

SOME INTERSECTIONS OF LORENTZ SPACES

Fatemeh ABTAHI¹, HeidarGHAEID AMINI¹, Hasan Ali LOTFI² and Ali REJALI²

Let (X, μ) be a measure space. For $p, q \in (0, \infty]$ and arbitrary subsets P, Q of $(0, \infty]$, we introduce and characterize some intersections of Lorentz spaces, denoted by $IL_{P,Q}(X, \mu)$, $IL_{J,q}(X, \mu)$ and $IL_{J,Q}(X, \mu)$.

Keywords: L^p –spaces, Lorentz spaces

MSC2010: Primary 43A15, Secondary 43A20.

1. Introduction

Let (X, μ) be a measure space. For $0 < p \leq \infty$, the space $L^p(X, \mu)$ is the usual Lebesgue space, as defined in [3] and [6]. Let us remark that for $1 \leq p < \infty$

$$\|f\|_p := \left(\int_X |f(x)|^p d\mu(x) \right)^{1/p}$$

defines a norm on $L^p(X, \mu)$ such that $(L^p(X, \mu), \|\cdot\|_p)$ is a Banach space. Also for $0 < p < 1$,

$$\|f\|_p := \int_X |f(x)|^p d\mu(x)$$

defines a quasi norm on $L^p(X, \mu)$ such that $(L^p(X, \mu), \|\cdot\|_p)$ is a complete metric space. Moreover for $p = \infty$,

$$\|f\|_\infty = \inf\{B \geq 0 : \mu(\{x \in X : |f(x)| > B\}) = 0\}$$

defines a norm on $L^\infty(X, \mu)$ such that $(L^\infty(X, \mu), \|\cdot\|_\infty)$ is a Banach space. In [1], we considered an arbitrary intersection of the L^p –spaces denoted by $\bigcap_{p \in J} L^p(G)$, where G is a locally compact group with a left Haar measure λ and $J \subseteq [1, \infty]$. Then we introduced the subspace $IL_J(G)$ of $\bigcap_{p \in J} L^p(G)$ as

$$IL_J(G) = \{f \in \bigcap_{p \in J} L^p(G) : \|f\|_J = \sup_{p \in J} \|f\|_p < \infty\},$$

and studied $IL_J(G)$ as a Banach algebra under convolution product, for the case where $1 \in J$. Also in [2], we generalized the results of [1] to the weighted case. In fact for an arbitrary family Ω of the weight functions on G and $1 \leq p < \infty$, we introduced the subspace $IL_p(G, \Omega)$ of the locally convex space $L^p(G, \Omega) = \bigcap_{\omega \in \Omega} L^p(G, \omega)$. Moreover, we provided some sufficient conditions on G and also Ω , to construct a norm on $IL_p(G, \Omega)$. The fourth section of [2] has been assigned to some intersections of Lorentz spaces. Indeed, for the case

¹Dr, Department of Mathematics, University of Isfahan, Isfahan, Iran, E-mail: f.abtahi@sci.ui.ac.ir

²Phd, Department of Mathematics, University of Isfahan, Isfahan, Iran

²Phd, Department of Mathematics, University of Isfahan, Isfahan, Iran

³Professor, Department of Mathematics, University of Isfahan, Isfahan, Iran, E-mail: rejali@sci.ui.ac.ir

where p is fixed and q runs through $J \subseteq (0, \infty)$, we introduced $IL_{p,J}(G)$ as a subspace of $\cap_{q \in J} L_{p,q}(G)$, where $L_{p,q}(G)$ is the Lorentz space with indices p and q . As the main result, we proved that $IL_{p,J}(G) = L_{p,m_J}(G)$, in the case where $m_J = \inf\{q : q \in J\}$ is strictly positive.

In the present work, we continue our study concerning the intersections of Lorentz spaces on the measure space (X, μ) , to complete our results in this direction. Precisely, we verify most of the results, given in the second and third sections of [1], for Lorentz spaces.

2. Preliminaries

In this section, we give some preliminaries and definitions which will be used throughout the paper. We refer to [3], as a good introductory book.

Let (X, μ) be a measure space and f be a complex valued measurable function on X . For each $\alpha > 0$, let

$$d_f(\alpha) = \mu(\{x \in X : |f(x)| > \alpha\}).$$

The decreasing rearrangement of f is the function $f^* : [0, \infty) \rightarrow [0, \infty]$, defined by

$$f^*(t) = \inf\{s > 0 : d_f(s) \leq t\}.$$

We adopt the convention $\inf \emptyset = \infty$, thus having $f^*(t) = \infty$ whenever $d_f(\alpha) > t$ for all $\alpha \geq 0$. For $0 < p \leq \infty$ and $0 < q < \infty$, define

$$\|f\|_{L_{p,q}} = \left(\int_0^\infty \left(t^{\frac{1}{p}} f^*(t) \right)^q \frac{dt}{t} \right)^{1/q}, \quad (2.1)$$

where dt is the Lebesgue measure. In the case where $q = \infty$, define

$$\|f\|_{L_{p,\infty}} = \sup_{t>0} t^{\frac{1}{p}} f^*(t). \quad (2.2)$$

The set of all f with $\|f\|_{L_{p,q}} < \infty$ is denoted by $L_{p,q}(X, \mu)$ and is called the Lorentz space with indices p and q . As in L^p -spaces, two functions in $L_{p,q}(X, \mu)$ are considered equal if they are equal μ -almost everywhere on X . It is worth noting that by [3, Proposition 1.4.5] for each $0 < p < \infty$ we have

$$\int_X |f(x)|^p d\mu(x) = \int_0^\infty f^*(t)^p dt. \quad (2.3)$$

It follows that $L_{p,p}(X, \mu) = L^p(X, \mu)$. Furthermore by the definition given in equation (2.2), one can observe that $L_{\infty,\infty}(X, \mu) = L^\infty(X, \mu)$. Note that in the case where $p = \infty$, one can conclude that the only simple function with finite norm $\|\cdot\|_{L_{\infty,q}}$ is the zero function. For this reason, $L_{\infty,q}(X, \mu) = \{0\}$, for every $0 < q < \infty$; see [3, page 49].

In [2], for locally compact group G and $0 < p < \infty$ and also an arbitrary subset Q of $(0, \infty)$ with

$$m_Q = \inf\{q : q \in Q\} > 0,$$

we introduced $IL_{p,Q}(G)$ as a subset of $\cap_{q \in Q} L_{p,q}(G)$ by

$$IL_{p,Q}(G) = \{f \in \bigcap_{q \in Q} L_{p,q}(G) : \|f\|_{L_{p,Q}} = \sup_{q \in Q} \|f\|_{L_{p,q}} < \infty\}. \quad (2.4)$$

As the main result of the third section in [2], we proved the following theorem;

Theorem 2.1. [2, Theorem 12] *Let G be a locally compact group, $0 < p < \infty$ and Q be an arbitrary subset of $(0, \infty)$ such that $m_Q > 0$. Then $IL_{p,Q}(G) = L_{p,m_Q}(G)$. Moreover, for each $f \in L_{p,m_Q}(G)$,*

$$\|f\|_{L_{p,m_Q}} \leq \|f\|_{L_{p,Q}} \leq \max \left\{ 1, \left(\frac{m_Q}{p} \right)^{1/m_Q} \right\} \|f\|_{L_{p,m_Q}}. \quad (2.5)$$

Note that in the definition of $IL_{p,Q}(G)$ given in (2.4), one can replace G by an arbitrary measure space (X, μ) . Precisely if let

$$IL_{p,Q}(X, \mu) = \{f \in \bigcap_{q \in Q} L_{p,q}(X, \mu) : \|f\|_{L_{p,Q}} = \sup_{q \in Q} \|f\|_{L_{p,q}} < \infty\}, \quad (2.6)$$

then $IL_{p,Q}(X, \mu) = L_{p,m_Q}(X, \mu)$. Moreover for each $f \in L_{p,m_Q}(X, \mu)$, inequality (2.5) is satisfied. Furthermore, [2, Theorem 12] is also valid for $IL_{p,Q}(X, \mu)$. In the present work, in a similar way, we introduce and characterize the spaces $IL_{J,q}(X, \mu)$ and also $IL_{J,Q}(X, \mu)$, as other intersections of Lorentz spaces. Moreover, we obtain some results about Lorentz space related to the Banach space E , which has been introduced in [4].

3. Main results

At the beginning of the present section we recall [3, Exercise 1.4.2], which will be used several times in our further results. Here we give a proof for this exercise.

Proposition 3.1. *Let (X, μ) be a measure space and $0 < p_1 < p_2 \leq \infty$. Then*

$$L_{p_1, \infty}(X, \mu) \bigcap L_{p_2, \infty}(X, \mu) \subseteq \bigcap_{p_1 < p < p_2, 0 < s \leq \infty} L_{p,s}(X, \mu).$$

Proof. Let $f \in L_{p_1, \infty}(X, \mu) \cap L_{p_2, \infty}(X, \mu)$. If $\|f\|_{L_{p_1, \infty}} = 0$, one can readily obtained that $f \in L_{p,s}(X, \mu)$, for all $p_1 < p < p_2$ and $0 < s \leq \infty$. Now let $\|f\|_{L_{p_1, \infty}} \neq 0$ and first suppose that $p_2 < \infty$. We show that $f \in L_{p,s}(X, \mu)$, for all $p_1 < p < p_2$ and $0 < s < \infty$. It is clear that for each $\alpha > 0$

$$d_f(\alpha) \leq \min \left(\frac{\|f\|_{L_{p_1, \infty}}^{p_1}}{\alpha^{p_1}}, \frac{\|f\|_{L_{p_2, \infty}}^{p_2}}{\alpha^{p_2}} \right). \quad (3.1)$$

Set

$$B = \left(\frac{\|f\|_{L_{p_2, \infty}}^{p_2}}{\|f\|_{L_{p_1, \infty}}^{p_1}} \right)^{\frac{1}{p_2 - p_1}}.$$

Thus

$$\begin{aligned}
\|f\|_{L_{p,s}}^s &= \left(p \int_0^\infty (d_f(\alpha)^{\frac{1}{p}} \alpha)^s \frac{d\alpha}{\alpha} \right) = \left(p \int_0^\infty d_f(\alpha)^{\frac{s}{p}} \alpha^{s-1} d\alpha \right) \\
&\leq \left(p \int_0^B \alpha^{s-1} \left(\frac{\|f\|_{L_{p_1,\infty}}^{p_1}}{\alpha^{p_1}} \right)^{\frac{s}{p}} d\alpha \right) + \left(p \int_B^\infty \alpha^{s-1} \left(\frac{\|f\|_{L_{p_2,\infty}}^{p_2}}{\alpha^{p_2}} \right)^{\frac{s}{p}} d\alpha \right) \\
&= p \|f\|_{L_{p_1,\infty}}^{\frac{sp_1}{p}} \left(\int_0^B \alpha^{s-1-\frac{sp_1}{p}} d\alpha \right) + p \|f\|_{L_{p_2,\infty}}^{\frac{sp_2}{p}} \left(\int_B^\infty \alpha^{s-1-\frac{sp_2}{p}} d\alpha \right) \\
&= p \|f\|_{L_{p_1,\infty}}^{\frac{sp_1}{p}} \left(\frac{B^{s-\frac{sp_1}{p}}}{s - \frac{sp_1}{p}} \right) + p \|f\|_{L_{p_2,\infty}}^{\frac{sp_2}{p}} \left(\frac{B^{s-\frac{sp_2}{p}}}{\frac{sp_2}{p} - s} \right) \\
&= \left(\frac{p}{(s - \frac{sp_1}{p})} \right) \|f\|_{L_{p_1,\infty}}^{\frac{sp_1}{p} \cdot (\frac{p_2-p_1}{p_2-p_1})} \|f\|_{L_{p_2,\infty}}^{\frac{sp_2}{p} \cdot (\frac{p-p_1}{p_2-p_1})} \\
&\quad + \left(\frac{p}{(\frac{sp_2}{p} - s)} \right) \|f\|_{L_{p_1,\infty}}^{\frac{sp_1}{p} \cdot (\frac{p_2-p}{p_2-p_1})} \|f\|_{L_{p_2,\infty}}^{\frac{sp_2}{p} \cdot (\frac{p-p_1}{p_2-p_1})} \\
&= \left(\left(\frac{p}{(s - \frac{sp_1}{p})} \right) + \left(\frac{p}{(\frac{sp_2}{p} - s)} \right) \right) \|f\|_{L_{p_1,\infty}}^{\frac{sp_1}{p} \cdot (\frac{p_2-p}{p_2-p_1})} \|f\|_{L_{p_2,\infty}}^{\frac{sp_2}{p} \cdot (\frac{p-p_1}{p_2-p_1})} \\
&< \infty.
\end{aligned}$$

Consequently $f \in L_{p,s}(X, \mu)$. For $p_2 = \infty$, since $d_f(\alpha) = 0$ for each $\alpha > \|f\|_\infty$, inequality (3.1) implies that

$$\|f\|_{L_{p,s}}^s \leq \frac{p}{s - \frac{sp_1}{p}} \|f\|_{L_{p_1,\infty}}^{\frac{sp_1}{p}} \|f\|_\infty^{s - \frac{sp_1}{p}}.$$

It follows that $f \in L_{p,s}(X, \mu)$. In the case where $s = \infty$, by [3, Proposition 1.1.14], for $p_1 < r < p_2$ we have

$$L_{p_1,\infty}(X, \mu) \cap L_{p_2,\infty}(X, \mu) \subseteq L^r(X, \mu) \subseteq L_{r,\infty}(X, \mu).$$

This gives the proposition. \square

Proposition 3.2. *Let (X, μ) be a measure space, $0 < q \leq \infty$ and $0 < p_1 < p_2 \leq \infty$. Then*

$$\bigcap_{p_1 \leq r \leq p_2} L_{r,q}(X, \mu) = L_{p_1,q}(X, \mu) \cap L_{p_2,q}(X, \mu).$$

Moreover for all $f \in L_{p_1,q}(X, \mu) \cap L_{p_2,q}(X, \mu)$ and $p_1 < r < p_2$,

$$\|f\|_{L_{r,q}} \leq 2^{1/q} \max\{\|f\|_{L_{p_1,q}}, \|f\|_{L_{p_2,q}}\}.$$

Proof. By [3, Proposition 1.4.10] and Proposition 3.1 we have

$$\begin{aligned}
L_{p_1,q}(X, \mu) \cap L_{p_2,q}(X, \mu) &\subseteq L_{p_1,\infty}(X, \mu) \cap L_{p_2,\infty}(X, \mu) \\
&\subseteq \bigcap_{p_1 < r < p_2, 0 < s \leq \infty} L_{r,s}(X, \mu).
\end{aligned}$$

It follows that

$$L_{p_1,q}(X, \mu) \cap L_{p_2,q}(X, \mu) \subseteq \bigcap_{p_1 \leq r \leq p_2} L_{r,q}(X, \mu).$$

The converse of the above inclusion is clearly valid. Thus

$$L_{p_1,q}(X, \mu) \cap L_{p_2,q}(X, \mu) = \bigcap_{p_1 \leq r \leq p_2} L_{r,q}(X, \mu).$$

Now let $q < \infty$. For each $f \in L_{p_1,q}(X, \mu) \cap L_{p_2,q}(X, \mu)$, we have

$$\begin{aligned}\|f\|_{L_{r,q}}^q &= \int_0^\infty \left(t^{\frac{1}{r}} f^*(t)\right)^q \frac{dt}{t} \\ &\leq \int_0^1 \left(t^{\frac{1}{p_2}} f^*(t)\right)^q \frac{dt}{t} + \int_1^\infty \left(t^{\frac{1}{p_1}} f^*(t)\right)^q \frac{dt}{t} \\ &\leq \|f\|_{L_{p_2,q}}^q + \|f\|_{L_{p_1,q}}^q \\ &\leq 2 \max\{\|f\|_{L_{p_2,q}}^q, \|f\|_{L_{p_1,q}}^q\}.\end{aligned}$$

Also for $q = \infty$ we have

$$\begin{aligned}\|f\|_{L_{r,\infty}} &= \sup_{t>0} t^{\frac{1}{r}} f^*(t) \\ &\leq \max\{\sup_{0 < t < 1} t^{\frac{1}{p_2}} f^*(t), \sup_{t \geq 1} t^{\frac{1}{p_1}} f^*(t)\} \\ &\leq \max\{\|f\|_{L_{p_2,\infty}}, \|f\|_{L_{p_1,\infty}}\}.\end{aligned}$$

This completes the proof. \square

We are in a position to prove [1, Proposition 2.3] for Lorentz spaces. It is obtained in the following proposition. Recall from [1] that for a subset J of $(0, \infty)$,

$$M_J = \sup\{p : p \in J\}.$$

Proposition 3.3. *Let (X, μ) be a measure space, $0 < q \leq \infty$ and J be a subset of $(0, \infty)$ such that $m_J > 0$. Then the following assertions hold.*

(i) *If $m_J, M_J \in J$, then*

$$\bigcap_{p \in [m_J, M_J]} L_{p,q}(X, \mu) = \bigcap_{p \in J} L_{p,q}(X, \mu) = L_{m_J,q}(X, \mu) \cap L_{M_J,q}(X, \mu).$$

(ii) *If $m_J \in J$ and $M_J \notin J$, then $\bigcap_{p \in J} L_{p,q}(X, \mu) = \bigcap_{p \in [m_J, M_J]} L_{p,q}(X, \mu)$.*

(iii) *If $m_J \notin J$ and $M_J \in J$, then $\bigcap_{p \in J} L_{p,q}(X, \mu) = \bigcap_{p \in (m_J, M_J]} L_{p,q}(X, \mu)$.*

(iv) *If $m_J, M_J \notin J$, then $\bigcap_{p \in J} L_{p,q}(X, \mu) = \bigcap_{p \in (m_J, M_J)} L_{p,q}(X, \mu)$.*

Proof. (i). It is clearly obtain by Proposition 3.2.

(ii). Let $f \in \bigcap_{p \in J} L_{p,q}(X, \mu)$ and take $m_J < t < M_J$. Then there exist $t_1, t_2 \in J$ such that $t_1 < t < t_2$. So by Proposition 3.2

$$f \in L_{t_1,q}(X, \mu) \cap L_{t_2,q}(X, \mu) = \bigcap_{t_1 \leq p \leq t_2} L_{p,q}(X, \mu)$$

and thus $f \in L_{t,q}(X, \mu)$. It follows that

$$\bigcap_{p \in J} L_{p,q}(X, \mu) \subseteq L_{t,q}(X, \mu),$$

for each $t \in [m_J, M_J]$. Consequently

$$\bigcap_{p \in J} L_{p,q}(X, \mu) \subseteq \bigcap_{p \in [m_J, M_J]} L_{p,q}(X, \mu).$$

The converse of the inclusion is clearly valid.

(iii) and (iv) are proved in the similar ways. \square

Similar to the definition of $IL_{p,Q}(X, \mu)$ given in (2.6), for each $0 < q \leq \infty$ and $J, Q \subseteq (0, \infty)$ let

$$IL_{J,q}(X, \mu) = \{f \in \bigcap_{p \in J} L_{p,q}(X, \mu) : \|f\|_{L_{J,q}} = \sup_{p \in J} \|f\|_{L_{p,q}} < \infty\}$$

and

$$IL_{J,Q}(X, \mu) = \{f \in \bigcap_{p \in J, q \in Q} L_{p,q}(X, \mu) : \|f\|_{L_{J,Q}} = \sup_{p \in J, q \in Q} \|f\|_{L_{p,q}} < \infty\}.$$

Proposition 3.4. *Let (X, μ) be a measure space, $0 < q \leq \infty$ and $J \subseteq (0, \infty)$ such that $m_J > 0$. Then*

$$IL_{J,q}(X, \mu) \subseteq L_{m_J,q}(X, \mu) \cap L_{M_J,q}(X, \mu).$$

Moreover for each $f \in IL_{J,q}(X, \mu)$

$$\max\{\|f\|_{L_{M_J,q}}, \|f\|_{L_{m_J,q}}\} \leq \|f\|_{L_{J,q}}.$$

Proof. First let $q < \infty$. We follow a proof similar to the proof of [2, Theorem 12]. Suppose that $M_J < \infty$ and (x_n) is a sequence in J such that $\lim_n x_n = M_J$. For $f \in IL_{J,q}(X, \mu)$ by Fatou's lemma we have

$$\begin{aligned} \|f\|_{L_{M_J,q}}^q &= \int_0^\infty \left(t^{\frac{1}{M_J}} \cdot f^*(t)\right)^q \frac{dt}{t} = \int_0^\infty \liminf_n \left(t^{\frac{1}{x_n}} \cdot f^*(t)\right)^q \frac{dt}{t} \\ &\leq \liminf_n \int_0^\infty \left(t^{\frac{1}{x_n}} \cdot f^*(t)\right)^q \frac{dt}{t} \\ &= \liminf_n \|f\|_{L_{x_n,q}}^q \leq \|f\|_{L_{J,q}}^q < \infty. \end{aligned}$$

If $M_J = \infty$ and $f \in IL_{J,q}(X, \mu)$, then

$$\begin{aligned} \left(\int_0^\infty f^*(t)^q \frac{dt}{t}\right)^{1/q} &= \left(\int_0^\infty \liminf_n \left(t^{\frac{1}{x_n}} f^*(t)\right)^q \frac{dt}{t}\right)^{1/q} \\ &\leq \liminf_n \|f\|_{L_{x_n,q}} \leq \|f\|_{L_{J,q}} < \infty. \end{aligned}$$

On the other hand, as we mentioned in section 1, since $q < \infty$ then $L_{\infty,q}(X, \mu) = \{0\}$ and since $\int_0^\infty f^*(t)^q \frac{dt}{t} < \infty$, so we have $f = 0$, μ -almost every where on X . Thus

$$IL_{J,q}(X, \mu) = L_{\infty,q}(X, \mu) = \{0\}.$$

It follows that $IL_{J,q}(X, \mu) \subseteq L_{M_J,q}(X, \mu)$. Now suppose that $q = \infty$ and $f \in IL_{J,q}(X, \mu)$. Then

$$\begin{aligned} \|f\|_{L_{M_J,\infty}} &= \sup_{t>0} t^{\frac{1}{M_J}} f^*(t) = \sup_{t>0} \left(\lim_n t^{\frac{1}{x_n}} f^*(t)\right) \\ &\leq \sup_{t>0} \left(\lim_n \|f\|_{L_{x_n,\infty}}\right) \leq \|f\|_{L_{J,\infty}} < \infty, \end{aligned}$$

and so $f \in L_{M_J,\infty}(X, \mu)$. Thus $IL_{J,q}(X, \mu) \subseteq L_{M_J,q}(X, \mu)$, for each $0 < q \leq \infty$. Using some similar arguments, one can obtain that $IL_{J,q}(X, \mu) \subseteq L_{m_J,q}(X, \mu)$. This completes the proof. \square

The following proposition is obtained immediately from Propositions 3.2, 3.3 and 3.4.

Proposition 3.5. *Let (X, μ) be a measure space, $0 < q \leq \infty$ and $J \subseteq (0, \infty)$ such that $0 < m_J \leq M_J < \infty$. Then*

$$\begin{aligned} IL_{J,q}(X, \mu) &= IL_{(m_J, M_J),q}(X, \mu) = IL_{[m_J, M_J],q}(X, \mu) \\ &= IL_{(m_J, M_J],q}(X, \mu) = IL_{[m_J, M_J],q}(X, \mu) \\ &= L_{m_J,q}(X, \mu) \cap L_{M_J,q}(X, \mu). \end{aligned}$$

Furthermore, for each $f \in IL_{J,q}(X, \mu)$ and $p \in J$,

$$\|f\|_{L_{p,q}} \leq 2^{1/q} \max\{\|f\|_{L_{m_J,q}}, \|f\|_{L_{M_J,q}}\}.$$

Theorem 3.6. Let (X, μ) be a measure space and $J, Q \subseteq (0, \infty)$ such that $m_J > 0$ and $m_Q > 0$. Then

$$IL_{J,Q}(X, \mu) = L_{m_J, m_Q}(X, \mu) \cap L_{M_J, m_Q}(X, \mu). \quad (3.2)$$

Moreover for each $f \in IL_{J,Q}(X, \mu)$

$$\begin{aligned} \max\{\|f\|_{L_{m_J, m_Q}}, \|f\|_{L_{M_J, m_Q}}\} &\leq \sup_{p \in J, q \in Q} \|f\|_{L_{p,q}} \\ &\leq K \max\{\|f\|_{L_{m_J, m_Q}}, \|f\|_{L_{M_J, m_Q}}\}, \end{aligned}$$

for some positive constant $K > 0$.

Proof. Let $f \in IL_{J,Q}(X, \mu)$. Then by proposition 3.5 we have

$$f \in L_{m_J, q}(X, \mu) \cap L_{M_J, q}(X, \mu),$$

for each $q \in Q$, and so

$$f \in (\cap_{q \in Q} L_{m_J, q}(X, \mu)) \cap (\cap_{q \in Q} L_{M_J, q}(X, \mu)).$$

Thus [2, Theorem 12] implies that $f \in L_{m_J, m_Q}(X, \mu) \cap L_{M_J, m_Q}(X, \mu)$. Also by Fatou's lemma, one can readily obtain that

$$\|f\|_{L_{m_J, m_Q}} \leq \sup_{p \in J, q \in Q} \|f\|_{L_{p,q}} < \infty$$

and also

$$\|f\|_{L_{M_J, m_Q}} \leq \sup_{p \in J, q \in Q} \|f\|_{L_{p,q}} < \infty.$$

For the converse, note that by Proposition 3.2 and [3, Proposition 1.4.10] we have

$$\begin{aligned} L_{m_J, m_Q}(X, \mu) \cap L_{M_J, m_Q}(X, \mu) &= \bigcap_{m_J \leq r \leq M_J} L_{r, m_Q}(X, \mu) \\ &\subseteq \bigcap_{m_J \leq r \leq M_J, m_Q \leq t \leq M_Q} L_{r, t}(X, \mu). \end{aligned}$$

It follows that

$$L_{m_J, m_Q}(X, \mu) \cap L_{M_J, m_Q}(X, \mu) \subseteq \bigcap_{p \in J, q \in Q} L_{p,q}(X, \mu).$$

Furthermore by Proposition 3.5 and [2, Theorem 12], for each $f \in L_{m_J, m_Q}(X, \mu) \cap L_{M_J, m_Q}(X, \mu)$ we have

$$\begin{aligned} \max\{\|f\|_{L_{m_J, m_Q}}, \|f\|_{L_{M_J, m_Q}}\} &\leq \sup_{m_J \leq p \leq M_J, m_Q \leq q \leq M_Q} \|f\|_{L_{p,q}} \\ &\leq \sup_{m_J \leq p \leq M_J} \left[\max\{1, \left(\frac{m_Q}{p}\right)^{\frac{1}{m_Q}}\} \|f\|_{L_{p, m_Q}} \right] \\ &\leq 2^{1/m_Q} \max\{1, \left(\frac{m_Q}{m_J}\right)^{\frac{1}{m_Q}}\} \max\{\|f\|_{L_{m_J, m_Q}}, \|f\|_{L_{M_J, m_Q}}\} \end{aligned}$$

and so the desired inequality is provided by choosing

$$K = 2^{1/m_Q} \max\{1, \left(\frac{m_Q}{m_J}\right)^{\frac{1}{m_Q}}\}.$$

Moreover $f \in IL_{J,Q}(X, \mu)$ and the equality (3.2) is satisfied. \square

Proposition 3.7. *Let (X, μ) be a measure space and $0 < p \leq \infty$. Then $fg \in L_{p,\infty}(X, \mu)$, for each $f \in L^\infty(X, \mu)$ and $g \in L_{p,\infty}(X, \mu)$.*

Proof. By parts (7) and (15) of [3, Proposition 1.4.5] we have

$$\begin{aligned} \|fg\|_{p,\infty} &= \sup_{t>0} \left(t^{\frac{1}{p}} (fg)^*(t) \right) \leq \sup_{t>0} \left(t^{\frac{1}{p}} f^*(\frac{t}{2}) g^*(\frac{t}{2}) \right) \\ &= \sup_{t>0} \left((2t)^{\frac{1}{p}} f^*(t) g^*(t) \right) \leq 2^{\frac{1}{p}} \|g\|_{p,\infty} \|f\|_\infty \\ &< \infty. \end{aligned}$$

It follows that $fg \in L_{p,\infty}(X, \mu)$. \square

Proposition 3.8. *Let (X, μ) be a measure space, $0 < p \leq \infty$ and $J, Q \subseteq (0, \infty)$ such that $m_J > 0$, $m_Q > 0$ and $m_Q \in Q$. Then $IL_{J,Q}(X, \mu) = A \cap B$, where*

$$A = \{f \in \bigcap_{p \in J, q \in Q} L_{p,q}(X, \mu), M_q = \sup_{p \in J} \|f\|_{L_{p,q}} < \infty, \forall q \in Q\}$$

and

$$B = \{f \in \bigcap_{p \in J, q \in Q} L_{p,q}(X, \mu), M_p = \sup_{q \in Q} \|f\|_{L_{p,q}} < \infty, \forall p \in J\}.$$

Proof. It is clear that $IL_{J,Q}(X, \mu) \subseteq A \cap B$. For the converse assume that $f \in A \cap B$. By [2, Theorem 12] for each $p \in J$

$$\sup_{q \in Q} \|f\|_{L_{p,q}} \leq \max\{1, \left(\frac{m_Q}{p}\right)^{\frac{1}{m_Q}}\} \|f\|_{L_{p,m_Q}}.$$

Thus

$$\begin{aligned} \sup_{p \in J, q \in Q} \|f\|_{L_{p,q}} &\leq \max\{1, \left(\frac{m_Q}{m_J}\right)^{\frac{1}{m_Q}}\} \sup_{p \in J} \|f\|_{L_{p,m_Q}} \\ &= \max\{1, \left(\frac{m_Q}{m_J}\right)^{\frac{1}{m_Q}}\} M_{m_Q} \\ &< \infty. \end{aligned}$$

It follows that $f \in IL_{J,Q}(X, \mu)$. \square

In the sequel, we investigate some previous results, for the special Lorentz space $\ell_{p,q}\{E\}$, introduced in [4]. In the further discussions, E stands for a Banach space. Also K is the real or complex field and I is the set of positive integers. We first provide the required preliminaries, which follow from [4].

Definition 3.9. For $1 \leq p \leq \infty$ and $1 \leq q < \infty$, or $1 \leq p < \infty$ and $q = \infty$, let $\ell_{p,q}\{E\}$ be the space of all E -valued zero sequences $\{x_i\}$ such that

$$\|\{x_i\}\|_{p,q} = \begin{cases} \left(\sum_{i=1}^{\infty} i^{q/p-1} \|x_{\phi(i)}\|^q \right)^{\frac{1}{q}} & \text{for } 1 \leq p \leq \infty, 1 \leq q < \infty \\ \sup_i i^{\frac{1}{p}} \|x_{\phi(i)}\| & \text{for } 1 \leq p < \infty, q = \infty \end{cases}$$

is finite, where $\{\|x_{\phi(i)}\|\}$ is the non-increasing rearrangement of $\{\|x_i\|\}$. If $E = K$, then $\ell_{p,q}\{K\}$ is denoted by $\ell_{p,q}$.

In particular, $\ell_{p,p}\{E\}$ coincides with $\ell_p\{E\}$ and $\|\cdot\|_{p,p} = \|\cdot\|_p$; see [5].

The following result will be used in the final result of this paper. It is in fact [4, Proposition 2].

Proposition 3.10. *Let E be a Banach space.*

(i) *If $1 \leq p < \infty, 1 \leq q < q_1 \leq \infty$, then $\ell_{p,q_1}\{E\} \subseteq \ell_{p,q}\{E\}$ and for every $\{x_i\} \in \ell_{p,q}\{E\}$*

$$\|\{x_i\}\|_{p,q_1} \leq \left(\frac{q}{p}\right)^{\frac{1}{q} - \frac{1}{q_1}} \|\{x_i\}\|_{p,q},$$

for $p < q$ and

$$\|\{x_i\}\|_{p,q_1} \leq \|\{x_i\}\|_{p,q},$$

for $p \geq q$. In fact

$$\|\{x_i\}\|_{p,q_1} \leq \max\{1, \frac{q}{p}\} \|\{x_i\}\|_{p,q}.$$

(ii) *Let either $1 \leq p < p_1 \leq \infty, 1 \leq q < \infty$ or $1 \leq p < p_1 < \infty, q = \infty$. Then*

$$\ell_{p,q}\{E\} \subseteq \ell_{p_1,q}\{E\}$$

and for every $\{x_i\} \in \ell_{p,q}\{E\}$

$$\|\{x_i\}\|_{p_1,q} \leq \|\{x_i\}\|_{p,q}.$$

Now for $J, Q \subseteq [1, \infty)$ let

$$IL_{J,Q}\{E\} = \{\{x_i\} \in \bigcap_{p \in J, q \in Q} \ell_{p,q}\{E\} : \|\{x_i\}\|_{J,Q} = \sup_{p \in J, q \in Q} \|\{x_i\}\|_{p,q} < \infty\}.$$

We finish this work with the following result, which determines the structure of $IL_{J,Q}\{E\}$.

Theorem 3.11. *Let E be a Banach space and $J, Q \subseteq [1, \infty)$. Then*

$$IL_{J,Q}\{E\} = \ell_{m_J, m_Q}\{E\}.$$

Proof. By the hypothesis, $m_J, m_Q < \infty$. Using some arguments similar to [2, Theorem 12], we obtain $IL_{p,Q}\{E\} = \ell_{p,m_Q}\{E\}$. Indeed, by Proposition 3.10 $\ell_{p,m_Q}\{E\} \subseteq \ell_{p,q}\{E\}$, for each $q \in Q$. Also for each $\{x_i\} \in \ell_{p,m_Q}\{E\}$,

$$\|\{x_i\}\|_{p,q} \leq \max\{1, \frac{m_Q}{p}\} \|\{x_i\}\|_{p,m_Q}.$$

It follows that $\{x_i\} \in IL_{p,Q}\{E\}$ and

$$\|\{x_i\}\|_{p,Q} \leq \max\{1, \frac{m_Q}{p}\} \|\{x_i\}\|_{p,m_Q}.$$

Thus $\ell_{p,m_Q}\{E\} \subseteq IL_{p,Q}\{E\}$. The reverse of this inclusion is clear whenever $m_Q \in Q$. Now let $m_Q \notin Q$. There is a sequence $(y_n)_{n \in \mathbb{N}}$ in Q , converging to m_Q . For each $\{x_i\} \in IL_{p,Q}\{E\}$, Fatou's lemma implies that

$$\begin{aligned} \|\{x_i\}\|_{p,m_Q}^{m_Q} &= \sum_{i=1}^{\infty} i^{\frac{m_Q}{p}-1} \|x_{\Phi(i)}\|^{m_Q} \\ &= \sum_{i=1}^{\infty} \liminf_n \left(i^{\frac{y_n}{p}-1} \|x_{\Phi(i)}\|^{y_n} \right) \\ &\leq \liminf_n \sum_{i=1}^{\infty} \left(i^{\frac{y_n}{p}-1} \|x_{\Phi(i)}\|^{y_n} \right) \\ &= \liminf_n \|\{x_i\}\|_{p,y_n}^{y_n} \leq \liminf_n \|\{x_i\}\|_{p,Q}^{y_n} \\ &= \|\{x_i\}\|_{p,Q}^{m_Q}, \end{aligned}$$

which implies $\{x_i\} \in \ell_{p,m_Q}\{E\}$. Consequently $IL_{p,Q}\{E\} = \ell_{p,m_Q}\{E\}$. In the sequel, we show that $IL_{J,q}\{E\} \subseteq \ell_{m_J,q}\{E\}$, for each $q \in Q$. Again suppose that (z_n) is a sequence in J , converging to m_J and $\{x_i\} \in IL_{J,q}\{E\}$. Then by Fatou's lemma, we have

$$\begin{aligned} \|\{x_i\}\|_{m_J,q}^q &= \sum_{i=1}^{\infty} \left(i^{\frac{q}{m_J}-1} \|x_{\Phi(i)}\|^q \right) \\ &= \sum_{i=1}^{\infty} \liminf_n \left(i^{\frac{q}{z_n}-1} \|x_{\Phi(i)}\|^q \right) \\ &\leq \liminf_n \sum_{i=1}^{\infty} \left(i^{\frac{q}{z_n}-1} \|x_{\Phi(i)}\|^q \right) \\ &= \liminf_n \|\{x_i\}\|_{z_n,q}^q \\ &\leq \|\{x_i\}\|_{J,q}^q \\ &< \infty. \end{aligned}$$

Hence $\{x_i\} \in \ell_{m_J,q}\{E\}$ and consequently $IL_{J,q}\{E\} \subseteq \ell_{m_J,q}\{E\}$. Now suppose that $\{x_i\} \in IL_{J,Q}\{E\}$. Thus $\{x_i\} \in IL_{J,q}\{E\}$, for each $q \in Q$ and so by the before arguments we obtain $\{x_i\} \in \ell_{m_J,q}\{E\}$. On the other hand by the above inequalities, for each $1 \leq q < \infty$, we have $\|\{x_i\}\|_{m_J,q} \leq \|\{x_i\}\|_{J,q}$. It follows that $\{x_i\} \in IL_{m_J,Q}\{E\} \subseteq \ell_{m_J,m_Q}\{E\}$, which implies $IL_{J,Q}\{E\} \subseteq \ell_{m_J,m_Q}\{E\}$. Also by Proposition 3.10, for each $p \geq m_J$ and $q \geq m_Q$ we have

$$\ell_{m_J,m_Q}\{E\} \subseteq \ell_{m_J,q}\{E\} \subseteq \ell_{p,q}\{E\}.$$

Consequently

$$\ell_{m_J,m_Q}\{E\} \subseteq \bigcap_{p \in J, q \in Q} \ell_{p,q}\{E\}.$$

Moreover for each $\{x_i\} \in \ell_{p,q}\{E\}$,

$$\sup_{p \in J, q \in Q} \|\{x_i\}\|_{p,q} \leq \sup_{q \in Q} \|\{x_i\}\|_{m_J,q} \leq \max\{1, \frac{m_Q}{m_J}\} \|\{x_i\}\|_{m_J,m_Q}.$$

It follows that

$$\ell_{m_J,m_Q}\{E\} \subseteq IL_{J,Q}\{E\}$$

and therefore $IL_{J,Q}\{E\} = \ell_{m_J,m_Q}\{E\}$, as claimed. \square

Acknowledgments. This research was partially supported by the Banach algebra Center of Excellence for Mathematics, University of Isfahan.

REFERENCES

- [1] *F. Abtahi, H. G. Amini, H. A. Lotfi, and A. Rejali*, An arbitrary intersection of L_p -spaces, *Bull. Aust. Math. Soc.*, **85** (2012), 433-445.
- [2] *F. Abtahi, H. G. Amini, H. A. Lotfi, and A. Rejali*, Some intersections of the weighted L_p -spaces, *Abstr. Appl. Anal.*, Article ID 986857, 12 page, 2013.
- [3] *L. Grafakos*, Classical Fourier Analysis, 2nd edn., Springer Science+Business Media, LLC, (2008).
- [4] *M. Kato*, On Lorentz spaces $l_{p,q}(E)$, *Hiroshima Math. J.*, **6** (1976), 73-93.
- [5] *K. Miyazaki*, $(p-q)$ - nuclear and $(p-q)$ - integral operators, *Hiroshima Math. J.*, **4** (1974), 99-132.
- [6] *W. Rudin*, Real and complex analysis, Third edn, McGraw-Hill Book Co., New York, 1987.