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OPTIMIZED CONTROL METHOD FOR VEHICLES AT 

UNSIGNALIZED INTERSECTIONS IN A HUMAN-MACHINE 

MIXED-DRIVING ENVIRONMENT 

Hui SHEN1,*, Weiming WANG2, Shangjiang YANG3, Yuqi YANG4 

In addressing the optimization control issue of vehicles at intersections within 

a human-machine mixed-driving traffic environment, the concepts of controllable and 

uncontrollable vehicle platoons are first proposed. Considering the impact of multi-

lane vehicles moving in the same direction and the upstream and downstream conflict 

areas on the internal conflict process at intersections, an algorithm for handling 

conflicts between different types of vehicle platoons has been designed. Based on this, 

by considering the interaction between vehicles in the internal conflict zones of 

intersections and applying the scanline method, the actual conflict points are 

decoupled in a closed loop. Furthermore, based on the analysis of the speed-time 

space domain of the lead vehicle in the controllable platoon reaching the stop line, 

with the objectives of minimizing the number of actual conflict points and reducing 

average vehicle delay, a two-stage optimization model for vehicle scheduling at 

intersections in a human-machine mixed traffic flow environment is constructed. The 

model's optimized solution further facilitates the reverse optimization of lane-

changing trajectories for autonomous vehicles. 

Keywords: human-machine mixed driving, unsignalized intersections, conflict 

decoupling, optimized control 

1. Introduction 

Autonomous driving technology has become a research hotspot in the field 

of intelligent transportation. With the continuous maturity of autonomous driving 

technologies, optimized control of vehicles at unsignalized intersections will 

become feasible. Currently, most research on this issue is targeted towards a fully 

autonomous driving environment. However, for a considerable period, there will 

exist a mixed-driving scenario where manually driven and autonomous vehicles 

coexist. 
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Unlike traditional intersections solely comprised of manually driven 

vehicles, the predictability and controllability of autonomous vehicles have 

significantly altered the control paradigms at intersections in a human-machine 

mixed-driving environment. Beyond the traditional traffic light control, the 

operation trajectories of autonomous vehicles can be planned in this environment. 

This planning can change the distribution of traffic flow and enhance the efficiency 

of intersection traffic. As the penetration rate of autonomous vehicles increases, 

studying the effects of optimized control at unsignalized intersections under various 

penetration rates will provide support for implementing unsignalized control 

strategies, thus bearing greater significance. 

Based on this context, this research focuses on the optimized control of 

vehicles at intersections in a human-machine mixed-driving traffic environment. 

After analyzing the interaction between vehicles in the internal conflict zones at 

intersections, a two-stage optimization model for vehicle scheduling at intersections 

in a human-machine mixed traffic flow environment is constructed. The second part 

of this article provides a literature review of previous research. The third part 

describes the definition of the platform and the assumptions for input and output, 

the fourth part describes the model construction, including lane changing model, 

speed guidance model, conflict model, optimization objective model, etc., and the 

fifth part is the conclusion. 

2. Literature review 

In the context of signal-controlled scenarios, research on autonomous 

vehicle trajectory planning includes trajectory planning for single-lane autonomous 

vehicles and multi-lane autonomous vehicles. Wang et al. [1] focused on the car-

following issue for autonomous vehicles and proposed a control structure based on 

rolling optimization. F. Zhou et al. [2], considering a mixed platoon consisting of 

autonomous and manually driven vehicles, extended the trajectory planning model 

for single-lane autonomous vehicles to accommodate system state measurements' 

uncertainties and established a stochastic optimal control model. 

In addition to the aforementioned model-based methods, recent studies have 

begun exploring the potential of utilizing machine learning techniques for 

autonomous vehicle trajectory planning. In this regard, M. Zhou et al. [3] developed 

a car-following model based on reinforcement learning (RL) for autonomous 

vehicles at single-lane intersections, aiming to improve overall traffic efficiency, 

fuel consumption, and traffic safety. Shi et al. [4] used a traditional (non-deep) Q-

learning approach to develop effective driving strategies for autonomous vehicles 

approaching signalized intersections. Mousa et al. [5] employed deep Q-learning 

with prioritized experience replay, target networks, and double learning to train RL 

agents, which allow autonomous vehicles to approach and leave signalized 
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intersections efficiently without interference from other vehicles. Wang et al. [6] 

focused on the control issues of autonomous vehicles within mixed traffic flows at 

signalized intersections, considering oscillations caused by manually driven 

vehicles, using deep reinforcement learning models to predict the trajectories of 

manually driven vehicles and control autonomous vehicles. 

Yao et al. [7] considered the interaction between autonomous vehicle 

trajectory planning and manually driven vehicle lane changes and designed a 

human-machine mixed-traffic trajectory planning framework for multi-lane 

signalized intersections. Ma et al. [8] aimed to optimize the longitudinal and lateral 

trajectories of individual autonomous vehicles, and with signal timing and 

surrounding vehicle trajectory information provided, established a discrete-time bi-

level optimization model with the objectives of minimizing vehicle delay, fuel 

consumption, and lane-changing costs. Bai et al. [9] developed a hybrid eco-driving 

strategy based on reinforcement learning for human-machine mixed traffic flows at 

signalized intersections. Xu et al. [10] proposed a two-step strategy for this joint 

optimal control problem. Guo et al. [11] also utilized a two-step method to 

separately optimize traffic signal timing and autonomous vehicle trajectories. Yu et 

al. [12] modeled the problem as a MILP (Mixed-integer linear programming) 

problem, treating the sequence of signal phases at the intersection. Liu et al. [13] 

also developed a MILP model for the joint optimization problem. 

The computational complexity of the aforementioned joint optimization 

modeling methods is relatively high, making real-time computation challenging to 

ensure. To enhance computational efficiency, some research has simplified 

individual vehicle control to the overall control of a platoon by establishing mixed-

platoon configurations, thereby reducing problem scale [14] [15]. In terms of 

distributed control, Naumann et al. [16] proposed a distributed control strategy for 

vehicles at intersections. Wu et al. [17] developed a distributed exclusion algorithm 

for intersection vehicles, where vehicles issuing travel requests compete with other 

vehicles to determine if they gain priority passage permission. Zhang et al. [18] 

introduced a distributed optimal control framework that ensures each vehicle 

obtains the optimal acceleration/deceleration at any given moment. Simulations 

demonstrated that this strategy not only avoids congestion and ensures safety but 

also reduces average fuel consumption under different levels of autonomous vehicle 

penetration. Quang et al. [19] proposed a vehicle scheduling method based on deep 

reinforcement learning. Li et al. [20] discussed optimal control strategies for mixed 

platoons with different formations, including cases where the lead vehicle is 

manually driven. 

Overall, in the current research on vehicle control optimization at 

unsignalized intersections in a human-machine mixed-driving environment, 

although some results consider lane allocation or platoon reformation, the impact 

of reformation on intersection conflicts and conflict avoidance optimization is still 
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lacking. Additionally, when multiple lanes in the same direction are present at the 

entry points, coordination among platoons within these lanes also needs 

consideration. 

3. Platoon definition 

Assumptions and Inputs/Outputs: 

1) During the analysis of the conflict areas at the intersection, only cross-

conflict points are considered, ignoring conflict points related to diverging and 

merging traffic flows. 

2) Communication delays related to V2V (Vehicle-to-Vehicle) and V2X 

(Vehicle-to-Infrastructure) technologies are not considered. 

The model's inputs include the geometric parameters of the intersection, 

such as the number of entry and exit lanes from each direction, lane widths, 

coordinates of the stop line endpoints on each lane, coordinates of the inner 

boundaries of zebra crossings, and coordinates of the conflict area boundaries. 

Inputs also include vehicle attributes, such as autonomous and manually driven 

vehicles; additionally, real-time position and speed information of vehicles at the 

decision-making moment are included. The model's outputs are the guided speeds 

along the vehicle paths, vehicle entry and exit times at the intersection, and the 

delay time experienced by each vehicle. 

In this paper, the non-lane-changing section upstream of the intersection is 

treated as the control segment, which generally consists of the guided lanes. To 

enhance the optimization effect when employing the unsignalized control method 

proposed in this paper, the length of the guided lanes can be extended. Given the 

randomness in the driving behaviors of manually driven vehicles, individual 

vehicle-based control often results in reduced control precision (due to vehicle 

speed estimation errors, leading to significant deviations between the analysis 

process and actual control outcomes), and tends to cause frequent acceleration and 

deceleration of vehicles within the intersection. Additionally, considering a platoon 

led by a Connected and Autonomous Vehicle (CAV) as the research subject can 

further reduce computational complexity. Therefore, this paper first defines a 

platoon and subsequently focuses on platoon-based optimization of control 

strategies. With the control section of the intersection area already defined, the 

platoon in this paper is required to meet the following conditions: 

(a)The platoon consists of vehicles within the range of the guided lanes. 

(b) Vehicles in the same platoon come from the same lane; vehicles from 

different lanes cannot be in the same platoon. 

(c) The time gap between vehicles within the platoon should be less than or 

equal to a set value. 
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Given the different compositions of vehicles in platoons from various 

directions at the intersection, this chapter categorizes platoons into controllable and 

uncontrollable types. A controllable platoon refers to a platoon led by a CAV 

whereas an uncontrollable platoon consists entirely of HDVs (Human-Driven 

Vehicles), as shown in Fig. 1(a). The platoon is modeled to include the type of 

platoon, number of vehicles in the platoon, and real-time attributes of the vehicles 

(such as vehicle type, position, speed, and acceleration), as shown in equation (1). 

As time progresses, the original attributes of the platoon may change, as illustrated 

in Fig. 1(b) and (c): 

 
Fig.1 Schematic Diagram of Platoon Composition 
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In equation (1), , ( )dir

i jf t  represents the attributes of the j -th platoon on lane 

i  in direction dir  (approach direction) at time t , , ( )dir

i jtype t  indicates the type of the

j -th platoon on lane i  in direction dir  at time t , with , ( ) 1dir

i jtype t =  denoting a 

controllable platoon, and , ( ) 0dir

i jtype t =  indicating an uncontrollable platoon. 

, ( )dir

i jnum t  denotes the number of vehicles in the j -th platoon on lane i  in direction 

dir  at time t . , ( )dir

i jk t  represents the real-time attributes of the vehicles in the j -th 

platoon on lane i  in direction dir , and , , ( )dir

i j nk t  specifies the real-time attributes of 

the n -th vehicle in the , ( )dir

i jk t  platoon on lane i  in direction dir . , , ( )dir

i j np t  indicates 

the type of the n -th vehicle in the j -th platoon on lane j  at time t , where 

, , ( ) 1dir

i j np t =  signifies the vehicle is a CAV, and , , ( ) 0dir

i j np t =  means the vehicle is an 

HDV. , , ( )dir

i j nd t  represents the real-time position of the n -th vehicle in the j -th 
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platoon on lane i  in direction dir , , , ( )dir

i j nv t  denotes the real-time speed of the n -th 

vehicle in the j -th platoon on lane i  in direction dir , and , , ( )dir

i j na t  is the real-time 

acceleration of the n -th vehicle in the j -th platoon on lane j  in direction dir . 

Controlled platoons manage the formation by adjusting the speed of the 

leading CAV. When the speed of the lead CAV changes, following HDVs calculate 

their trajectories using the IDM (Intelligent Driver Model). Under centralized 

comprehensive data collection and processing, the lead CAV in a controlled platoon 

can access real-time attributes , ( )dir

i jf t  of other platoons currently. In the control 

strategies discussed in this chapter, if the conflict area involves only controlled 

platoons, the speed of the lead vehicle in controlled platoons can be managed to 

allow the entire platoon to pass through the conflict direction smoothly. However, 

if the conflict involves a controlled platoon and an uncontrolled platoon or between 

two uncontrolled platoons, conflict area management strategies are used to 

determine the process of vehicle passage. This means, in conflicts between 

controlled and uncontrolled platoons, HDVs may cut through the platoon. 

When optimizing the speed of the lead CAV in a controllable platoon, it is 

essential first to ascertain the number of HDVs within the same platoon. If 

subsequent HDVs enter the guided lane, the conditions for these vehicles to join the 

preceding platoon include: 

(1) The time gap between the vehicle and the last vehicle of the preceding 

platoon must meet the platoon criterion (c). 

(2) Upon entry of the vehicle into the platoon, the vehicles in the direction 

of conflict must be able to pass through the conflict area safely as a consolidated 

platoon 

.
( )2 2 2

1

2
, , ,

, ,1 0 , ,1 0 max , ,1 0 ,

, , 0

max

( ) ( ) 2 ( )
( )

dir b dir b dir m

i j i j i j dir m

i j n

v t v t a l t
t t

a

− −
   (2) 

In this context, 1 ,

, , 0( )
dir m

i j nt t  represents the time required for the newly added 

vehicle n  in the j -th controllable platoon on lane i  in direction 1dir  to pass 

through the conflict area m  starting from time 0t . Conversely, 2 ,

, ,1 0( )
dir m

i jl t  denotes 

the distance from the lead vehicle of the j -th controllable platoon on lane i  in 

direction 2dir  to the conflict area at time 0t , and 2 ,

, ,1 0( )
dir b

i jv t  represents the speed of 

the lead vehicle in the j -th controllable platoon on lane i  in direction 2dir  at time 

0t . The variable maxa  corresponds to the maximum deceleration of the vehicle. 

Considering the interactions between controllable platoons in conflict areas, 

the approach of allowing entire platoons to yield may sometimes result in infeasible 

situations. Therefore, it is necessary to address such infeasible scenarios as follows: 
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(1) If an infeasible situation arises during initialization, randomly select one 

platoon from the conflicting controllable platoons to reduce by one vehicle at the 

end, and recalculate until a solution is found. 

(2) If an infeasible situation occurs during the optimization process, remove 

the newly added vehicle in the target platoon. 

4. Control model construction 

4.1 Lane change constraints 

Based on the above analysis, it is obvious that when the direction of the 

conflict is a controllable fleet, the controllable space can be increased and the 

flexibility of vehicle trajectory control can be improved, therefore, the problem that 

needs to be solved by lane change control is how to increase the number of multi-

lane controllable fleets in the same direction on the basis of not affecting the 

operation of the original controllable fleet. Based on this, this paper stipulates that 

when one of the two CAVs in the controllable fleet of the lane can change lanes and 

can change lanes to the front of the uncontrollable fleet in the adjacent lane, the 

CAV vehicle is controlled for lane change planning, and the applicable scenarios 

include two scenarios: single-rear vehicle lane change control for the target lane 

and lane change control for the target lane with dual rear vehicles, as shown in Fig. 

2.  

 

Fig. 2 (a) Applicable scenario of deceleration and lane change of double rear vehicles facing the 

target lane, (b) Applicable scenario of lane changing of single rear vehicle facing the target lane 

(1) Compatible with single rear vehicles facing the target lane 

Compared with conventional autonomous lane change, because it is a 

controlled lane change at this time, the lane change conditions only need to meet 
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the safety conditions, and at the same time, considering the fleet reorganization 

goal, the lane change conditions are as follows: 
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Wherein, , 1, ,( )i j n change AVGap t− the distance ,change AVt  between 1i +  the first m  

CAV of p  the time lane team and i the last vehicle of the 1j −  adjacent lane n  team 

, ,1 ,( )i j change AVGap t is the time ,change AVt adjacent lane i  team j The distance between 

the lead car and the CAV to be changed.  

(2) Compatible with dual rear vehicles facing the target lane 

This paper stipulates that the lane change CAV of the double rear vehicle 

facing the target lane should be the head vehicle of the controllable team, and the 

vehicle behind it in the team is also a CAV.  
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In addition, in order to reduce the computational complexity, in the design 

of the algorithm, the CAV lane change and vehicle speed guidance are divided into 

two stages, firstly, the CAV that meets the above lane change conditions is 

controlled for lane change, and then the vehicle speed guidance is carried out after 

the lane change is completed. In order to achieve the goal of minimizing the internal 

conflict of the intersection through the speed guidance of the head vehicle of the 

CAV, it is necessary to ensure that the head CAV vehicle (if any) entering the 

control section in the time window does not pass the stop line at the time when the 

CAV completes the lane change, and can be guided to the lowest speed minv , 

therefore, the constraints are as follows: 

,max

,

1 2 2

, ,max min1 1

, , ,

( )
( ) ( )

2

e

change AV

t
dir i e

dir i change AV dir i
t

c

v t v
l t v t dt

a

−
−    (5) 
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wherein, ,maxet is the latest lane change end time required among all 

controlled lane change vehicles in this time window.  

4.2 Speed guidance constraints 

Under the guidance speed, the rear car shall be evenly accelerated and 

decelerated until the guidance speed is reached, and in this process, it is necessary 

to meet the safety time distance from the front vehicle, that is, there are the 

following constraints: 

1 1 1
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Wherein, at  is the k time when the first vehicle starts to guide, , ( )k

dir i ax t  and 

is the position dir of the first i vehicle in the k  direction lane at the time at

(according to the lane where the vehicle is located, , ( )k

dir i ax t it can be represented by 

the coordinates of the front corner point of the vehicle), , ( )k

dir iv t  and is the dir

direction lane i The k speed at the time t  of the first car minv is the minimum guiding 

speed, and maxv  the maximum guiding speed
1,

,

k e

dir it +
 is the moment when the dir first 

vehicle in the i  direction lane 1k + enters the intersection.  

In the actual scene, if the guidance speed is very small, it can be converted 

into the time from the beginning of guidance to leaving the intersection, and then 

the time of leaving the intersection is obtained, and the vehicle can drive normally 

after conversion, but the speed and time of leaving from the stop line need to be 

consistent with the optimized result (the control mode is changed to the time control 

of entering the intersection at this time), therefore, if the vehicle needs to stop and 

wait before entering the intersection and is the first vehicle on the lane, its stop point 

should be some distance from the stop line, The distance is the distance from the 

acceleration of the vehicle speed from 0 to the guide speed, then at this time, the 

moment when the vehicle starts from the stop point and the stop point position are 

calculated as follows: 
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Wherein, , ( )k

dir i al t is the dir  i distance from the stop line when the vehicle 

speed guidance on the direction lane begins, and k  is the moment when ,

k

dir it the 

vehicle starts dir  from the stop i  point on the k direction lane, and 
,

,

k s

dir il is the dir

direction lane i The k distance between the parking position of the vehicle and the 

parking line ca  is the comfortable acceleration of the vehicle, ,

k

dir iV  the guiding 

speed, and ,

k

dir iS  the distance traveled when dir the vehicle on the i  direction lane k

starts from the speed guidance to the guiding speed.  

When the speed guidance is carried out on the head vehicle of the 

controllable fleet, the vehicle should be able to reach the guiding speed before the 

stop line at the intersection, therefore, the guiding speed also needs to satisfy the 

formula (12): 
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Before the vehicle reaches the stop line (enters the intersection), when there 

is speed guidance, it reaches the guiding speed and then drives at a constant speed. 

Due to the influence of the vehicle in front during acceleration guidance, the at  

following conditions should be met at a constant speed at a time when it is sufficient 

to ca accelerate to the guidance speed, so the following conditions should be met 

respectively according to the attainability of acceleration guidance and deceleration 

guidance 

(1) When decelerating and directing: 
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Wherein, at is the time when the vehicle speed starts to guide, the 1t  time 

when the vehicle reaches the guiding speed, and st the time when the vehicle arrives 

at the stop line.  

(2) When speeding up booting: 
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Wherein, at is the time when the vehicle speed starts to guide, which at is 

obtained by the following formula, and the constraints also need to meet the formula 

(10), (11), (12): 
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The vehicle without speed guidance uses the following model to calculate 

the trajectory: 
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

   (12) 

On the basis of the above constraints, based on the position and speed of the 

CAV head vehicle of each controllable fleet at the ,maxet moment, the speed-time 

range of the CAV reaching the stop line can be calculated, and then the speed and 

time of the controllable fleet reaching the stop line can be used as the decision 

variables, and the optimization solution is carried out within the value range. Since 

the end position and lane change time of CAV lane change trajectory planning are 

not unique, when the end position and lane change time of CAV lane change 

trajectory planning, a new speed-time range will be formed, and then the speed-

time space domain when it reaches the stop line will be formed.  

Based on the above analysis, it can be seen that when the speed-time of the 

CAV head vehicle of each team is optimized, there may be more than one end 

position and lane change time of the corresponding lane change CAV trajectory, so 

on the basis of the optimization solution of the speed-time optimization of the CAV 

head car of each controllable team, reverse optimization is required, that is, the 
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optimal trajectory is found from the CAV lane change trajectory that can achieve 

the optimization result, that is, the optimal end position and lane change time. 

4.3 Conflict constraints 

To reduce the complexity of calculations, this paper focuses on conflict 

zones as the subject of analysis, addressing conflicts involving vehicles from 

different directions within these zones. To prevent the occurrence of "deadlock" at 

intersections, it is stipulated that vehicles are not allowed to stop within any conflict 

zones. A typical intersection conflict area is depicted in Fig. 3, which divides the 

intersection space into three sections based on the spatial position attributes of 

vehicles before crossing the intersection: the buffer zone, conflict zone, and 

downstream impact area. The buffer zone refers to the interval from the stop line to 

the boundary of the conflict zone. The conflict zone is the area where vehicles from 

different directions intersect, and the downstream impact area is the section 

between the downstream conflict zone and the target conflict zone. The design of 

the intersection can lead to variations in the extents of the buffer zones, conflict 

zones, and downstream impact zones, and specific calculations can establish a 

coordinate system for the intersection to analyze the ranges of these three areas in 

detail.  

 
Fig.3 Schematic Diagram of Various Areas within the Intersection 

 

As illustrated in Fig. 3, for platoon combinations on two lanes heading in 

the same direction, vehicles influence each other as they pass through the conflict 

area. Due to one platoon occupying a position within the conflict zone, vehicles 

from the other platoon in the same direction, although reaching the conflict area 

later, are still able to proceed. 
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4.4 Objective function 

On the basis of the above constraint analysis, the two-stage control 

objectives are designed as follows: 

Decision variables: vehicle guidance speed , ,

dir

i j mV , vehicle speed guidance 

start time , ,

dir

i j mt .  

Objective function 1: Through the reorganization of the controllable fleet 

and the speed guidance of the head CAV of the controllable fleet, the actual number 

of collision points generated by vehicles in all directions of the intersection at this 

time is minimized. 

1 , , , ,min ( , )
r

dir dir

C i j m i j mZ num V t=                                       (13) 

On the basis of the optimal solution of objective function 1, the optimal 

solution of objective function 2 is obtained. The objective function 2 is the T
shortest average delay time for vehicles entering the control area within the time 

window. The difference between the actual travel time of a single vehicle and the 

travel time at free flow speed, i.e.: 

( )
1 2

1, 1, 2, ,

, , , 1, , 1, ,

dir i dir dir i jk k k

dir dir i j dir i e dir i b

l l
d t t

v

+
= − −                      (14) 

Wherein, 1,dir il  is the 1dir length of the control area of the i  directional 

entrance lane 1, 2, ,dir dir i jl , is the distance from the 1dir directional entrance lane i  to 

the 2dir directional exit lane j  in the intersection, v represents the free flow speed, 

and 1, ,

k

dir i bt  represents the time window T  The 1dir time when the first vehicle in 

the directional entrance lane enters the control area, i  which indicates k 1, ,

k

dir i et  the 

moment when the T first vehicle in the 1dir directional entrance lane i  leaves the 

intersection within the k  time window.  

Therefore, the T total vehicle delays within the time window are: 
, , ,21 1 2

1 2

1 2

, , ,

, , , , , , 1 1 1

dir dir dir i jdir
I KJ

k

dir dir i j

dir N S W E dir N S W E i j k

Delay d
= = = = =

=                      (15) 

where represents the number of vehicles 1 2, , ,dir dir i jK
that entered the control 

section within T  the time window 1dir
 and went from the direction lane i  to the 

direction 2dir
 lane j .  

The expression of the objective function 2 (the T average delay of vehicles 

entering the control section in the time window is the smallest) is further obtained 

as: 



188                                Hui Shen, Weiming Wang, Shangjiang Yang, Yuqi Yang 

 

21

1 2

1 2

2

, , ,

, , , , , , 1 1

min( )
dir dir

I J

dir dir i j

dir N S W E dir N S W E i j

Delay
Z

K
= = = =

=

  
                                (16) 

 

5. Conclusion 

 

This paper addresses the issue of vehicle optimization control at 

intersections in a mixed human-autonomous driving traffic environment. Firstly, it 

introduces the concepts of controllable and uncontrollable vehicle platoons, 

considering the impact of multi-lane vehicles traveling in the same direction and 

conflict zones upstream and downstream on the internal conflict processes at the 

intersection. Conflict handling algorithms between different types of platoons are 

designed accordingly. Building upon this, the operational process of vehicles within 

the conflict zones of the intersection is considered, employing a scan line method 

to achieve decoupling of actual conflict points in a closed-loop manner. 

Furthermore, based on the speed-time space domain analysis of the leading vehicle 

in controllable platoons reaching the stop line, a two-stage optimization model for 

intersection vehicle scheduling under a mixed human-autonomous traffic flow 

environment is constructed. The objective function aims to minimize the number of 

actual conflict points and reduce the average vehicle delay. On the basis of model 

optimization and solution, further reverse optimization of lane-changing 

trajectories for autonomous vehicles is achieved. This paper constructs and solves 

a model for the optimization control problem of intersection vehicles in a human-

machine hybrid traffic environment, which can minimize the average delay of 

vehicles. Future research directions can further verify the effectiveness of the 

proposed method through virtual simulation experiments. 
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