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UNCERTAIN MULTI-OBJECTIVE RESTRICTED SOLID
TRANSPORTATION PROBLEM WITH BUDGET AND
VEHICLE COST

ABHUJIT BAIDYA!, UTTAM KUMAR BERA?, MANORANJAN MAITI?

In this paper, we investigate six new transportation models with breakability
and vehicle cost under some restriction on transported amount. An extra constraint
on the total budget at each destination is imposed. Here six models are formulated
under different environments such as crisp, stochastic and fuzzy. Using expected
value of fuzzy number and chance constraint programming technique, we convert
the respective fuzzy and random Models into its crisp equivalent. To get the
preference of the objective function, we apply weighted sum method and a gradient
based optimisation technique-generalised reduced gradient (GRG) method are
applied and using LINGO-13 software to get the optimal solutions.

Keywords: Solid Transportation Problem (STP), Budget Constraint, Interval
Type-2 Fuzzy Number, Stochastic Variable, Weighted Sum Method

1. Introduction

Hitchcock [14] originally developed the transportation problem in 1941
with his research paper. This extra constraint is mainly due to modes of
transportation (conveyance). The STP was stated by Shell [27]. Haley [12, 13]
showed a comparison of the STP to the classical TP. Bit et al. [3] applied fuzzy
programming technique to solve the MOSTP which is introduced by
Zimmermann [35]. Zadeh [32] introduces the notion of fuzziness. Li et al. [20]
improved genetic algorithm to solve the fuzzy multi-objective STP. The random
STP was first described by Elmaghra [10] in 1960. The classic approach to the
stochastic transportation problem is the application of the feasible direction
method described by Cooper and Leblanc [8] and Cooper [9] in 1977 and 1978
respectively. Holmberg et al. [17] and Holmberg [16] applied several linearization
and decomposition methods to solve the stochastic transportation problem. A
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transportation problem is said to be a chance constrained problem [4, 5] if its
linear constraints are associated with a set of probability. Kataoka [19] proposed a
stochastic programming model which considered the distribution of both objective
function, probabilistic constraints and applied to a single objective transportation
problem. Recently Baidya et al. [1, 2] solve two problems based on safety factors
and uncertainty in transportation problem. Also, the distances between the origins
and destinations are not taken into account in the network problems. Most of the
transportation problems are unbalanced for breakable items. Few of these items
are glass-goods, toys, ceramic goods, etc.

A type-2 fuzzy set was proposed by Zadeh [33]. Type-2 fuzzy sets are
described by both primary and secondary membership to provide more degrees of
freedom and flexibility. Type-2 fuzzy sets have the advantage of modeling
uncertainty more accurately compared with type-1 fuzzy sets. However, when
type-2 fuzzy sets are employed to solve problems, computational burden is heavy
[17]. Hence, interval type-2 fuzzy sets are extensively utilized with some relative
representations such as vertical slice representation, wavy-slice representation to
reduce dimensions, which are extremely useful for computation and theoretical
studies [23]. Interval type-2 fuzzy sets can be viewed as a special case of general
type-2 fuzzy sets that all the values of secondary membership are equal to 1.
Hence, it not only represents uncertainty better than type-1 fuzzy sets, also
simplifies the computation compared with type-2 fuzzy sets. Research studies in
this field can be categorized into two aspects. One aspect is the theoretic research.
Mendel et al. [17] proposed some basic definitions of interval type-2 fuzzy sets.
Mitchell [24] and Zeng and Li [34] designed methods to calculate the similarity
among interval type-2 fuzzy sets. To reduce the limitations in these methods, Wu
and Mendel [29] developed a new method named vector similarity method (VSM)
to transform interval type-2 fuzzy sets. The other aspect is the application of
interval type-2 fuzzy sets in real world. Ondrej and Milos [26] employed interval
type-2 fuzzy sets to develop fuzzy voter design for fault tolerant systems. Shu and
Liang [28] proposed a new approach based on interval type-2 fuzzy logic systems
to analyze and estimate the network lifetime for wireless sensor networks.
However, few studies have focused on the application of interval type-2 fuzzy sets
in solving multi-criteria decision making problems. Wu and Mendel [30] defined
linguistic weighted average and employed it to deal with hierarchical multi-
criteria decision-making problems. Han and Mendel [15] employed interval type-
2 fuzzy numbers in choosing logistics location and the results are more
satisfactory. Chen and Lee [6] proposed the definition of possibility degree of
trapezoidal interval type-2 fuzzy number and some arithmetic operations of it.
Also Hu et al.[18] proposed a work as Multi-criteria decision making method
based on possibility degree of interval type-2 fuzzy number.
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Two types of uncertainities (stochastic and fuzzy) are used to build this
manuscript. An extra constraint on the total budget at each destination is imposed.
To derive the crisp equivalences of the stochastic and fuzzy model we apply
chance-constrained programming and expected value model are applied
respectively. To formulate the fuzzy models we consider unit transportation costs,
supplies, demand, capacity of the conveyances and budget at each destination as
interval type-2 fuzzy number. To convert the multi-objective into a single-
objective we apply weighted sum method. We have presented two types of
constraints one deterministic, another uncertain both fuzzy and stochastic senses.
So our technique is highly fruitful in the sense of real life problems of practical
importance. Practical numerical examples are provided to demonstrate the
feasibility of all decision variables of the proposed methods.

2. Trapezoidal Interval Type-2 Fuzzy Number

Definition 1 (Defuzzification of Trapezoidal Interval Type-2 Fuzzy Number)
[6, 17, 22]:

A trapezoidal interval type-2 fuzzy number, denoted by A, is expressed as
follows:

A=(AY,A" = ((ai], a¥,ay,a; Hi(A"), H,(A")), (af, a, aj, af; H, (4Y), Hz(AL))),

then the expected value of A defined as follows:

E(4) =3 (3Ei(at +a¥)) x 5 (T2 (Hi (A1) + Hi(4Y))) (1)

3. Method used to convert constraints involving stochastic variables
into its deterministic form (Chance Constraint Programming)

This technique was originally developed by Charnes and Cooper [4, 5, 8,
9] and as follows:
(i) If ¢ are the probabilities of non-violation of the constraint § <+ then the
constraint can be written as
Prob[s <t] = ¢ (@)
=85 <m(®) + ¢ *Var(s) 3)

(if) If ¢ are the probabilities of non-violation of the constraint a > b, then the
constraint can be written as
Probla>by| = ¢ (4)
=my 2 10} (5)
where § = @ — b, and 2 be the real number such that Prob[T > 4].
The objective function Z will also be the random variable, since C;;, are random
variables. The mean and variance of Z are given by Z = ¥}, ¥, ¥X_, Cijie xijpe. If
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the random variable C;;, are independent, the object function reduce to zZ(x) =

T 01 X TRy Cirxijie + X0ty 02 X0, oy ’Var(CAijk) (6)

and subject to given constraints.

4. Method used to reduce the respective multi-objective transportation
models into single objective transportation models (Weighted Sum
Method)

The weights of an objective are usually chosen in proportion to the
objective’s relative importance in the problem. A composite objective function F
can be formed by summing the weighted normalized objectives and the MOSTP is
then converted to a single-objective optimization problem as follows:

Minimize F = Y_, w,f;, w; € [0,1].

Here, w; is the weight of the I-th objective function. Since the minimum of the
above problem does not change if all the weights are multiplied by a constant, it is
the usual practice to choose weights such that their sum is one, i.e., Yi_; w;, = 1.
The objective functions of the MOSTP conflict with each other, a complete
optimal solution (11, 25) does not always exist and so non-dominated optimality
concept is introduced.

5. Notations and Assumptions

The following notation and assumption are used throughout the model.

(i) Cijk,Ci]-k, Ci,-k: Crisp, fuzzy, random unit transportation cost to transport the
commodity from i-th plant to j-th destination by k-th conveyances respectively.
(i) tiji Gijio T Crisp, fuzzy, random transportation time to transport the
commodity from i-th plant to j-th destination by k-th conveyances respectively.
(iii) ay, a;, a;: Crisp, fuzzy, random amount of homogeneous product available at
i-th plant respectively.

(V) b;, Ej, Ej: Crisp, fuzzy, random demand at the j-th destination respectively.

(vi) ey, éx, éx: Crisp, fuzzy, random amount of product which can be carried by
the k-th conveyance respectively.

(vi) B,-,E,-,Ej: Crisp, fuzzy, random available budget at j-th destination
respectively.

(Vii) xi5: Unknown quantity which is to transport the commodity from i-th plant
to j-th destination by k-th conveyances (decision variable).
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(viii) If the unknown quantity which is to be transported from i-th source to j-th
destination by k-th conveyances is x;, > 0 then for the convenience of modeling
we define y; as follows:

- _{1 for x>0

Yijke = 0 otherwise
(ix) If in a particular destination the negligible amount of quantity (p, say) is
transported then the decision maker (DM) can’t deliver commodities in the
particular destination. This means, if x;;, = p, a desired real number, then we
consider the restriction for this route as a part of the transportation. Thus for the
expediency of modeling, the following notation is introduced:
_ {1 fOT' Xijk =p

Zijk = .
0 otherwise

6. Model Formulation

Model-1: Multi-Objective Solid Transportation Problem (MOSTP) with
budget constraint and vehicle cost in Crisp Environment:

To transport the commodity from plant to customer by k-th conveyances,
the budget at customer plays a vital role in transportation problem. Here we
formulate a MOSTP with M plants, N customers and K conveyances as follows:

Min f; = Z Z Z Cijixiji + Z z z F(ijic)s
i=1 j=1k=1 i=1 j=1k=1
M N K
Min f, = LijYiji
i=1 j=1k=1
subject to the constraints,

N1 Dhe1 Xijie S @ (7)
Y YR X 2 by (8)
Zﬁ1 Z?’=1 Xijk < € (9)
L1 Xk=1 CijkXiji < B; (10)

xijx = 0,V i,j,k, where F(x;;,) is the vehicle carrying cost for the quality x;; from i-
th source o; to j-th destination D; via k-th conveyance is defined as: F(x;;) =

m.vif mv, = Xy e _ . . _ .
{(m L 1.0 otherwise ™ = [xijx/vc], v. =vehicle capacity and » =vehicle cost.
Model-2: Restricted MOSTP with budget constraint and vehicle cost in Crisp
Environment:
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Here DM put a restriction on the transported amount p such that the DM
consider those rout where the transported amount is greater than or equal to the
restricted amount p, otherwise DM cannot transport the amount through the rout.
Taking the above concept we formulate the following MOSTP:

M N K M N K
Mlnfl Zzzcl}kxl}kzllk +ZZZF(xljk)
i=1 j=1k=1 i=1 j=1k=1
M N K
Min f, = ZZZ LijkZijk
i=1j=1k=1
Subject to the constraints (7), (8), (9) and
YLy YRy CijkXijiZije < Bj, (11)

xijx = p, ¥ i,j,k, where p is any desired real value.

Model-3: MOSTP with trapezoidal interval type-2 fuzzy number, budget
constraint and vehicle cost:

We formulate a MOSTP with M plants, N customers and K conveyances
and all supplies, demands, conveyances capacities, unit transportation cost, time
and budget at each customer as trapezoidal interval type-2 fuzzy number as
follows:

Minfl = 12 12 ~ijxuk +Z 12 =1F(xijk) and
Min fz 21_1ZJ_1Zk_1 tl]le.]k
subject to the constraints,

N1 Dke1 Xijie < G (12)
Z?L le\f:1 Xiji 2 Ej (13)
i Z?’=1 Xijk < Ex (14)

1Ly Yka1 Cirexije < B (15)

xi]-k = 0,\7’ l,],k
Crisp Transformation of the above fuzzy model:
The deterministic objective functions of the above model are as follows:

Min f, = 12 L 2k 1( (C) x— (Cz))xuk"'z 12 L1 Xk= 1F(xljk)

and Min f, = %M, TIL, T4 G (T1) X £ (T2))yy1 respectively,
Where Cl = Cl]kl + Cl]kz + Cl]k3 + Cl]k4 + Cl]kl + Cl]kz + Cl]k3 + Ciij4’
Hl(Cl]k) + HZ(Cl]k) + Hl(C ]k) + HZ(Cij) Tl Ukl + tijZ + tng +
ijk4 + tl]kl + tijZ + tl]k3 + tl]k4-’ T2 - Hl(tl]k) + HZ(tl]k) + Hl(tiij) +
H, (tlek)
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The reduced Constraints of the above model are as follows:
1 1 1 1
Z?’:l Yh=1Xijk < 3 (4;) X Z(Az), Yoty Yheq Xijie = 3 (By) X 2 (By),
1
i Z?’:N‘ijk =< E(El) X
1 1 1 1 1 .
1 (E2) and B, B < (€1). (C)xij < 5 (BCy).; (BG,) respectively.
where,
Ay =al +al +af +adY +al +al +al +aky,
A, = Hl(af]) + Hz(a?) + Hl(a{-“) + Hz(aiL),
B; = b7 + b7 + b7 + bY + b4 + b} + bk + bk,
j1 T Bj1 T Djp T Ojy T Djg T iy T Djg T Dy,
B, = Hy(b]') + Hy(b) + Hi(b} ) + Ha(bf),
E, = elf’,ll + elgl + elgl + ellcjl + 9151 + ell€1 + ellél + 91151:
E, = Hy(ey) + Hy(ey) + Hy(ef) + Hy(ep),
— U U U U L L L L
_ U U L L
BC, = Hy(B) + Hy(B/) + Hy(B}') + Hy(B/).

Model-4: Restricted MOSTP trapezoidal interval type-2 fuzzy number,
budget constraint and vehicle cost:

Here we formulate a Restricted MOSTP with M plants, N customers and
K conveyances and all supplies, demands, conveyances capacities, unit
transportation cost, time and budget at each customer as trapezoidal interval type-
2 fuzzy number as follows:
M N K N

M K
Min f; = Z Z Z CojeXijiezije + Z Z Z F (i)
i=1 k=1

i=1 j=1k=1 j=1
and Min f, = 3L, SN SR Bz
subject to the constraints (12), (13), (14) and
Y Sk Cijrxijezije < Bj, (16)
x;jx > p, Where p is any desired real value.

Crisp Transformation of the above fuzzy model:
Using expected value model we have the reduced crisp objective functions are as
follows:

. 1 1
Min f; = ¥, 3N, Zﬁ:l(g (Cy) X " (C)XijiZijie + Dty X1 Dken F(oxijx)-

Min f, = SI, BNy 2K, G (T1) X 7 (T3)) 245 vespectively.
The crisp transformations of the constraints (12), (13), (14) are same as model-3
and crisp transformation of the constraint (16) is as follows:

1 1 1 1
LYk 5 (€15 (C)xiyjpezijic < 5 (BCy). (BC)



168 Abhijit Baidya, Uttam Kumar Bera, Manoranjan Maiti

Model-5: MOSTP with budget constraint and vehicle cost in Stochastic
Environment:

Sometimes it may happen that the demand or any factor of a commodity in
the society is uncertain, not precisely known, but some past data about it is
available. For this purpose we consider the supplies, demands, conveyances
capacities, unit transportation cost, time and budget at each customer as stochastic
variable and we formulate a model as follows:

Min f; = 12 1Zk 1Cz]kxz]k +Z 12 1Zk 1F(xz}k) and
Mmfz Zl 12 1Zk 1tl]kyl}k
Subject to the constraints,

§o1 D=1 Xijic < @ (17)

S Yk X = Bj (18)
Ly Z?l=1 Xiji < &, (19)
S YR Cexyje < B; (20)

xijk = O,Vl,],k

Crisp Transformation of the above stochastic model:

We convert the stochastic model-5 into its equivalence crisp model using
the chance constraint programming technique.
Using Chance Constraint programming technique the objective functions are
respectively reduced to,

Min f; =6 Cyix +6 X +6 Var(C )xl
+ 62, <Z] 1Zk 1 /VaT(Cl,k)xUk>+Z 12 1Zk 1F(xuk) and

Min f, = 931(21 ). 1t1}ky1]k) + 932(21 1 0kt tzij/zjk)
+941< j= 12 =1 /Var(tuk)y”k) +942(Z§V 12 /Var(tljk)yizjk)'

Also the constraints (17), (18), (19) and (20) reduced to, ¥}, ¥¥_,x;p < a@; +
¢1.var(@;), THiYr, Xijic = b + ¢o. var(b ) M, Z]=1 Xijk < 8 + var(éy) and
Z?il Z£=1 C_i]-kx,-]-k - E] < Aj (Z{W:]. Zl;g:l var(fijk)xijk - var(gj)) respeCtIVG|y

Model-6: Restricted MOSTP with budget constraint and vehicle cost in
Stochastic Environment:

Here we formulate a Restricted MOSTP with M plants, N customers and
K conveyances and all supplies, demands, conveyances -capacities, unit
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transportation cost, time and budget at each customer as stochastic variable as
follows:

Min f; = 31, Y, Yk, CijrXijiziji + 2oty PRI F(x;5) and

Min f, = Z?L Z?]=1 k=1 Eiijijk

Subject to the constraints (17), (18), (19) and X, ¥X_, C;jxxijkzijx < Bj, (21)
x;jx = p, Where p is any desired real value.

Crisp Transformation of the above stochastic model:
Applying Chance Constraint programming we have the reduced crisp
objective function are as follows:
Min f, = 911(2?:1 Zf=1 C_ljkxljkzljk) + 0y, (29;1 Zf=1 C_ijxzjkzzjk) + 6,1

< o1 k=1 \/Var(énk)xfjszjk) + 02201 Xikes Jvar(éljk)xzzjkzzzjk)

+ XM SN TR F (i)

N K
Min f, = 03, ZZ tjrZaji |+ 032 2jkZ2jk
Jj=1k=1

j=1k=1

+6,, (29’=1Z§=1 /Var(fljk)zizjk> +0,, (XN 2Ry ’Var(tljk)zizjk) respectively.

and the constraint (21) is reduced to

M K M K
Z Z _L-jkxl-jkzijk - E} < /1]. ZZ var(éijk)xijkzijk - var(f?j)

i=1 k=1 i=1 k=1

M=
[\ﬁx

7. Solution Methodology

Sometime in transportation problem the transportation parameters are
vague in nature. For this reason Model-3, 4 and 5, 6 are respectively formulated
with fuzzy and random environment. Expected value method and chance
constraint programming technique are used to reduce the uncertain STPs into its
crisp equivalent and reduced crisp models are solved using GRG-technique
(LINGO-13.0 optimization software).

8. Numerical lllustration

A company produces a product at the two warehouses and this item is then
shipped to two customers by three different modes of transport with different
vehicle cost. The transportation parameters for our respective models are as
follows and also for model-2, 4, 6, we restricted the transported amount as 30
units.
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Table-1
Crisp Unit Transportation Cost and Time
Unit Transportation Cost
j K=1 K=2 K=3
i 1 2 1 2 1 2
1 25 36 32 35 24 38
2 34 36 36 35 25 31
Unit Transportation Time
1 2 3 2 3 3 2
2 2 3 2 3 2 2

a; = 60,a; = 90, b, = 80,b, = 70, e, = 50,e, = 40,e; = 60, B; = 3030, B, = 3040,
a, = ((50,50,60,60; 0.98,0.99), (50,60,70,80; 0.97,0.98)),

a, = ((70,70,90,100; 0.96,0.99), (80,90,110,120; 0.97,0.99)).

b, = ((50,70,70,90; 0.95,0.98), (80,80,90,90; 0.97,0.99)),

b, = ((60,70,70,100; 0.94,0.99), (50,60,70,80; 0.96,0.97)).

&, = ((40,40,50,60; 0.92,0.93), (40,40,50,70; 0.91,0.99)),

&, = ((30,40,40,50; 0.90,0.98), (30,40,40,50; 0.98,0.99)),

&, = ((50,60,60,70; 0.95,0.99), (50,60,60,70; 0.94,0.99)).

B, = ((3010,3020,3040,3050; 0.98,0.99), (3000,3030,3030,3060; 0.97,0.99)),

B, = ((3020,3030,3050,3060; 0.96,0.98), (3030,3030,3040,3060; 0.98,0.99)).

€111 = ((1,3,3,4;.90,.91), (1,2,4,5;.92,.93)), C15;, = ((2,3,5,5;.91,.94),(2,3,6,8;.93,.95)),
Ci12 = ((34,5,6;.96,.97),(2,4,4,5;.92,.97)),C12, = ((4,5,6,6;.90,.91), (2,3,4,5;.90,.93)),
C115 = ((2,3/4,5;.95,.99), (1,2,3,3;.92,.97)),C125 = ((3,4,5,6;.96,.98), (1,2,3,3;.95,.96)),
Co11 = ((1,2,5,7;.98,.99), (3,3,6,7;.92,.97)),Cap1 = ((3,4,6,7;.90,.91), (3,4,4,5;.92,.93)),
Cr12 = ((3,3/4,5;.90,.91), (4,4,5,6;.92,.93)), C52, = ((3,5,5,7;.90,.98), (2,4,4,5;.92,.97)),
Cy13 = ((2,3,3,5;.95,.97),(2,2,3,4;.93,.99)), Cp05 = ((2,44,5;.90,.91), (3/4,5,5;.92,.93)).

t111=((.1,.1,.1,.5;.94,.99),(.2,.2, .2, 4;.92,.94)),
t121=((1,2,.2,.3;.91,.94),(. 1,.2, 3, 4;.94,.95)),
t112=((1,.2,.3,.5;.97,.98), (. 1,.2,.2,.3;.92,.97)),
t12 = ((1,.2,.2.,3;.95,.96), (. 1,.1,.2,.2;.91,.93)),
t11s = ((.2,.2,.3,.4;.98,.99),(. 1,.2,.2,.3;.95,.97)),
t12s = ((.1,.1,.2,.3;.96,.98), (. 1,.1,.1,.2;.94,.96)),
t1=((1,.2,.3,.3;.97,.99), (. 1,.1, 2,.2;.93,.97)),
t21 = ((.1,.1,.2,.3;.94,.96), (. 2,.3, 4,.5;.92,.93)),
£ =((1,.1,.3,.4;.90,.91),(. 1,.3,.4,.5;.92,.93)),
t22 = ((.1,.1,.2,.2;.95,.98),(. 1,.1, .2,.3;.92,.97)),
t15 =((.2,..3,.3,.3;.95,.97),(. 1,.2, .2,.3;.95,.99)),
t23 = ((.2.,3,.3,.3;.93,.98),(. 2,.2,.3,.3;.92,.93)).

011 =.9,01,=1, 033 =1, 0,5b=.96, 031 =1, 05, =.95, 0,y =.97, 043 =1, 1 = 2,¢p, =

96,¢3 = .2, ¢, =.95¢s =.2,¢5 = .5 ¢, =.97,1,=.99, 1,=.98, ©0,=0.5, w,=0.5,

and v,=6.

v=12
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Table-2
Mean and Variance of 4;, b;, &, B
a, a, by b, 2 é; e B, B,
Mean 60 70 69 58 50 37 59 3010 3020
Variance |4 2 5 1 5 5 2 26 20
Table-3
Mean and variance of Transportation Cost (Ciik) and Time(t)
(Cijkr Var(t'ijk))
j K=1 K=2 K=3
i 1 2 1 2 1 2
1 (25,12) (36,13) (32,12) (35,13) (34,13) (38,12)
2 (34,12) (36,13) (36,12) (35,13) (25,12) (31,12)
(Eiji Var (Eyy))
1 (2,.2) (3,.1) (2,.3) (3,.3) (4,.3) (2,.2)
2 (2,.1) (3,.3) 1,.2) (3,.3) (2,.1) (2,.3)

9. Optimal Result of Different Models

The optimal results for the different models with transporting amount are
restricted to 30 units are as follows:

Table-4
Optimal Result of Models
Model-1 Model-2 Model-3 Model-4 Model-5 Model-6
Fq 4620 5260 4462.5 5110 3982.95 4609.66
F, 13.1 105 8.1 7.8 12.43 9.93
X111 50 0 48.75 0 51 0
X211 0 50 0 47 0 38.06
X121 0 0 0 0 0 0
X221 0 0 0 0 0 0
X112 0 0 0 0 8.29 0
X212 0 0 0 0 0 0
X122 0 0 11.25 0 0 30
X222 40 40 27.5 40 3.86 0
X113 10 30 0 30 0 0
X213 20 0 28.75 0 0 30.94
X123 0 30 0 30 0 30
X223 30 0 31.25 0 51.24 0

10. Analysis of the results

In this paper, we solved six solid transportation models where three

models

(models-1,-3 and

-5) are with

restriction and another

three

models(models-2, -4 and -6) are without restriction. To solve the restricted
MOSTP, we neglate the small amount of quantity which is transported from plant




172 Abhijit Baidya, Uttam Kumar Bera, Manoranjan Maiti

to customer by different modes of transport. If we impose the restriction in the
respective multi-objective transportation models, then total transportation cost
increase and total transportation time is decreased. If the decision maker (DM)
imposed the restriction on transported amount, then the DM cannot transport the
amount which is less than the restricted amount. For this reason, the transporting
time of that particular type of rout cannot be added into the total time. Due to this
reason the total time is less than the total time of unrestricted models. Also that
restricted amount can be adjusted through the routes where the amounts are
transported and for this reason, the total cost is increases compare to the total cost
of unrestricted model i.e. the model-1,-2 and -3. This type of incident we observed
in the real life problem.

11. Sensitivity Analysis

If we give more importance to cost function i.e. we increase the weight w, ,
then we notice that the composite objective function value z will increase. Also if
we give more importance to transporting time i.e. w,will increases then the
composite objective function z will decreases. It is as per expectation in real life
problem. Similarly, in the next table we presented the sensitivity analysis for the
restricted crisp model-2.

Table-5
Sensitivity Analysis of model-1
0)1 0)2 Z=w1.f1+w2.f2 0)1 0)2 Z=0)1.f1+w2.f2
0.1 0.9 477.07 0.6 0.4 2777.24
0.2 0.8 936.48 0.7 0.3 3237.93
0.3 0.7 1398.17 0.8 0.2 3698.62
0.4 0.6 1855.86 0.9 0.1 4159.31
0.5 0.5 2316.55
Table-6
Sensitivity Analysis of model-2
w1 Wy Z=(l)1.f1+(l)2.f2 w1 Wy Z=w1.f1+w2.fz
0.1 0.9 535.45 0.6 0.4 3167.36
0.2 0.8 1072.72 0.7 0.3 3689.77
0.3 0.7 1595.00 0.8 0.2 4130.00
0.4 0.6 2117.74 0.9 0.1 4675.00
0.5 0.5 2635.25

12. Conclusion

The main aim of this paper is to present the solution procedure of the with
and without restriction multi-objective soild transportation problem. In model-3
&-4 for the first time, we consider the unit transportation penalties, demand
source, capacity, budget at each destination as interval type-2 fuzzy number. The
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respective model-3 & -4 can be converted into its equivalence crisp model using
expected value operator, however to reduce the crisp equivalent of the models-5
&-6, we use chance constraint programming technique. In numerical example, all
the models are solve using LINGO. 13.0 optimization software. Also if we follow
the results of the different models, we observed that, it is as per our expectation
because the transportation time and cost is decreases and increases respectively, if
we introduce the restriction in to our models.

The models can be extended to include breakable/deteriorating items,
space constraints, price discount, etc. The methods used for solution here are quite
general in nature and these can be applied to other similar uncertain / impricise
models in other areas such as inventory control, ecology, sustainable farm
management, etc.
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