U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 3, 2016 ISSN 1223-7027

SOME INTERSECTIONS OF LORENTZ SPACES

Fatemeh ABTAHI', HeidarGHAEID AMINI', Hasan Ali LoTF1? and Ali REJALI®

Let (X, p) be a measure space. For p,q € (0,00] and arbitrary subsets P, Q
of (0,00], we introduce and characterize some intersections of Lorentz spaces, denoted
by IL;D,Q(Xv “)7 ILJ,q(XHu’) and ILJ,Q(Xv lu)
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1. Introduction

Let (X, ) be a measure space. For 0 < p < oo, the space LP(X,u) is the usual
Lebesgue space, as defined in [3] and [6]. Let us remark that for 1 < p < oo

I s= (/. If(m)lpdu(x))l/p

defines a norm on LP(X, i) such that (L?(X, u), ||.||p) is a Banach space. Also for 0 < p < 1,

1£llp = /X (@) Pdu(z)

defines a quasi norm on LP(X,u) such that (LP(X, u),|.|l,) is a complete metric space.
Moreover for p = oo,

[flloo = nf{B > 0: u({z € X :|f(z)| > B}) = 0}

defines a norm on L (X, u) such that (L*™°(X,u),||-|lo) is a Banach space. In [1], we
considered an arbitrary intersection of the L” —spaces denoted by ﬂpe] L?(G), where G is a
locally compact group with a left Haar measure A and J C [1,00]. Then we introduced the

subspace IL;(G) of (¢ ; LP(G) as

ILy(G)={f € [V L(G): [Iflls = sup | fll, < o},
peJ peJ
and studied IL;(G) as a Banach algebra under convolution product, for the case where
1 € J. Also in [2], we generalized the results of [1] to the weighted case. In fact for an
arbitrary family €2 of the weight functions on G and 1 < p < oo, we introduced the subspace
IL,(G,Q) of the locally convex space LP(G,Q) = [,cq LP(G,w). Moreover, we provided
some sufficient conditions on G and also €2, to construct a norm on IL,(G, ). The fourth
section of [2] has been assigned to some intersections of Lorentz spaces. Indeed, for the case
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where p is fixed and ¢ runs through J C (0, 00), we introduced IL, ;(G) as a subspace of
NgesLyp,q(G), where L, ,(G) is the Lorentz space with indices p and g. As the main result, we
proved that IL, j(G) = Ly, (G), in the case where m; = inf{q : ¢ € J} is strictly positive.

In the present work, we continue our study concerning the intersections of Lorentz
spaces on the measure space (X, 1), to complete our results in this direction. Precisely, we
verify most of the results, given in the second and third sections of [1], for Lorentz spaces.

2. Preliminaries

In this section, we give some preliminaries and definitions which will be used through-
out the paper. We refer to [3], as a good introductory book.

Let (X, 1) be a measure space and f be a complex valued measurable function on X.
For each o > 0, let

df(a) = p({z € X - [f(z)] > a}).
The decreasing rearrangement of f is the function f* : [0,00) — [0, o], defined by
[7(t) =inf{s > 0:dy(s) <t}

We adopt the convention inf () = oo, thus having f*(t) = oo whenever ds(a) > t for all
a>0. For 0 <p<ooand0< ¢q< oo, define

e, = ([ (o))", 2.)

where dt is the Lebesgue measure. In the case where ¢ = 0o, define
1 *
[z, =supt? f5(2). (2.2)
t>0

The set of all f with || f||z,, < oo is denoted by L, ,(X, i) and is called the Lorentz space
with indices p and ¢. As in LP—spaces, two functions in L, ,(X, u) are considered equal if
they are equal p—almost everywhere on X. It is worth noting that by [3, Proposition 1.4.5]

/If )Pdp(z /f t)Pdt. (2.3)

It follows that L, ,(X, u) = LP(X, ). Furthermore by the definition given in equation (2.2),
one can observe that Lo o (X, u) = L*°(X, ). Note that in the case where p = oo, one can
conclude that the only simple function with finite norm |||z, , is the zero function. For

this reason, Lo q(X, ) = {0}, for every 0 < g < oo; see [3, page 49].

for each 0 < p < 0o we have

n [2], for locally compact group G and 0 < p < oo and also an arbitrary subset @ of
(0, 00) with
mgo =inf{g:q¢e€ Q} >0,
we introduced IL, o(G) as a subset of ﬁquL%q(G) by
1L,0(@) = {f € [ Lna(@) : 12,0 = 2211 £, < o0} (2:4)
q€Q

As the main result of the third section in [2], we proved the following theorem;
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Theorem 2.1. [2, Theorem 12] Let G be a locally compact group, 0 < p < oo and @ be an
arbitrary subset of (0,00) such that mqg > 0. Then 1L, q(G) = Ly m,(G). Moreover, for
each f € Lymg(G),

mQ 1/mQ
g < 110 < mox 1, (P2) 1 (2.5)

Note that in the definition of IL, o(G) given in (2.4), one can replace G by an
arbitrary measure space (X, ut). Precisely if let

1Ly o(X,m) ={f € () Lpa(X, 1) : [ fllz, o = sup 1fllz,,, < oo} (2.6)
q€Q a

then IL, o(X, 1) = Lpmo (X, ). Moreover for each f € Ly m, (X, u), inequality (2.5) is
satisfied. Furthermore, [2, Theorem 12] is also valid for IL, (X, x). In the present work,
in a similar way, we introduce and characterize the spaces I L ,(X, 1) and also ILjo(X, 1),
as other intersections of Lorentz spaces. Moreover, we obtain some results about Lorentz
space related to the Banach space E, which has been introduced in [4].

3. Main results

At the beginning of the present section we recall [3, Exercise 1.4.2], which will be used
several times in our further results. Here we give a proof for this exercise.

Proposition 3.1. Let (X, pu) be a measure space and 0 < p1 < pa < oo. Then

Lp, 00 (X, M)ﬂLpz,OO(X7 ) < ﬂ Lps(X, ).

p1<p<p2,0<s<oco

Proof. Let f € Lp, oo(X, 1) N Lp, 0o(X, ). If || fllz,, .. = 0, one can readily obtained that
f € Lys(X,p), for all py <p <psand 0 < s < oo. Now let ||f||r, .. # 0 and first suppose
that ps < co. We show that f € L, (X, p), for all p1 < p < pp and 0 < s < oo. It is clear
that for each a > 0

I £115 I £117
Looe 17 Thwaice | (3.1)

oP1 oP2

d¢(a) < min (

Set

1
B_Cmﬁwdwm
- P1 :
I
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Thus

1, = (p/:o(df( ) >‘f)—(p/0°°df<a>:aslda>

B R S T
< P o’ —= ] da|+|p o’ —=2= | da
0 oP1 B P2
spy B i _m spy oo
=i ([ ) o ([T )
0 B
Sp2
sPg. B~ b
= plfle (S_ ) oAl ( _S>
p
sP1 P2—P s5P2 (P Pl
= ( ) [ 2 1Al =
pp —pp) sP2 PP Pp} )
+<(5m)> ||f||Lploo2 ' ||J"HL,J2(,Q2 '
p
p p bPl(P*P SPQ(P pl)
= + (R T Vi P
) (=)
< 0.

Consequently f € L, (X, ). For po = 0o, since ds(a) = 0 for each a > || f||oo, inequality
(3.1) implies that

17115, < —Zr Tk

s
s—2EL
P
[1flloo
p

It follows that f € L, s(X,u). In the case where s = oo, by [3, Proposition 1.1.14], for
p1 <1 < p2 we have

LP1>OO<X7 p) n LP2,00(X7 U) - LT(Xa M) - Lnoo(X, U)'

P1,%°

This gives the proposition. |
Proposition 3.2. Let (X, p) be a measure space, 0 < g < 0o and 0 < p1 < pa < 0o. Then
ﬂ Ly g(X, 1) = Lp, q(X, 1) N Lp, 4(X, ).

P1<T<p2
Moreover for all f € Ly, o(X, 1) N Ly, (X, 1) and p1 <1 < pa,
1£llz,., < 24 max{]|fllz,,.,» 1 £llz,,.,}-
Proof. By [3, Proposition 1.4.10] and Proposition 3.1 we have
Lpy (X, 1) MV Lpy (X, 1) C Ly oo(X, 1) M Ly 00 (X, 1)
c ﬂ Lns(Xa M)
p1<r<pz,0<s<oo

It follows that
Lan(X; :u) ﬁ Lpz,q(X7 :u) g ﬂ Lr,q(X7 .u“)

P1<r<p2
The converse of the above inclusion is clearly valid. Thus

Lphq(X, ,U) ﬂLpz,q(Xy ,U) = m LT,(](X7 /J“)

p1<r<p2
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Now let ¢ < co. For each f € Ly, (X, ) N Ly, (X, 1), we have

111 | (Frm)s

q
Lyq

1 q dt 0 q dt
< / (t%f*(t)) — +/ (tﬁf*(t)> -
0 t 1 t
q q
< IF1E, . + 119,
q q
< 2 max{ 5, L IF15 )
Also for ¢ = oo we have
1 ook
Iz, = suptr f7(t)
>0
< max{ sup tif*(t),suptﬁf*(t)}
0<t<1 t>1
< max{||fllz,, . I fllz,, <}
This completes the proof. -

We are in a position to prove [1, Proposition 2.3] for Lorentz spaces. It is obtained
in the following proposition. Recall from [1] that for a subset J of (0, o),

Mj;=sup{p:pe J}
Proposition 3.3. Let (X, u) be a measure space, 0 < q < oo and J be a subset of (0, 00)
such that my > 0. Then the following assertions hold.
(1) If my, My € J, then

ﬂ Lpq(X,p) = ﬂ Lp,(X, 1) = L, q(X, 1) N L, (X, 1)
pE[my,Mj] peJ

(11) Ifmy e J and My ¢ J, then (Ve ; Lpq(X, 1) = Npepm, aay) Lp.a (X5 1)
(it)) If my ¢ J and My € J, then (e ; Lp.o(X, 1t) = Npe(m, a1,) Lpa (X5 1)
(iV) Ifmy, M, ¢ J, then mpeJ Lp,q(Xa ,U') = ﬂpe(mJ,MJ) prq(X’ :LL)'

Proof. (7). Tt is clearly obtain by Proposition 3.2.

(#). Let f € ey Lpq(X,p) and take m; < ¢ < M;. Then there exist t1,t> € J
such that t; <t < ts. So by Proposition 3.2

f € Ltl,q(Xvﬂ)ﬂLtQ,(I(Xmu’) = n LP-,(](Xmu“)
t1 <p<to
and thus f € Ly (X, ). It follows that
m Lpﬁq(Xv /j‘) - Lt,q(Xv M)a
peJ
for each ¢ € [my, M;). Consequently
m Lpqo(X,p) C ﬂ Lpq(X, ).
peJ pE[my, M)
The converse of the inclusion is clearly valid.

(7i7) and (iv) are proved in the similar ways. O

Similar to the definition of IL, (X, ) given in (2.6), for each 0 < ¢ < oo and
J,Q C (0,00) let
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ILy(Xsp) = {f € Mpey Lp.a(Xsn) N fllLsy = suppes £, < oo}

and
ILy (X, 1) ={f € Myesqeq Lpa(Xs 1) = I fllLso =sUPpeqgeq I fllL,,, < o0}
Proposition 3.4. Let (X, ) be a measure space, 0 < ¢ < oo and J C (0,00) such that
my > 0. Then
IL;q(X, 1) C Lin,q(X, ) O Lty ,q(X, p)-
Moreover for each f € ILj (X, 1)

max{|| L, .a0 1L, ad < NN,

Proof. First let ¢ < co. We follow a proof similar to the proof of [2, Theorem 12]. Suppose
that M; < oo and (x,,) is a sequence in J such that lim,, x, = M. For f € IL;,(X, u) by
Fatou’s lemma we have

q O N T O N
L, = [ (Frr0) F = [t (175570)"
. L N\2dt
hmnlnf/o (t w.f (t)) "
~ Timinf|£3, < If5,, < ox.

IN

If My =o00and f € IL;4(X,p), then

(/Ooo f*(t)tht)l/q ) </0°° tim inf (¢ (1)) ‘ff)l/q

liminf | £z, , < [Ifllz,, < oo

IN

On the other hand, as we mentioned in section 1, since ¢ < 0o then Lo (X, p) = {0} and
since fooo f*(t)q% < 00, so we have f = 0, u—almost every where on X. Thus

ILJ,q(Xv /1') = Loo,q(X> /J’) = {0}
It follows that ILj (X, 1) C Las, (X, 1). Now suppose that ¢ = oo and f € ILjy (X, p).
Then

1, e = supt™ £(t) = sup (lim 5. f(1))
' t>0 t>0 \ ™

< sup (1m ]z, . ) < Iflle, < o0,
t>0 \ 7

and so f € Lar, oo(X, ). Thus ILjq(X, 1) € Lar, q(X, p), for each 0 < ¢ < oo. Using
some similar arguments, one can obtain that IL; (X, u) C Ly, (X, ). This completes
the proof. 0

The following proposition is obtained immediately from Propositions 3.2, 3.3 and 3.4.

Proposition 3.5. Let (X, u) be a measure space, 0 < ¢ < oo and J C (0,00) such that
0<my< Mjy<oo. Then
ILjo(X,pn) = IL(mJ,MJ)7q(X7 p) = IL[mJ7MJ)7q(X7 1)
IL(mJ,AI,]],q(X’ lu’) = IL[mJ,MJ],q(Xv /’1’)
= LmJ,q(leL) ﬂLMJ,Q(Xa ,LL)
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Furthermore, for each f € ILj (X, u) and p € J,
112y, < 2Y T max{ | Lo, oo 1120, 0}

Theorem 3.6. Let (X, u) be a measure space and J,Q C (0,00) such that my > 0 and
mqg > 0. Then

ILjQ(X, 1) = Ly meo (X, 1) N Lagy mg (X, 1) (3.2)
Moreover for each f € ILjq(X, 1)
max , m < su
v TV R S 1L
<

K masc{(| 12, gy 11y g -

for some positive constant K > 0.
Proof. Let f € IL; (X, ). Then by proposition 3.5 we have

fe Lm.f,q(X7 /J') N LMJ,q(X7 :u)7
for each ¢ € @, and so

fe (quQLmJ,q(Xa w) N (mquLMqu(X’ ) -

Thus [2, Theorem 12] implies that f € Ly, mo (X, 1) N Ly, mo (X, 1), Also by Fatou’s
lemma, one can readily obtain that

MLy mg < sup |[fllz,,, <oo

iy < 50211,
and also

i, o < sup | flle,. < oo.
[PV peJ,qu” Iz,.,

For the converse, note that by Proposition 3.2 and [3, Proposition 1.4.10] we have

LmJ,mQ (X7 M) mLMJ,mQ(Xv M) = m LT,mQ (Xa :u)
my<r<M;

ﬂ Lr,t (Xa :u)'

my<r<M;j,mq<t<Mq

N

It follows that
LmJme (X7 M) mL]WJJnQ (X’ M) g m LP;Q(X’ :u)'
peJqeq
Furthermore by Proposition 3.5 and [2, Theorem 12], for each f € Ly, mq (X, )Lz, me (X, 1)
we have

UEES{(VA P (V| PRV .S sup 1Ly,
my<p<My,mq<q<Mg

m _1
< sw [max{lmQ)mQanLp,mQ
myg<p<M; p

m mQ
< 2V max(L (22) 70 } max{fll o 1, g

and so the desired inequality is provided by choosing
1
K = 2Y/™me max{1, (@)MQ 1.
my

Moreover f € IL; (X, p) and the equality (3.2) is satisfied. O
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Proposition 3.7. Let (X, u) be a measure space and 0 < p < co. Then fg € L, (X, 1),
for each f € L®(X, p) and g € Ly (X, 1).

Proof. By parts (7) and (15) of [3, Proposition 1.4.5] we have

1 * Loy t * t
ol = s (¢ (0 ) <sup (2515 °(3))
= sup (207 170 9"(1) 27 gllpoc /]l
t>0
< oo.
It follows that fg € L, oo(X, p). O

Proposition 3.8. Let (X, u) be a measure space, 0 < p < oo and J,Q C (0,00) such that
my >0, mg >0 and mg € Q. Then IL;o(X, ) = AN B, where

A= {f € m L;n,q(Xa ,u), Mq = sup ”f”Lp,q < oo, Vg€ Q}
pEJSGEQ peJ

and

B={fe ﬂ Ly (X, p), My =sup|flz,, <oo, Vpe J}.
peJaeqQ €@

Proof. 1t is clear that IL;qo(X,n) € AN B. For the converse assume that f € AN B. By
[2, Theorem 12] for each p € J

mQ .\ s
Slelgllflle,q < maX{l,(T) QHI L g -

Thus
mqg .-
sup | flln,, < max{l,(=2)7a }sup|flL,..
sw Ul LG i, g
mqQ .-
= 1, (—%)me } M,,
max{1, (22)73 } M,y
< oQ.
It follows that f € ILjq(X,u). O

In the sequel, we investigate some previous results, for the special Lorentz space
Ly 4{E}, introduced in [4]. In the further discussions, E stands for a Banach space. Also K
is the real or complex field and [ is the set of positive integers. We first provide the required
preliminaries, which follow from [4].

Definition 3.9. For 1 <p <ooand 1 < ¢ < oo, or 1 <p < ooand g=o00,let , {E} be
the space of all E-valued zero sequences {x;} such that

1
lp.g = (352, i9P Hlzgyl| ) for 1< p<oo, 1<g<oo
- sup; iv 1zl for1<p< oo, g=o00

[{i}

is finite, where {||z4(;) |} is the non-increasing rearrangement of {||z;||}. If £ = K, then
Ly ¢{K} is denoted by £, 4.

In particular, ¢, ,{E} coincides with £,{E} and ||.||,., = ||.l»; see [5].

The following result will be used in the final result of this paper. It is in fact [4,
Proposition 2].
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Proposition 3.10. Let E be a Banach space.
(i) f1<p<oo,1<qg<q <oo, then £y {E} C L, {E} and for every {x;} € , ,{E}

it < (Z)z

I}

»a‘__.

ey

p.q>

forp < q and

P S ||{$i}||p,qv

forp > q. In fact
q
[{z:}lp.q < max{1, ];}H{Ii}llp,q-

(ii) Let either 1 <p <p; <o00,1 <g< oo orl<p<p; <oo,q=o00. Then
lpo{E} € by, o{E}
and for every {z;} € {, {E}
{ziHlprg < {zitlp.q-

Now for J,Q C [1,00) let

IL1o{B} = {{zi} € Nyesgeq tralBY - [{@itls@ = subpesgeq [{witlp.g < o0}
We finish this work with the following result, which determines the structure of IL;o{E}.

Theorem 3.11. Let E be a Banach space and J,Q C [1,00). Then
ILjo{E} = ng,mQ{E}‘

Proof. By the hypothesis, mj, mg < co. Using some arguments similar to [2, Theorem 12],
we obtain IL, g{E} = {,m,{£}. Indeed, by Proposition 3.10 £, {E} C £, {E}, for
each ¢ € Q. Also for each {z;} € £}, {E},

m
i}l < max{L, ZEH{eHlpng-
It follows that {z;} € IL, o{E} and

i} lp.q < max{1, %}n{xi}

lp.mg-

Thus £, ;mo{E} € 1Ly {E}. The reverse of this inclusion is clear whenever mqg € Q. Now
let mg ¢ Q. There is a sequence (yy, )nen in Q, converging to mg. For each {z;} € IL, o{E},
Fatou’s lemma implies that

{i Hlpg

= me
doi Hawpl™e
i=1
e 2
= Zliminf (inn_IHx@(i) y)
im1 "

< liminf ) j(z"’?”*1||xq><i>||”")
n
i=1

pyn < liminf [[{z:}l57

= liminf ||{z;}

= Haitlg:




82 Fatemeh ABTAHI, HeidarGHAEID AMINI, Hasan Ali LOTFI, Ali REJALI

which implies {;} € £, m,{E}. Consequently IL, o{E} = {pmo{E}. In the sequel, we
show that IL;{E} C ¢,,, ({E}, for each ¢ € Q. Again suppose that (z,) is a sequence in
J, converging to my and {xz;} € IL;,{E}. Then by Fatou’s lemma, we have

oo

R
et = D2 (177 M leae 1)

i=1

= E liminf(i%AHx@(i)Hq)
n
i=1

< timint 3 (i a0
i=1
= liminf ||{z;}||?

Zn,q
{17 g

< 0oQ.

IN

Hence {z;} € (., o{E} and consequently IL;,{E} C 4y, o{E}. Now suppose that {z;} €
IL;o{E}. Thus {z;} € IL;{E}, for each ¢ € Q and so by the before arguments we obtain
{z;} € lm, o{E}. On the other hand by the above inequalities, for each 1 < ¢ < oo, we have
H{zi}lmsq < [{wi}llsq- It follows that {z;} € Ly, Q{E} € lm, mo{E}, which implies
IL;Q{E} €l mo{E}. Also by Proposition 3.10, for each p > m; and ¢ > mg we have

évamQ {E} g ETYLJ,Q{E} g ZEII{E}'
Consequently
lmsmoABY S [ loadE}.
peJqeQ
Moreover for each {z;} € £, ,{E},
m
sup {2} lpg < sup [{@i g < max{l, —2 i}y mo-
peJ,qeQ qeQ my
It follows that
Uy mo{E} € ILyo{E}
and therefore ILjo{E} = lm,; mo{E}, as claimed. O
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