by the Cartan connectlon CT'(N). Taking into account the form of
the local covariant derivatives of the Cartan canonical connection CT'(N), by
direct computations, we get

Proposition 6.1. The metrical deflection d—tensors of the time-dependent
Hamilton space H™ are given by

(1)

Agll))l = —hugikA?l;lpylw AEll))j - hllgik _];[(k)j Hi ]P,« 7

198))((]1)) - hllgij - hllgzkc;;((iipvl*

In order to construct our time-dependent Hamiltonian theory of electro-
magnetism, we introduce the following geometric-physical notion:
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Definition 6.1. The distinguished 2-form on the 1-jet space E*, defined by

F = F @ 510z A dx? +f ])(5pZ /\(5pj, (7)
where
G _ 1 GG _ L0640
Fay; =35 [A o2 1>z]’ Fom =3 [19< i~ Y0 1>] (8)

is called the electromagnetic field of the time-dependent Hamilton space H™
or momentum electromagnetic field.

By a straightforward calculation, we infer the following

Proposition 6.2. The local components F (1)] and f )]1) of the electromagnetic

field F, associated with the Hamilton space H™, hcwe the following expressions:

() h'! ik a7 (D) ik a7 (1) ik 7T ik e\ o1 () (5)
Fag == (9 Y wi =9 Naws + (9" Hiz — g H’ﬂj)pr]’ T =

The main result of our abstract geometrical Hamilton time-dependent
electromagnetism of momenta is

Theorem 6.1. The electromagnetic components F, (1) of the space H" a
governed by the following geometrical Maxwell-like equations:

(@) (4) r (@)(r) p(1) (r)
F(l)k/l A{i,k} {A(1)1|k + A(l)rT e + 0 ym B + Boakp(i }

r) (1)
Z{z,] k} J\k Z{z,g k}{ 1)(1)Rr k+Rr]kp(1 }

OF  pi 0 ) AD ) @) pO) B
| Fiouly = A{w} {"‘9< noL L P — By Ciay —Yont <r>j<1>}7

where Ay jy means an alternate sum and Z{ijk} means a cyclic summation
over these indices.

Proof. The general Ricci identities applied to the metric g% yield the equalities
(see [3]):
9" Rl + g7 Ry, = 0, 9 Rl + ¢ Ry =0, 9)
irpi () irpt () _
9" Pl + 9 Prgy = 0.
Let us consider now the following non-metrical deflection d—tensor identities
(see [4]):

(d1) Al = Dl = PrRy = D) Th = )0 Bl

(d2) AG)— Dy = Pr Bk = 9500 Bl

(ds) A1 = Yo = PrPrct) = D Citr) = Yoy Pivsar)
where A, = piyy, A, = vl V) = pHG)-
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By contracting the above deflection d—tensor identities with the fun-
damental vertical metrical d—tensor Ggll))(g)), and using the equalities (9), we
obtain the following metrical deflection d—tensor identities:

(dr) Af)y — A

—_ M pi (4)
(Hk/1 — _p(l)erk -A

r_ @) ) p()
(D LTk 19(1)(1)R

(r)1k>

A 0 ) i @) p(1)
(d2) Ay = Ay = —Py e = 00 B

) k i) (k r) pt (k ) r(k 2)(r 1) (k

() A1 = I = —PO P~ A0Cw = 900 i)

To obtain the first (respectively, the third) geometrical Maxwell-like
equation, we permute the indices ¢ and k in the identity (d}) (respectively,
the indices ¢ and j in the identity (d})), and we subtract this new identity
from the initial one. Moreover, by doing a cyclic sum by indices {i, j, k} in the
identity (d5), it follows the second geometrical Maxwell-like equation. O

6.2. Geometrical momentum Einstein-like equations

On a time-dependent Hamilton space H" = (E*, H), via its fundamental
vertical metrical d—tensor given by (2) and its canonical nonlinear connection
(5), we construct a corresponding momentum time-dependent gravitational h-
potential, by taking

G = hjdt @ dt + gijdxi ® da’ + hllgijépz-l ® 5p;.

At the same time, let us consider that CT'(N), which is given by (6), is the
Cartan canonical connection of the time-dependent Hamilton space H". We
postulate that the geometrical momentum Einstein-like equations, which gov-
ern the time-dependent gravitational h-potential G' of the Hamilton space H",
are the abstract geometrical Einstein equations associated with the Cartan
canonical connection CT'(N) and to the adapted metric G on E*, namely

Sc(CT(N))

Ric(CT(N)) — ===

G = KT, (10)
where Ric(CT(N)) represents the distinguished Ricci tensor of the Cartan
connection, Sc(CT(N)) is the scalar curvature, X is the Einstein constant and
T is an intrinsic d—tensor of matter, which is called the momentum stress-
enerqy d—tensor.

In the adapted basis of vector fields (X4) = (§/dt,6/dz",0/0p}), pro-
duced by the canonical nonlinear connection (5), the curvature tensor R of the
Cartan canonical connection CT'(N) is locally expressed by R(X¢, Xp) X4 =
REApoXp. Tt follows that we have Rap =Ric(X4, Xp) = RYyp, and Sc(CT") =
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GABR 4 p, where
h't, for A=1, B=1
g4, for A=1, B=
1, — @ _
h''gi;, for A= i) B = 0
0, otherwise.

GAP = (11)

Taking into account, on one hand, the form of the inverse metrical d—tensor
G* = (Gp) of the time-dependent Hamilton space H", and, on the other
hand, the expressions of the local curvature d—tensors attached to the Cartan
canonical connection CT'(N), by direct computations, we get

Proposition 6.3. The Ricci d—tensor Ric(CT'(N)) of the Cartan canonical
connection CT (N) of the time-dependent Hamilton space H™ is determined by
the following adapted components:

Ry :=H;; =0, Ry; = Ri;; =0,

R ((11)) P11((81 =0, Riy = Rj,., R - Rfjm
@&:_ﬁ& }%@ Ry = =P = =P,
RYW = 00 _ gl RO . _pO _ _pi ()

M) = r(1) W)j
By using the notations R = g“ R;; and S = h“gUS’ g(]) we find

Corollary 6.1. The scalar curvature Sc(CT(N)) of the Cartan canonical con-
nection CT' (N) of the space H" is Sc(CT'(N)) =R —S.

In this context, the main result of the Hamilton geometrical momentum
gravitational theory is

Theorem 6.2. The geometrical Einstein-like equations, which govern the grav-
itational h-potential G of the time-dependent Hamilton space H™, have the
following adapted local form:

( R-S
- 2 hll = :K:Tll
R—S
Rij — T 9i; = KT
) B=5 g em@6) (12)
S — —5fug? = XTIy
0 =Ty, Ry = XTi, P((lz)l = IKTE?)p
@ G _ e () @) _ qem()
0=Ty, —Hoy=XTg), —Fuy; =Xy,

\

where Tap, A, B € {1, 1, ((i))} represent the adapted components of the mo-

mentum stress-enerqy d—tensor of matter T.
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From a theoretical-physics point of view, it is well known that in the
classical Riemannian theory of gravity, the stress-energy d—tensor of matter
must verify some conservation laws. By a natural extension of the Riemannian
conservation laws, in our geometrical Hamiltonian context, we postulate the
following momentum conservation laws of the stress-energy d—tensor T:

Ths =0, vAe{1 i ({}.

where T% = GBPTp,4. Consequently, by direct computations, we find

Theorem 6.3. The momentum conservation laws of the time-dependent Hamil
ton space H™ are given by the following equations:

( 'R—S} S
2], T Penl)
[, R-=S (1) ()
== 51| = Pl (13)
o), B=5 1100 _ o)
| [Som T3 4 W =~ W
where
RZI — giqth P(Al) — hugz’qp((lq))y R; — giqqu’
1) _ 11, pl@) Z(J i MG _ 11, @)
Py =P PO =gP,&) SO = 11usSE)-

7. Geometrization of the time-dependent Hamiltonian of the
least squares variational method

7.1. Hamiltonian d—torsions and d—curvatures of a dynamical
system

Let us consider a non-autonomous dynamical system, given by

dl’i i
= X0tk (1), (14)

where X 8 (t,z) is a d—tensor on R x M, whose solutions are the global min-

imum points of the least squares Lagrangian function (see Udriste [14] and
Neagu-Udrigte [11])

(@) (
L= n"Weyl) (v - X5) (v - X8) = (15)
= hMogyiyl — 20" oy X Tl + e X0 X,
where yi = dz'/dt and @;;(x) is a Riemannian metric on the spatial manifold
M, whose Christoffel symbols are %’k(x) The Hamiltonian associated with
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the Lagrangian (15) is given by

h1190 1

4 'L
where pi = OL/dyi and H = pLy¥ — L. This is called the least squares Hamil-
tonian associated with the dynamical system (14).

But, the differential geometry oh such time-dependent Hamiltonians was
developed in the preceding sections. Consequently, we can construct the distin-
guished geometry of the Hamiltonian (16), in the sense of canonical nonlinear
connections, Cartan N-linear connections, d—torsions and d—curvatures or
momentum electromagnetic-like 2-form. For instance, by direct computations,
the canonical nonlinear connection N of the time-dependent Hamiltonian func-
tion (16) has the components (see also the formulas (5))

H—

1}121‘1))1 = Hlllpzla NEZ)) _%gpk hu (Xihj + thi) ) (17)

where X;; = gpikX((f)), and
00X
ox”

Moreover, the coefficients of the generalized Cartan canonical connection CT'(INV)
of the least squares Hamiltonian function (16) reduce to

Ah H111> Ajl =0, ik = Tiks ngﬁ =0. (18)
Remark 7.1. If we have hyy = 1 and p;; = 9,5, we find the coefficients of
the canonical nonlinear connection produced by the least squares Hamiltonian
function (16) as being the following:

X}CIOT = - Xsl/y]zr'

0 Hx0)
NO o N0 = 2 O
1 ()1 2 () 8xj axz

Moreover, all coefficients of the Cartan canonical connection CT(N) of the
least squares Hamiltonian function (16), are zero.

By applying the formulas that determine the local d—torsions and d—cur-
vatures of the generalized Cartan canonical connection CT'(N), we obtain the
following important geometrical results.

Theorem 7.1. The torsion tensor T of the generalized Cartan canonical con-
nection CT'(N) associated with the least squares Hamiltonian (16) is deter-
mianed by the local d—components

(1
BIN

T2 R ek ot [p@) )

(13 ot nt ey B rigPh 4 Ty = Tt
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where

r 8’7121 a/ykj p r (1 11
kij — ori O +’Ykﬂpj Viei Vpis T =h (Xiloj+leoi)'

Moreover, all the curvature d—tensors of the Cartan canonical connection
CT'(N) of the least squares Hamiltonian (16) are zero, except

OO _ 0
R = ~ By = —Rig = =N

Remark 7.2. If we have hiy = 1 and ¢;; = 4,5, we find the torsion components
produced by the least squares Hamiltonian function (16) as being the following:

2 v (1) 2 v (7) 2 v (9) 2 v (9)
"Xy | 0°XG o _ FXy X
otoxI otozr |’

zjk ik

R(l)

(M1 —

Mg Jyrdad Qardrt

Moreover, all the curvature d—tensors produced by the least squares Hamailton-
ian (16) are zero.

The local components F, 8]. and f((liggg of the momentum electromagnetic-

like field F, which are attached to the least squares Hamiltonian function (16),
are given by

F<(3j -3 [Spjkxkloz‘ - @ika.j + @ Xian — (pikahk} : f((;))%g —0.

Remark 7.3. If we have hyy = 1 and p;; = 6,5, we find that F1) =0, that is
the momentum electromagnetic-like field in this case is trivial, i.e. F = 0.

7.2. Geometrization of an Economy dynamical system

We study now the dynamical of competition between two economical
sectors governed by the first order differential system (see [15] and [9])

dE; B Ey
% =g lh (1 E Br— > (19>
dFEs

%292E2( _E_ﬁ2 >;

where:

e F; and FE5 are two populations of new firms born in the above economical
sectors;

e g, and g are strictly positive constants representing the growth rates of
the two economical sectors;

e /i and K, are strictly positive constants representing the investments
of capitals;

e 31 and fy are strictly positive constants representing the competitive
interaction coefficients.
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The differential system (19) can be reconsidered on the 1-jet space J' (R, M),
whose coordinates are (¢, x' = Ey, 2? = Ey, yj = dE,/dt, y} = dE,y/dt).

In this context, the solutions of class C? of the system (19) are the global
minimum points of the least square Lagrangian (see [9])

L = (yi=xVE E)2+ 2 X By By)) =
- yl () y 141, 122 ?/1 (1)(7 1, 2) —

= Zl 5%3( Xt EhE?))( - X EI’E2)>'

i,7=1

where

E E
X((ll))<t7 Eq, Ez) = 91E1 (1 -1 51—2)
K,

X((12))(t7E1, Es) = g2 B (1 — Fz — fo— ) ;

whose corresponding least squares Hamiltonian is given by

54 1 2 2 1 2
H = szp] +X(( )) =1 [(p%) + (p2) } T X((l))pi t X((l))p%

By applying the preceding geometrical theory, it follows that, using the

8X(1)
Jacobian notation J(X) = | ——= —
i,j=1,2

OE;
E
g1 — 291F1 - 9151 —9151—
_ K,
- Ey FEs E
— - — 20, —= —
9232 Ky g2 g2 Ky 9252 Ky

we find the following geometrical objects associated with the dynamical system
(19) (here we have i,j € {1,2}):

(1) The coefficients of the canonical nonlinear connection produced by the
dynamical system (19) are given by the temporal components N =0,

and the spatial components are the entries of the symmetric matrix

aX(i) 8X(j)
_ 1) @\ _ T _
N = (i) = <8E * 8EZ->_J(X)+J(X) =

E; Ey E; Ey
2 — 21— — — — — —
B (91 g1 e 9181 Kl) 9151 9252
o E E E E
—9151?11 - 9252?22 2 (92 - 292? — 9232 1)

Moreover, all the coefficients of the Cartan canonical connection CT'(N)
of the least squares Hamiltonian function (16) are zero.
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(2) The nonzero torsion components produced by the dynamical system (19)

[1]

are the entries of the matrices:

2 v (1) 2 v ()
Ry — (Ru)”) (X PXy )
W W)is OF,0E; OFE,\0E;
0 915
o d T N Kl .
= g V& —JX) =1 g5 )
Ky
2 v (1) 2 v ()
Ry — <R<1>”> (X PXy )
@ (2)is OF,0E;  OF,0E;
0 G232
= L - a7 = K
= d—EQ[J( )= J(X)'] = _eb
Ky

Moreover, all the curvature d—tensors produced by the dynamical system
(19) are zero.
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