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DEVELOPMENT OF AUTOMATIC SUB-CROWN DATA
COLLECTION EQUIPMENT FOR CORN BREEDING

Yongliu WANG +*

With the growth of smart agriculture, deep perception technologies for crop
monitoring and pest/disease prediction are becoming essential for precise crop
growth control. This paper presents the development of an automatic data collection
system for crop canopy sensing and a vision-based navigation control algorithm to
enhance smart agriculture. The YOLOVS object detection model, optimized with
TensorRT, ensures real-time image processing on the platform's main controller. A
fuzzy control algorithm utilizes crop root target information and IMU heading
deviations to adjust motor speed for stable navigation and furrow switching. To
mitigate motion blur, a method based on optical flow method is employed to improve
image clarity and detection accuracy. Experimental results show that the model
achieves an inference time of 25ms per image with 88% accuracy. The fuzzy control
algorithm effectively reduces heading deviations and lateral errors. This system
improves real-time performance, supports decision-making, reduces human
intervention, and promotes precision agriculture.

Keywords: smart agriculture, machine vision, navigation control, YOLOVS,
optical flow method.

1. Introduction

Maize, as a key food crop, has a growing sown area and the greatest
potential for yield increase among cereal crops, driving grain output. With the rapid
advancement of technology, smart agriculture enhances real-time monitoring of
crops and farm environments, aiming to boost grain yield, reduce costs, and
minimize resource wastage.

Researchers have developed various crop data collection platforms.
Velasquez et al. [1] created a cyber-physical system for collecting data from coffee
crop test plots. The University of Illinois [2] designed a tracked robotic platform
with an adjustable mast to capture canopy data at different crop growth stages.
Zhang et al. [3] combined drone imagery with the YOLOv3 algorithm for rapid
field crop data collection, enabling automatic identification of crop types from
drone images.
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Image processing in agricultural robot navigation involves analyzing
captured images to identify crops and then applying techniques like Hough
transforms, linear regression, or template matching to fit crop rows. Yang [4]
applied the least squares method to collect robot image data and used the linear
judgment dimensionality reduction algorithm to cluster and analyze the trajectory
data of robot visual navigation. Higuti et al. [5] designed an autonomous navigation
system using 2D LiDAR to process raw data, extract crop row information, and use
a PID algorithm to control the robot's movement along the crop rows.

Recent years have seen deep learning-driven target recognition algorithms,
such as YOLO, widely used in image processing. Dos Reis et al. [6] developed a
vision system based on YOLO to recognize static obstacles using a Microsoft
Kinect sensor, with an Nvidia Jetson TX2 GPU for improved image processing. Yu
et al. [7] explored five deep learning-based methods for field navigation line
extraction, deploying them on an embedded system for autonomous robot
navigation. They used semantic segmentation to segment field roads and polygon
fitting to extract navigation lines.

This study proposes a solution to address the high cost of manual data
collection, incomplete data, and navigation instability using deep learning and
computer vision. By combining YOLOVS target detection, IMU heading angle data,
and a fuzzy control algorithm, a vision-based navigation control system is
implemented. Additionally, an optical flow method reduces image motion blur
caused by camera jolts. A platform vehicle is designed to autonomously navigate a
maize planting environment while performing crop data collection.

2. Overall modular design of the platform vehicle

This study adopts a modular design approach for the overall system, which
consists of three parts: a drive-by-wire chassis system, a navigation system, and a
data collection system. The overall structural schematic is given in Fig. 1.
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2.1 Drive-by-wire chassis system design

In this study, a tracked drive-by-wire chassis is used with design indicators
including a minimum travel speed of 0.3m/s, a climbing angle of 10°, obstacle-
crossing width of 100 mm, height of 50 mm, and a battery life over 1 hour. The
design process includes selecting the drive motor based on speed and track radius,
designing a transmission system for climbing and obstacle-crossing, calculating and
selecting the battery, and designing the structure to meet ground contact and weight
distribution requirements.

The drive motor's power and the transmission system design must ensure
that the maximum speed v,,, satisfies Equation (1), where @ is the motor’s

angular velocity in rad/s, and 7 is the radius of the drive wheel in meters.
Vo =OF (1)
The track’s driving force must be sufficient to overcome the additional
resistance caused by the incline. The condition for this is expressed in Equation (2),
where F,

rive

represents the driving force of the track, G is the component of
gravitational force acting along the incline(both in N), and @ is the slope angle.
Equation (3) defines the driving force F),, in terms of the motor torque 7 (in N -m

) and the radius of the drive wheel 7 (in meters). Combining these, the required

motor torque can be calculated using Equation (4), where m is the mass of the
vehicle (in kg), and & is the acceleration due to gravity (in m/ s*).

F,.. 2G-sin(0) )

Fop.=11 (3)

> m-g'rsin(e) (4)

The motion of the tracked chassis is controlled by its linear and angular
velocities, with track speeds determining straight or circular movement. Fig. 2
shows the kinematic model of the tracked chassis, with COM representing the
centroid and ICR the instantaneous center of rotation.

| - COM I

|
|
|
| |
|
|
N

L
dLR
Fig. 2. Kinematic model of the tracked drive-by-wire chassis

|
|
|
|
|
|
¢




210 Yongliu Wang

Equation (5) describes the relationship between track speed and motor
speed, where 1 is the transmission ratio, n is the motor speed (r/min), and d is the
wheel diameter (m).

v="xaxD (5)
1

Assuming no track slip and the COM along the symmetry line, the system
simplifies to a two-wheel differential model. The linear velocity, angular velocity,
and turning radius can be obtained using Equations (6), (7), and (8), respectively.
. v, +V1

v=t (6)
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where, d,, is the virtual track width (m), v, is the speed of the right track

(m/s), and V, is the speed of the left track (m/s). In Equation (8), there is a parameter

that changes with operating conditions, which can be calculated using Equation (9):
dip=yL 9)

In this equation, L is the width (m), and 7 is a dimensionless parameter
related to the load, the ground, and other factors.

Two M3508 DC brushless geared motors are used as the power source. Each
motor in the platform chassis is connected to a C620 brushless motor speed
controller. The onboard computer communicates with the speed controllers via the
CAN bus. The M3508’s rated voltage is 24 V, motor weight is 365 g, and the
reduction ratio is 3591/187. Under rated voltage conditions, paired with the C620,
the motor’s no-load/nominal speed is 482/469 rpm, no-load/nominal current is
0.78/10 A, rated torque is 3 N-m, and maximum efficiency can reach 70%.

2.2 Navigation system design

In this study, the YOLOVS target detection algorithm is used for maize crop
recognition and detection. The crops appear green and soil appears brown, creating
a clear contrast. The green plant and soil regions have strip-like features, and crops
are planted in rows along straight or nearly straight lines, facilitating crop row
recognition for unmanned agricultural operations. YOLOVS is a variant of the
YOLO family of target detection algorithms [8].

This study proposes a method to address image motion blur caused by rapid
camera movement. The method, based on optical flow and information from the
previous frame, improves blurred images. The processed images are used as input
to the fuzzy control algorithm, which adjusts the platform vehicle's rotational speed
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to ensure it stays centered in the furrow. If no root targets are detected, the platform
performs a turning and row-switching operation, signaling the end of the crop row.
The chosen camera for this study is the SYO11HD, featuring a resolution of 1920x
1080, a frame rate of 30 Hz, a focal length of 3.5 mm, and a horizontal field of view
of 85°and vertical field of view of 60°.

2.3 Data collection system design

The data collection system consists of a multispectral camera and a visible-
light camera. The multispectral camera is the RedEdge-MX five-band multispectral
camera developed by Micasense, USA. It is capable of capturing five distinct
spectral bands at once: red, green, blue, red-edge, and near-infrared. By analyzing
the collected multispectral image data, indices such as the vegetation coefficient of
the crop can be obtained. The characteristic parameters of the RedEdge-MX are
shown in Table 1.

Table 1
RedEdge-MX characteristic parameters
Name Parameter
WEIGHT 232¢g
Dimensions 8.7cmx5.9cmx4.54cm|
Power Supply 4.2V-15.8V
Power Consumption| 4/8W(Normal/Peak)
Sensor Resolution 1280%960
resolution 47.2°
Field of View HFOV
Capture Rate 1 capture/second

The system controls the multispectral camera via its HTTP interface by
sending a POST request to capture and store images. The images are downloaded
through their URLs and saved locally. Afterward, a DELETE request removes the
files from the camera. Meanwhile, the USB visible-light camera captures images
continuously using OpenCV and stores them locally.

3. Design and implementation of the visual navigation algorithm

The proposed visual navigation algorithm uses the YOLOVS target detection
model to identify crop roots. After deploying the engine model to the development
board, GPU-accelerated inference with TensorRT boosts detection speed. To
address motion blur from rapid camera movement, a method based on optical flow
and adjacent frame information is used to improve image quality.
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3.1 YOLOVS algorithm

The YOLOVS algorithm is a lightweight improvement based on YOLOVS.
Compared to YOLOVS, it improves the model's ability to adapt to targets of various
sizes and shapes, striking a balance between accuracy and speed, and is suitable for
real-time-critical scenarios [9-11]. The network structure of YOLOVS is primarily
composed of three components: Backbone, Neck, and Head.

The Backbone utilizes a combination of convolution and deconvolution
layers for feature extraction, incorporating residual connections and bottleneck
structures to reduce the network size and enhance performance.

The Neck part consists of an SPPF module, a PAA module, and two PAN
modules, which fuse feature maps from various levels of the Backbone through
multi-scale feature fusion.

The Head part extracts information features at three different scales through
three detection layers. It comprises a detection head and a classification head,
responsible for the final target detection and classification tasks [12-14].

3.2 YOLOvS8 model conversion and deployment

When training the YOLOv8 model with a crop root dataset using multiple
GPUs, distributed training speeds up the process. However, deploying the model
on a single GPU or embedded platform introduces challenges due to the
performance difference. The large model size can lead to slow inference and high
latency, which may not meet the real-time requirements for navigation tasks.

To improve deployment inference speed, the trained YOLOv8 model is
optimized using TensorRT. First, the model is converted to ONNX format for
deployment, ensuring framework interoperability. Then, the ONNX model is
converted into a TensorRT engine format, optimizing inference speed on edge
platforms by generating an efficient inference engine for GPU and network
configurations.

During inference, the saved engine file is loaded and deserialized to create
a TensorRT inference engine. On the Nvidia Jetson Xavier NX platform, this engine
performs real-time inference on images from the camera, providing target detection
results for the visual navigation control module [15].

3.3 Navigation control algorithm combining vision and IMU

This study’s navigation control algorithm consists of two parts: processing
YOLOVS target detection results and designing the fuzzy control algorithm. In the
first part, the nearest left and right root targets are identified, and the lateral
deviation (center offset) is calculated based on the detection results. The flow chart
for computing lateral deviation is shown in Fig. 3.
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For the second part, a fuzzy controller must be designed first. The structure
of the fuzzy controller is shown in Fig. 4. The fuzzy control system performs
fuzzification on input variables, converting them into fuzzy variables. These are
used by the fuzzy inference module, which relies on a knowledge base (database
and rule base) to make decisions. The rule base defines the fuzzy relationships
between input and output variables. After fuzzy inference, a defuzzification step is
applied to convert fuzzy control quantities into precise control outputs for the

system [16-18].

Obtain the detected root target
coordinates

v

Divide into left and right
sets based on the relationship
between the x-coordinate and
half of the image width

#‘.

Calculate the average

y-direction distance of adjacent

coordinates in the left and right
sets

Calculate the y-direction
distance between the two points
with the largest y-values in the
left and right sets

Yes

Is it greater than the
average?

Remove the point with the
larger y-value from the set

Calculate the average of
the xcoordinates of the two
points and the offset from the
image center

End

Fig. 3. Lateral deviation calculation flow chart

™ kiowledge e

e ] e }—

= ]

v v
H Fuzzification H Fuzzy inference H Defuzzification }—b
Precise input Precise output

Fig. 4. Structure of the fuzzy controller




214 Yongliu Wang

The fuzzy controller in this study uses lateral deviation (processed from
YOLOVS target detection) and heading angle (measured by the IMU) as input
variables. The heading angle ranges from [-20°, 20°], and lateral deviation ranges
from [-250, 250] pixels. Both variables are divided into 7 levels, with fuzzy set
elements {LB, LM, LS, ZE, RS, RM, RB}. The membership functions for the
heading angle and lateral deviation are shown in Fig. 5 and Fig. 6.
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Fig. 5. Heading angle membership function Fig. 6. Lateral deviation membership function

The fuzzy control system's output is the rotational speed difference between
the vehicle's right and left motors, ranging from [-2000 rpm, 2000 rpm]. The fuzzy
set has 7 elements: {LB, LM, LS, ZE, RS, RM, RB}, representing left turns, no
adjustment, and right turns with decreasing degrees of turn. The membership
function of the speed difference is shown in Fig. 7.
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Fig. 7. Output speed difference membership function
The fuzzy control algorithm uses fuzzy control rules to compute the output
fuzzy sets. Since both the heading angle and lateral deviation fuzzy sets contain
seven fuzzy quantities, there are 49 fuzzy control rules in total. The fuzzy control
rules designed in this study are shown in Table 2.
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Table 2
Fuzzy control rule table
9

v LB LM LS ZE RS RM RB
LB LB LB LB LB LB LB LB
LM LB LM LM LM LM LM LB
LS LB LM LS LS LS LM LB
d ZE RB RM RS ZE LS LM LB
RS RB RM RS RS RS RM RB
RM RB RM RM RM RM RM RB
RB RB RB RB RB RB RB RB

The centroid defuzzification method is used to convert fuzzy inference
results into control values. The desired rotational speeds for the left and right motors
are determined, and these values are input to the motor speed controllers to achieve
timely adjustments to the platform vehicle's motion state.

3.4 Motion blur improvement algorithm based on optical flow

To improve motion blur and enhance the resilience of the navigation control
algorithm, this study proposes an algorithm based on the pyramid LK optical flow
method. This approach helps mitigate the impact of fast movement or bumps on
uneven road surfaces, which can affect target detection.

The LK optical flow method tracks a small number of feature points to
represent the overall motion of the camera. These feature points are computed using
the Shi-Tomasi corner detection algorithm. The basic idea of the LK optical flow
method is based on the following three assumptions:

1. Brightness constancy: The pixel appearance of a target in the scene does
not change during frame-to-frame motion. For grayscale images, this means the
pixel intensity remains constant during tracking.

2. Temporal continuity: The camera's motion on the image plane changes
gradually over time, meaning pixel positions do not change drastically, allowing
the pixel intensity to correspond to the partial derivatives of position.

3. Spatial consistency: Neighboring points on the same surface in the scene
exhibit similar motion, and their projections on the image plane are close to each
other. Based on the first two assumptions, the image constraint equation is obtained
as shown in Equation (10), where I(x, y, t) represents the brightness of the image at
position (X, y) at time t.

I1(x,y,t)=1(x+0x,y+0y,t+0t) (10)

Using the Taylor series expansion of the function /(x+0x,y+3dy,t+0t) at
(x, y) and combining it with Equation (10), we derive Equation (11). Here, u and v
are the velocity components in the x and y directions, respectively.

[xu+1yv+1[:0 (11)
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Based on the third assumption, the optical flow within a window of size

n=m’ is assumed to be constant. This leads to the matrix form of the equation, as

shown in Equation (12):

x1 [yl _Izl
Ix2 ]y2 u _1t2
. ! = . 12
: . |:V:| . ( )
Ixn Iyn _Itn

Using the least squares method, the final optical flow matrix can be solved,
as shown in Equation (13). Here, u and v are the velocities of matching feature
points in the x and y directions, respectively [19-21].
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To address errors from large object motion, the pyramid LK optical flow
algorithm constructs a three-level pyramid starting with low resolution. It refines
optical flow vectors at each level, iteratively propagating the results down to the
original resolution to accurately estimate large displacements [22,23].

Using the optical flow vectors, pairs of matched feature points between
consecutive frames can be obtained. The average displacements in the x and y
directions (avg _dxand avg _dy) are calculated to estimate the overall motion
direction and magnitude. The standard form of the affine transformation matrix is
a 2x3 matrix, as shown in Equation (14). Where, a,b,c,d control rotation and

(13)

scaling, and 7., Z, control translation. Based on the offsets in the x and y directions,

the affine transformation matrix is created as shown in Equation (15). @ and d are
set to 1 to indicate no scaling, b and ¢ are set to 0 to indicate no rotation, and

t =avg dx and f, =avg dy represent the offsets in the x and y directions,

respectively.
a b t

1 0 avg dx
(15)
0 1 avg dy
After applying affine transformation, pixel values at the image boundaries
are copied to uncovered areas. If a pixel exceeds the original image boundaries, the

excess area is filled with the nearest valid pixel value, ensuring no blank areas or
abrupt edges in the transformed image.
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4. Experimental analysis and discussion

4.1 Training and deployment of YOLOVS target detection model

The dataset used in the study includes 556 images with 4080 annotated root
labels, collected under various lighting conditions in real crop environments. It was
split into a training set (445 images, 3277 labels) and a validation set (111 images,
803 labels). Training was conducted on a system with Ubuntu 18.04, Intel Xeon
Platinum 8362 CPU, RTX 3090 GPU, Python 3.10, PyTorch 2.10, and CUDA 12.1.
A pre-trained YOLOVS nano model was used for 200 iterations, with an input size
of 640x640, batch size of 8, and learning rates of 0.01. The training set optimized

parameters, and the validation set assessed accuracy.

The accuracy of the trained model is typically evaluated using precision,
which is calculated using Equation (16). In this formula, the numerator represents
the number of correctly predicted positive samples, and the denominator is

calculated by adding true positives and false positives.
NP

TP+FP (16)

Recall, shown in Equation (17), measures the model’s ability to identify
positive samples. A higher recall implies fewer false negatives (FN) and a lower
miss rate, indicating the model’s capability to more accurately recognize actual
positive samples.

precison =

TP
TP +FN (17)
The mAP is an aggregate metric that summarizes the AP across all
categories. It evaluates the overall predictive performance of the model. The mAP
is calculated using Equation (18).
mAP=—- " AP (18)

i=l

recall =

The performance metrics of the trained model are shown in Table 3. The
experimental results demonstrate that the model achieves 83.9% precision, 84.1%
recall, and 88.1% mAP, indicating strong detection performance. The model is
lightweight, with 3,005,843 parameters, a computational complexity of 8.1
GFLOPS, and a compact weight size of 6.1 MB, making it efficient and suitable for
deployment in resource-constrained environments.

Table 3
Experimental results
Metric Name Result
Precision/% 83.9
Recall/% 84.1
mAP/% 88.1
Parameters 3005843
GFLOPS 8.1
Weights 6.1MB
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The .pt model was converted to ONNX and deployed on an edge platform.
It was further converted into TensorRT engine format and loaded to create an
inference engine on an Nvidia Jetson Xavier NX platform. The average inference
speed for a single image was 25ms, enabling real-time processing suitable for
applications like autonomous navigation and crop monitoring. This performance
ensures timely decision-making and efficient operation in smart agriculture. The
inference results are given in Fig. 8.

Fig. 8. Inferece results
4.2 Field visual navigation experiment

The proposed visual navigation algorithm was tested in a maize planting
environment at the Harbin Agricultural Science Academy. The average ridge width
was 80 cm, furrow width 65 c¢cm, and flat width within the furrows 50 cm. The
autonomous driving of the platform vehicle within the furrows is given in Fig. 9.

During testing, the platform vehicle's navigation path was defined as the
straight line at the center of the furrow's flat ground. Heading angle and lateral
deviation were used to measure accuracy, with true values obtained manually. The
lateral deviation is measured in pixels (px) and represents the lateral displacement
of the vehicle in the navigation path relative to the target centerline. A pixel is the
basic unit in an image that describes the offset of a vehicle in a visual navigation
image.The vehicle continuously adjusted its position and posture, maintaining
stable travel in the crop row's center using the visual navigation algorithm. As
shown in Table 4, during visual navigation, the relative errors for both the heading
angle and lateral deviation were less than 10%.
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Navigation path recognition results in field environment

Table 4

Parameter  [[ndex{True ValugMeasured ValuelAbsolute ErrorRelative Erron
1 15.0° 16.5° 1.5° 10.0%
. 2 -13.0° -11.9° 1.1° 8.5%
Heading Angle =557 _13.8° 1.2° 8.0%
4 13.0° 12.1° -0.9° 6.9%
1 199.6px 218.5px 18.9px 9.5%
. 2 | SSl.px -55px -3.9px 7.6%
Lateral Deviation——— "o 50px 3.1px 6.6%
4 | 180.7px 196.2px 15.5px 8.6%

The real-time target detection results from the front-facing camera during
autonomous navigation are illustrated in Fig. 10. The calculated lateral deviation
and heading angle are displayed in the upper left corner of the image.

Fig. 10. Real-time visual navigation results

Fig. 11 and Fig. 12 show the tracking performance of the heading angle and
lateral deviation during testing. The navigation control system reduced both values,
with the maximum heading angle at 14.3°and the maximum lateral deviation at 80
pixels.
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Fig. 11. Heading angle adjustment results
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Fig. 12. Lateral deviation adjustment results

4.3 Motion blur improvement experiment using optical flow

Fig. 13 illustrates the process of improving motion blur caused by camera
jolts using information from the previous clear image. The pyramid optical flow
method was used to estimate that the blurred image moved 0.56 pixels in the
positive x-direction and 0.055 pixels in the negative y-direction relative to the
previous clear image. In Fig. 13(c), red points depict the detected feature points in
the previous frame using the corner detection method, while green points connected
to them represent the corresponding matched points in the blurred image.

3

(c) Motion Estimation (d) Resultant Image
Fig. 13. Process of improving motion blur

5. Conclusion

This study developed an automatic under-canopy data collection device and
a vision-based navigation control algorithm to address the underutilization of data
in open agricultural environments. The YOLOvS8 model, optimized with TensorRT,
was deployed on the platform's main computer, achieving a 25 ms inference speed.
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Crop root target information and IMU-based heading angle were used by the fuzzy
control algorithm to adjust motor speeds, ensuring stable navigation and row-
switching. A motion blur improvement method using optical flow was proposed to
enhance detection accuracy. Future work will focus on enhancing the algorithm's
robustness and integrating high-precision sensors for better environmental
perception.
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