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SOME INTERSECTIONS OF LORENTZ SPACES

Fatemeh Abtahi1, HeidarGhaeid Amini1, Hasan Ali Lotfi2 and Ali Rejali2

Let (X,µ) be a measure space. For p, q ∈ (0,∞] and arbitrary subsets P,Q

of (0,∞], we introduce and characterize some intersections of Lorentz spaces, denoted

by ILp,Q(X,µ), ILJ,q(X,µ) and ILJ,Q(X,µ).
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1. Introduction

Let (X,µ) be a measure space. For 0 < p ≤ ∞, the space Lp(X,µ) is the usual

Lebesgue space, as defined in [3] and [6]. Let us remark that for 1 ≤ p < ∞

∥f∥p :=

(∫
X

|f(x)|pdµ(x)
)1/p

defines a norm on Lp(X,µ) such that (Lp(X,µ), ∥.∥p) is a Banach space. Also for 0 < p < 1,

∥f∥p :=

∫
X

|f(x)|pdµ(x)

defines a quasi norm on Lp(X,µ) such that (Lp(X,µ), ∥.∥p) is a complete metric space.

Moreover for p = ∞,

∥f∥∞ = inf{B ≥ 0 : µ({x ∈ X : |f(x)| > B}) = 0}

defines a norm on L∞(X,µ) such that (L∞(X,µ), ∥.∥∞) is a Banach space. In [1], we

considered an arbitrary intersection of the Lp−spaces denoted by
∩

p∈J Lp(G), where G is a

locally compact group with a left Haar measure λ and J ⊆ [1,∞]. Then we introduced the

subspace ILJ(G) of
∩

p∈J Lp(G) as

ILJ(G) = {f ∈
∩
p∈J

Lp(G) : ∥f∥J = sup
p∈J

∥f∥p < ∞},

and studied ILJ(G) as a Banach algebra under convolution product, for the case where

1 ∈ J . Also in [2], we generalized the results of [1] to the weighted case. In fact for an

arbitrary family Ω of the weight functions on G and 1 ≤ p < ∞, we introduced the subspace

ILp(G,Ω) of the locally convex space Lp(G,Ω) =
∩

ω∈Ω Lp(G,ω). Moreover, we provided

some sufficient conditions on G and also Ω, to construct a norm on ILp(G,Ω). The fourth

section of [2] has been assigned to some intersections of Lorentz spaces. Indeed, for the case
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where p is fixed and q runs through J ⊆ (0,∞), we introduced ILp,J(G) as a subspace of

∩q∈JLp,q(G), where Lp,q(G) is the Lorentz space with indices p and q. As the main result, we

proved that ILp,J(G) = Lp,mJ
(G), in the case where mJ = inf{q : q ∈ J} is strictly positive.

In the present work, we continue our study concerning the intersections of Lorentz

spaces on the measure space (X,µ), to complete our results in this direction. Precisely, we

verify most of the results, given in the second and third sections of [1], for Lorentz spaces.

2. Preliminaries

In this section, we give some preliminaries and definitions which will be used through-

out the paper. We refer to [3], as a good introductory book.

Let (X,µ) be a measure space and f be a complex valued measurable function on X.

For each α > 0, let

df (α) = µ({x ∈ X : |f(x)| > α}).

The decreasing rearrangement of f is the function f∗ : [0,∞) → [0,∞], defined by

f∗(t) = inf{s > 0 : df (s) ≤ t}.

We adopt the convention inf ∅ = ∞, thus having f∗(t) = ∞ whenever df (α) > t for all

α ≥ 0. For 0 < p ≤ ∞ and 0 < q < ∞, define

∥f∥Lp,q
=

(∫ ∞

0

(
t
1
p f∗(t)

)q dt

t

)1/q

, (2.1)

where dt is the Lebesgue measure. In the case where q = ∞, define

∥f∥Lp,∞ = sup
t>0

t
1
p f∗(t). (2.2)

The set of all f with ∥f∥Lp,q < ∞ is denoted by Lp,q(X,µ) and is called the Lorentz space

with indices p and q. As in Lp−spaces, two functions in Lp,q(X,µ) are considered equal if

they are equal µ−almost everywhere on X. It is worth noting that by [3, Proposition 1.4.5]

for each 0 < p < ∞ we have ∫
X

|f(x)|pdµ(x) =
∫ ∞

0

f∗(t)pdt. (2.3)

It follows that Lp,p(X,µ) = Lp(X,µ). Furthermore by the definition given in equation (2.2),

one can observe that L∞,∞(X,µ) = L∞(X,µ). Note that in the case where p = ∞, one can

conclude that the only simple function with finite norm ∥.∥L∞,q is the zero function. For

this reason, L∞,q(X,µ) = {0}, for every 0 < q < ∞; see [3, page 49].

In [2], for locally compact group G and 0 < p < ∞ and also an arbitrary subset Q of

(0,∞) with

mQ = inf{q : q ∈ Q} > 0,

we introduced ILp,Q(G) as a subset of ∩q∈QLp,q(G) by

ILp,Q(G) = {f ∈
∩
q∈Q

Lp,q(G) : ∥f∥Lp,Q
= sup

q∈Q
∥f∥Lp,q < ∞}. (2.4)

As the main result of the third section in [2], we proved the following theorem;
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Theorem 2.1. [2, Theorem 12] Let G be a locally compact group, 0 < p < ∞ and Q be an

arbitrary subset of (0,∞) such that mQ > 0. Then ILp,Q(G) = Lp,mQ
(G). Moreover, for

each f ∈ Lp,mQ
(G),

∥f∥Lp,mQ
≤ ∥f∥Lp,Q ≤ max

{
1,

(
mQ

p

)1/mQ
}
∥f∥Lp,mQ

. (2.5)

Note that in the definition of ILp,Q(G) given in (2.4), one can replace G by an

arbitrary measure space (X,µ). Precisely if let

ILp,Q(X,µ) = {f ∈
∩
q∈Q

Lp,q(X,µ) : ∥f∥Lp,Q = sup
q∈Q

∥f∥Lp,q < ∞}, (2.6)

then ILp,Q(X,µ) = Lp,mQ
(X,µ). Moreover for each f ∈ Lp,mQ

(X,µ), inequality (2.5) is

satisfied. Furthermore, [2, Theorem 12] is also valid for ILp,Q(X,µ). In the present work,

in a similar way, we introduce and characterize the spaces ILJ,q(X,µ) and also ILJ,Q(X,µ),

as other intersections of Lorentz spaces. Moreover, we obtain some results about Lorentz

space related to the Banach space E, which has been introduced in [4].

3. Main results

At the beginning of the present section we recall [3, Exercise 1.4.2], which will be used

several times in our further results. Here we give a proof for this exercise.

Proposition 3.1. Let (X,µ) be a measure space and 0 < p1 < p2 ≤ ∞. Then

Lp1,∞(X,µ)
∩

Lp2,∞(X,µ) ⊆
∩

p1<p<p2,0<s≤∞

Lp,s(X,µ).

Proof. Let f ∈ Lp1,∞(X,µ) ∩ Lp2,∞(X,µ). If ∥f∥Lp1,∞ = 0, one can readily obtained that

f ∈ Lp,s(X,µ), for all p1 < p < p2 and 0 < s ≤ ∞. Now let ∥f∥Lp1,∞ ̸= 0 and first suppose

that p2 < ∞. We show that f ∈ Lp,s(X,µ), for all p1 < p < p2 and 0 < s < ∞. It is clear

that for each α > 0

df (α) ≤ min

(
∥f∥p1

Lp1,∞

αp1
,
∥f∥p2

Lp2,∞

αp2

)
. (3.1)

Set

B =

(
∥f∥p2

Lp2,∞

∥f∥p1

Lp1,∞

) 1
p2−p1

.
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Thus

∥f∥sLp,s
=

(
p

∫ ∞

0

(df (α)
1
p α)s

dα

α

)
=

(
p

∫ ∞

0

df (α)
s
p αs−1dα

)

≤

p

∫ B

0

αs−1

(
∥f∥p1

Lp1,∞

αp1

) s
p

dα

+

p

∫ ∞

B

αs−1

(
∥f∥p2

Lp2,∞

αp2

) s
p

dα


= p ∥f∥

sp1
p

Lp1,∞

(∫ B

0

αs−1− sp1
p dα

)
+ p ∥f∥

sp2
p

Lp2,∞

(∫ ∞

B

αs−1− sp2
p dα

)

= p ∥f∥
sp1
p

Lp1,∞

(
Bs− sp1

p

s− sp1

p

)
+ p ∥f∥

sp2
p

Lp2,∞

(
Bs− sp2

p

sp2

p − s

)

=

(
p

(s− sp1

p )

)
∥f∥

sp1
p .(

p2−p
p2−p1

)

Lp1,∞
∥f∥

sp2
p (

p−p1
p2−p1

)

Lp2,∞

+

(
p

( sp2

p − s)

)
∥f∥

sp1
p .(

p2−p
p2−p1

)

Lp1,∞
∥f∥

sp2
p (

p−p1
p2−p1

)

Lp2,∞

=

((
p

(s− sp1

p )

)
+

(
p

( sp2

p − s)

))
∥f∥

sp1
p (

p2−p
p2−p1

)

Lp1,∞
∥f∥

sp2
p (

p−p1
p2−p1

)

Lp2,∞

< ∞.

Consequently f ∈ Lp,s(X,µ). For p2 = ∞, since df (α) = 0 for each α > ∥f∥∞, inequality

(3.1) implies that

∥f∥sLp,s
≤ p

s− sp1

p

∥f∥
sp1
p

Lp1,∞
∥f∥s−

sp1
p

∞ .

It follows that f ∈ Lp,s(X,µ). In the case where s = ∞, by [3, Proposition 1.1.14], for

p1 < r < p2 we have

Lp1,∞(X,µ) ∩ Lp2,∞(X,µ) ⊆ Lr(X,µ) ⊆ Lr,∞(X,µ).

This gives the proposition. �

Proposition 3.2. Let (X,µ) be a measure space, 0 < q ≤ ∞ and 0 < p1 < p2 ≤ ∞. Then∩
p1≤r≤p2

Lr,q(X,µ) = Lp1,q(X,µ) ∩ Lp2,q(X,µ).

Moreover for all f ∈ Lp1,q(X,µ) ∩ Lp2,q(X,µ) and p1 < r < p2,

∥f∥Lr,q ≤ 21/q max{∥f∥Lp1,q , ∥f∥Lp2,q}.

Proof. By [3, Proposition 1.4.10] and Proposition 3.1 we have

Lp1,q(X,µ) ∩ Lp2,q(X,µ) ⊆ Lp1,∞(X,µ) ∩ Lp2,∞(X,µ)

⊆
∩

p1<r<p2,0<s≤∞

Lr,s(X,µ).

It follows that

Lp1,q(X,µ) ∩ Lp2,q(X,µ) ⊆
∩

p1≤r≤p2

Lr,q(X,µ).

The converse of the above inclusion is clearly valid. Thus

Lp1,q(X,µ) ∩ Lp2,q(X,µ) =
∩

p1≤r≤p2

Lr,q(X,µ).
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Now let q < ∞. For each f ∈ Lp1,q(X,µ) ∩ Lp2,q(X,µ), we have

∥f∥qLr,q
=

∫ ∞

0

(
t
1
r f∗(t)

)q dt

t

≤
∫ 1

0

(
t

1
p2 f∗(t)

)q dt

t
+

∫ ∞

1

(
t

1
p1 f∗(t)

)q dt

t

≤ ∥f∥qLp2,q
+ ∥f∥qLp1,q

≤ 2 max{∥f∥qLp2,q
, ∥f∥qLp1,q

}.

Also for q = ∞ we have

∥f∥Lr,∞ = sup
t>0

t
1
r f∗(t)

≤ max{ sup
0<t<1

t
1
p2 f∗(t), sup

t≥1
t

1
p1 f∗(t)}

≤ max{∥f∥Lp2,∞ , ∥f∥Lp1,∞}.

This completes the proof. �

We are in a position to prove [1, Proposition 2.3] for Lorentz spaces. It is obtained

in the following proposition. Recall from [1] that for a subset J of (0,∞),

MJ = sup{p : p ∈ J}.

Proposition 3.3. Let (X,µ) be a measure space, 0 < q ≤ ∞ and J be a subset of (0,∞)

such that mJ > 0. Then the following assertions hold.

(i) If mJ ,MJ ∈ J , then∩
p∈[mJ ,MJ ]

Lp,q(X,µ) =
∩
p∈J

Lp,q(X,µ) = LmJ ,q(X,µ) ∩ LMJ ,q(X,µ).

(ii) If mJ ∈ J and MJ /∈ J , then
∩

p∈J Lp,q(X,µ) =
∩

p∈[mJ ,MJ )
Lp,q(X,µ).

(iii) If mJ /∈ J and MJ ∈ J , then
∩

p∈J Lp,q(X,µ) =
∩

p∈(mJ ,MJ ]
Lp,q(X,µ).

(iv) If mJ ,MJ /∈ J , then
∩

p∈J Lp,q(X,µ) =
∩

p∈(mJ ,MJ )
Lp,q(X,µ).

Proof. (i). It is clearly obtain by Proposition 3.2.

(ii). Let f ∈
∩

p∈J Lp,q(X,µ) and take mJ < t < MJ . Then there exist t1, t2 ∈ J

such that t1 < t < t2. So by Proposition 3.2

f ∈ Lt1,q(X,µ) ∩ Lt2,q(X,µ) =
∩

t1≤p≤t2

Lp,q(X,µ)

and thus f ∈ Lt,q(X,µ). It follows that∩
p∈J

Lp,q(X,µ) ⊆ Lt,q(X,µ),

for each t ∈ [mJ ,MJ ). Consequently∩
p∈J

Lp,q(X,µ) ⊆
∩

p∈[mJ ,MJ )

Lp,q(X,µ).

The converse of the inclusion is clearly valid.

(iii) and (iv) are proved in the similar ways. �

Similar to the definition of ILp,Q(X,µ) given in (2.6), for each 0 < q ≤ ∞ and

J,Q ⊆ (0,∞) let
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ILJ,q(X,µ) = {f ∈
∩

p∈J Lp,q(X,µ) : ∥f∥LJ,q
= supp∈J ∥f∥Lp,q < ∞}

and

ILJ,Q(X,µ) = {f ∈
∩

p∈J,q∈Q Lp,q(X,µ) : ∥f∥LJ,Q = supp∈J,q∈Q ∥f∥Lp,q < ∞}.

Proposition 3.4. Let (X,µ) be a measure space, 0 < q ≤ ∞ and J ⊆ (0,∞) such that

mJ > 0. Then

ILJ,q(X,µ) ⊆ LmJ ,q(X,µ) ∩ LMJ ,q(X,µ).

Moreover for each f ∈ ILJ,q(X,µ)

max{∥f∥LMJ
,q, ∥f∥LmJ

,q} ≤ ∥f∥LJ,q
.

Proof. First let q < ∞. We follow a proof similar to the proof of [2, Theorem 12]. Suppose

that MJ < ∞ and (xn) is a sequence in J such that limn xn = MJ . For f ∈ ILJ,q(X,µ) by

Fatou’s lemma we have

∥f∥qLMJ,q
=

∫ ∞

0

(
t

1
MJ .f∗(t)

)q dt

t
=

∫ ∞

0

lim inf
n

(
t

1
xn .f∗(t)

)q dt

t

≤ lim inf
n

∫ ∞

0

(
t

1
xn .f∗(t)

)q dt

t

= lim inf
n

∥f∥qLxn,q
≤ ∥f∥qLJ,q

< ∞.

If MJ = ∞ and f ∈ ILJ,q(X,µ), then(∫ ∞

0

f∗(t)q
dt

t

)1/q

=

(∫ ∞

0

lim inf
n

(
t

1
xn f∗(t)

)q dt

t

)1/q

≤ lim inf
n

∥f∥Lxn,q ≤ ∥f∥LJ,q
< ∞.

On the other hand, as we mentioned in section 1, since q < ∞ then L∞,q(X,µ) = {0} and

since
∫∞
0

f∗(t)q dt
t < ∞, so we have f = 0, µ−almost every where on X. Thus

ILJ,q(X,µ) = L∞,q(X,µ) = {0}.

It follows that ILJ,q(X,µ) ⊆ LMJ ,q(X,µ). Now suppose that q = ∞ and f ∈ ILJ,q(X,µ).

Then

∥f∥LMJ,∞ = sup
t>0

t
1

MJ f∗(t) = sup
t>0

(
lim
n

t
1

xn .f∗(t)
)

≤ sup
t>0

(
lim
n

∥f∥Lxn,∞

)
≤ ∥f∥LJ,∞ < ∞,

and so f ∈ LMJ ,∞(X,µ). Thus ILJ,q(X,µ) ⊆ LMJ ,q(X,µ), for each 0 < q ≤ ∞. Using

some similar arguments, one can obtain that ILJ,q(X,µ) ⊆ LmJ ,q(X,µ). This completes

the proof. �

The following proposition is obtained immediately from Propositions 3.2, 3.3 and 3.4.

Proposition 3.5. Let (X,µ) be a measure space, 0 < q ≤ ∞ and J ⊆ (0,∞) such that

0 < mJ ≤ MJ < ∞. Then

ILJ,q(X,µ) = IL(mJ ,MJ ),q(X,µ) = IL[mJ ,MJ ),q(X,µ)

= IL(mJ ,MJ ],q(X,µ) = IL[mJ ,MJ ],q(X,µ)

= LmJ ,q(X,µ) ∩ LMJ ,q(X,µ).



SOME INTERSECTIONS OF LORENTZ SPACES 79

Furthermore, for each f ∈ ILJ,q(X,µ) and p ∈ J ,

∥f∥Lp,q ≤ 21/q max{∥f∥LmJ,q , ∥f∥LMJ,q}.

Theorem 3.6. Let (X,µ) be a measure space and J,Q ⊆ (0,∞) such that mJ > 0 and

mQ > 0. Then

ILJ,Q(X,µ) = LmJ ,mQ
(X,µ) ∩ LMJ ,mQ

(X,µ). (3.2)

Moreover for each f ∈ ILJ,Q(X,µ)

max{∥f∥LmJ,mQ
, ∥f∥LMJ,mQ

} ≤ sup
p∈J,q∈Q

∥f∥Lp,q

≤ Kmax{∥f∥LmJ,mQ
, ∥f∥LMJ,mQ

},

for some positive constant K > 0.

Proof. Let f ∈ ILJ,Q(X,µ). Then by proposition 3.5 we have

f ∈ LmJ ,q(X,µ) ∩ LMJ ,q(X,µ),

for each q ∈ Q, and so

f ∈ (∩q∈QLmJ ,q(X,µ)) ∩ (∩q∈QLMJ ,q(X,µ)) .

Thus [2, Theorem 12] implies that f ∈ LmJ ,mQ(X,µ) ∩ LMJ ,mQ(X,µ). Also by Fatou’s

lemma, one can readily obtain that

∥f∥LmJ,mQ
≤ sup

p∈J,q∈Q
∥f∥Lp,q < ∞

and also

∥f∥LMJ,mQ
≤ sup

p∈J,q∈Q
∥f∥Lp,q < ∞.

For the converse, note that by Proposition 3.2 and [3, Proposition 1.4.10] we have

LmJ ,mQ
(X,µ) ∩ LMJ ,mQ

(X,µ) =
∩

mJ≤r≤MJ

Lr,mQ
(X,µ)

⊆
∩

mJ≤r≤MJ ,mQ≤t≤MQ

Lr,t(X,µ).

It follows that

LmJ ,mQ
(X,µ) ∩ LMJ ,mQ

(X,µ) ⊆
∩

p∈J,q∈Q

Lp,q(X,µ).

Furthermore by Proposition 3.5 and [2, Theorem 12], for each f ∈ LmJ ,mQ
(X,µ)∩LMJ ,mQ

(X,µ)

we have

max{∥f∥LmJ,mQ
, ∥f∥LMJ,mQ

} ≤ sup
mJ≤p≤MJ ,mQ≤q≤MQ

∥f∥Lp,q

≤ sup
mJ≤p≤MJ

[
max{1, (mQ

p
)

1
mQ } ∥f∥Lp,mQ

]
≤ 21/mQ max{1, (mQ

mJ
)

1
mQ } max{∥f∥LmJ,mQ

, ∥f∥LMJ,mQ
}

and so the desired inequality is provided by choosing

K = 21/mQ max{1, (mQ

mJ
)

1
mQ }.

Moreover f ∈ ILJ,Q(X,µ) and the equality (3.2) is satisfied. �
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Proposition 3.7. Let (X,µ) be a measure space and 0 < p ≤ ∞. Then fg ∈ Lp,∞(X,µ),

for each f ∈ L∞(X,µ) and g ∈ Lp,∞(X,µ).

Proof. By parts (7) and (15) of [3, Proposition 1.4.5] we have

∥fg∥p,∞ = sup
t>0

(
t
1
p (fg)∗(t)

)
≤ sup

t>0

(
t
1
p f∗(

t

2
) g∗(

t

2
)

)
= sup

t>0

(
(2t)

1
p f∗(t) g∗(t)

)
≤ 2

1
p ∥g∥p,∞ ∥f∥∞

< ∞.

It follows that fg ∈ Lp,∞(X,µ). �

Proposition 3.8. Let (X,µ) be a measure space, 0 < p ≤ ∞ and J,Q ⊆ (0,∞) such that

mJ > 0, mQ > 0 and mQ ∈ Q. Then ILJ,Q(X,µ) = A ∩B, where

A = {f ∈
∩

p∈J,q∈Q

Lp,q(X,µ), Mq = sup
p∈J

∥f∥Lp,q < ∞, ∀q ∈ Q}

and

B = {f ∈
∩

p∈J,q∈Q

Lp,q(X,µ), Mp = sup
q∈Q

∥f∥Lp,q < ∞, ∀p ∈ J}.

Proof. It is clear that ILJ,Q(X,µ) ⊆ A ∩ B. For the converse assume that f ∈ A ∩ B. By

[2, Theorem 12] for each p ∈ J

sup
q∈Q

∥f∥Lp,q ≤ max{1, (mQ

p
)

1
mQ }∥f∥Lp,mQ

.

Thus

sup
p∈J, q∈Q

∥f∥Lp,q ≤ max{1, (mQ

mJ
)

1
mQ } sup

p∈J
∥f∥Lp,mQ

= max{1, (mQ

mJ
)

1
mQ } MmQ

< ∞.

It follows that f ∈ ILJ,Q(X,µ). �

In the sequel, we investigate some previous results, for the special Lorentz space

ℓp,q{E}, introduced in [4]. In the further discussions, E stands for a Banach space. Also K

is the real or complex field and I is the set of positive integers. We first provide the required

preliminaries, which follow from [4].

Definition 3.9. For 1 ≤ p ≤ ∞ and 1 ≤ q < ∞, or 1 ≤ p < ∞ and q = ∞, let ℓp,q{E} be

the space of all E-valued zero sequences {xi} such that

∥{xi}∥p,q =

{ (∑∞
i=1 i

q/p−1∥xϕ(i)∥ q
) 1

q for 1 ≤ p ≤ ∞, 1 ≤ q < ∞
supi i

1
p ∥xϕ(i)∥ for 1 ≤ p < ∞, q = ∞

is finite, where {∥xϕ(i)∥} is the non-increasing rearrangement of {∥xi∥}. If E = K, then

ℓp,q{K} is denoted by ℓp,q.

In particular, ℓp,p{E} coincides with ℓp{E} and ∥.∥p,p = ∥.∥p; see [5].

The following result will be used in the final result of this paper. It is in fact [4,

Proposition 2].
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Proposition 3.10. Let E be a Banach space.

(i) If 1 ≤ p < ∞, 1 ≤ q < q1 ≤ ∞, then ℓp,q{E} ⊆ ℓp,q1{E} and for every {xi} ∈ ℓp,q{E}

∥{xi}∥p,q1 ≤
(
q

p

) 1
q−

1
q1

∥{xi}∥p,q,

for p < q and

∥{xi}∥p,q1 ≤ ∥{xi}∥p,q,

for p ≥ q. In fact

∥{xi}∥p,q1 ≤ max{1, q
p
}∥{xi}∥p,q.

(ii) Let either 1 ≤ p < p1 ≤ ∞, 1 ≤ q < ∞ or 1 ≤ p < p1 < ∞, q = ∞. Then

ℓp,q{E} ⊆ ℓp1,q{E}

and for every {xi} ∈ ℓp,q{E}

∥{xi}∥p1,q ≤ ∥{xi}∥p,q.

Now for J,Q ⊆ [1,∞) let

ILJ,Q{E} = {{xi} ∈
∩

p∈J,q∈Q ℓp,q{E} : ∥{xi}∥J,Q = supp∈J,q∈Q ∥{xi}∥p,q < ∞}.
We finish this work with the following result, which determines the structure of ILJ,Q{E}.

Theorem 3.11. Let E be a Banach space and J,Q ⊆ [1,∞). Then

ILJ,Q{E} = ℓmJ ,mQ{E}.

Proof. By the hypothesis, mJ ,mQ < ∞. Using some arguments similar to [2, Theorem 12],

we obtain ILp,Q{E} = ℓp,mQ
{E}. Indeed, by Proposition 3.10 ℓp,mQ

{E} ⊆ ℓp,q{E}, for
each q ∈ Q. Also for each {xi} ∈ ℓp,mQ

{E},

∥{xi}∥p,q ≤ max{1, mQ

p
}∥{xi}∥p,mQ

.

It follows that {xi} ∈ ILp,Q{E} and

∥{xi}∥p,Q ≤ max{1, mQ

p
}∥{xi}∥p,mQ .

Thus ℓp,mQ
{E} ⊆ ILp,Q{E}. The reverse of this inclusion is clear whenever mQ ∈ Q. Now

letmQ /∈ Q. There is a sequence (yn)n∈N inQ, converging tomQ. For each {xi} ∈ ILp,Q{E},
Fatou’s lemma implies that

∥{xi}∥mQ
p,mQ

=
∞∑
i=1

i
mQ
p −1∥xΦ(i)∥mQ

=

∞∑
i=1

lim inf
n

(
i
yn
p −1∥xΦ(i)∥yn

)
≤ lim inf

n

∞∑
i=1

(
i
yn
p −1∥xΦ(i)∥yn

)
= lim inf

n
∥{xi}∥yn

p,yn
≤ lim inf

n
∥{xi}∥yn

p,Q

= ∥{xi}∥
mQ

p,Q,
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which implies {xi} ∈ ℓp,mQ
{E}. Consequently ILp,Q{E} = ℓp,mQ

{E}. In the sequel, we

show that ILJ,q{E} ⊆ ℓmJ ,q{E}, for each q ∈ Q. Again suppose that (zn) is a sequence in

J , converging to mJ and {xi} ∈ ILJ,q{E}. Then by Fatou’s lemma, we have

∥{xi}∥qmJ ,q =

∞∑
i=1

(
i

q
mJ

−1∥xΦ(i)∥q
)

=
∞∑
i=1

lim inf
n

(
i

q
zn

−1∥xΦ(i)∥q
)

≤ lim inf
n

∞∑
i=1

(
i

q
zn

−1∥xΦ(i)∥q
)

= lim inf
n

∥{xi}∥qzn,q
≤ ∥{xi}∥qJ,q
< ∞.

Hence {xi} ∈ ℓmJ ,q{E} and consequently ILJ,q{E} ⊆ ℓmJ ,q{E}. Now suppose that {xi} ∈
ILJ,Q{E}. Thus {xi} ∈ ILJ,q{E}, for each q ∈ Q and so by the before arguments we obtain

{xi} ∈ ℓmJ ,q{E}. On the other hand by the above inequalities, for each 1 ≤ q < ∞, we have

∥{xi}∥mJ ,q ≤ ∥{xi}∥J,q. It follows that {xi} ∈ ILmJ ,Q{E} ⊆ ℓmJ ,mQ{E}, which implies

ILJ,Q{E} ⊆ ℓmJ ,mQ
{E}. Also by Proposition 3.10, for each p ≥ mJ and q ≥ mQ we have

ℓmJ ,mQ
{E} ⊆ ℓmJ ,q{E} ⊆ ℓp,q{E}.

Consequently

ℓmJ ,mQ
{E} ⊆

∩
p∈J,q∈Q

ℓp,q{E}.

Moreover for each {xi} ∈ ℓp,q{E},

sup
p∈J,q∈Q

∥{xi}∥p,q ≤ sup
q∈Q

∥{xi}∥mJ ,q ≤ max{1, mQ

mJ
}∥{xi}∥mJ ,mQ .

It follows that

ℓmJ ,mQ
{E} ⊆ ILJ,Q{E}

and therefore ILJ,Q{E} = ℓmJ ,mQ
{E}, as claimed. �
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