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(SEMI)PRIME BCI-ALGEBRAS: A CLASS OF BCI-ALGEBRAS
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The aim of the present paper is to define the prime BCI-algebra as a general-

ization of simple BCI-algebras with respect to prime ideals. The notions of semiprime
ideals and semiprime BCI-algebras by using prime ideals, and some properties of these

concepts are studied. Also we consider some relationship between this ideal and quotient

algebras that are construct via this ideal. Finally, we use the concept of radical of ideal
in order to construct the relationships between types of BCI-algebras.
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1. Introduction

BCK-algebras and BCI-algebras are two important classes of logical algebras intro-
duced by Iséki in 1966 which have been extensively investigated by several researchers (see
[10]). From then, some mathematicians studied and developed many concepts in this al-
gebraic structures, for instance, K. Iséki in 1975 introduced the concept of ideals in BCI-
algebras [8]. For the general development of BCK/BCI-algebras, the ideal theory plays
an important role. Iseki [8], introduced the concept of prime ideal in commutative BCK-
algebras and Palasinski [14], generalized this definition for any lower BCK-semilattices.
Then many authors have studied the properties of this ideal in lower BCK-semilattices [1,
11, 12, 13, 14]. They showed that this ideal is one of the most important ideals in lower
BCK-semilattices. Any ideal I of a lower BCK-semilattices contained in a prime ideal, has
prime and minimal prime decomposition. But prime and irreducible ideals are the same
in lower BCK-semilattice. R. A. Borzooei and O. Zahiri generalized the concept of prime
ideals for BCI-algebras. They verified some properties of this ideals in BCI-algebras such as
the relationship between prime and maximal ideals [6].
In this paper, we present a definition for the semiprime ideal in BCI-algebras based on prime
ideals. Also the notion of prime and semiprime BCI-algebras is defined, several characteri-
zations of them are given. The class of prime BCI-algebras is a proper subclass of the class
of semiprime BCI-algebras and illustrate also these notions by some examples. We use the
notions of prime and semiprime BCI-algebras to develop other concepts such as prime radi-
cal in BCK and BCI-algebras, and to discuss further properties of these concepts. The main
objectives for the introducing of this concept are to help on greater understanding of this
structure and to provide a new way of categorising these algebra. We can also investigate
the variety and some subvarieties of this specific type of BCI-algebras. Then we verify some
properties of radical and use it for find a relationship between special types of BCI-algebras.
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2. Preliminaries

By a BCI-algebra, we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the following
axioms, for all x, y, z ∈ X [5, 7],
(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCI2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCI3) x ∗ x = 0,
(BCI4) x ∗ y = y ∗ x = 0 implies x = y.
Recall that given a BCI-algebra X, the BCI-ordering ≤ on X is defined by x ≤ y if and
only if x ∗ y = 0 for any x, y ∈ X. The set P = {x ∈ X : 0 ∗ (0 ∗ x) = x} is called
P-semisimple part of BCI-algebra X and X is called a P-semisimple BCI-algebra if P = X.
The set {x ∈ X : 0∗x = 0} is called BCK-part of BCI-algebra X and is denoted by B(X). If
X = B(X), then we say X is a BCK-algebra. A BCK-algebra X is called to be a BCK chain
if x ≤ y or y ≤ x for any x, y ∈ X. A BCK-algebra X is said to be a lower BCK-semilattice
if X is lower semilattice with respect to BCK-order ≤. A BCI-algebra X has the following
properties for all x, y, z ∈ X,
(BCI5) x ∗ 0 = x,
(BCI6) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(BCI7) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),
(BCI8) x ∗ (x ∗ (x ∗ y)) = x ∗ y.
If there exists n ∈ N such that 0 ∗ xn = 0, then x is called nilpotent, where 0 ∗ xn =
(...(0 ∗ x) ∗ x) ∗ ...) ∗ x and x occurs n times. A BCI-algebra X is called nilpotent, if any
x ∈ X is nilpotent. Both BCK-algebras and finite BCI-algebras are nilpotent BCI-algebras.
An ideal I of X is a subset of X such that (i) 0 ∈ I and (ii) x, y ∗ x ∈ I imply y ∈ I for
any x, y ∈ X. Sometimes, {0} is called the zero ideal of X, denoted by O in brevity. A
subalgebra Y of X is a nonempty subset of X such that Y is closed under the BCI-operation
∗ on X. If A is both an ideal and a subalgebra of X, we call it a closed ideal of X. An ideal
I is called a maximal ideal of X if I is a proper ideal of X and it is not a proper subset of
any proper ideal of X. Let I be an ideal of a BCI-algebra X, then the relation θ defined
by (x, y) ∈ θ if and only if x ∗ y ∈ I and y ∗ x ∈ I is a congruence relation on X. We
usually denote x/I for [x] = {y ∈ X : (x, y) ∈ θ}. Moreover, 0/I is a closed ideal of BCI-
algebra X. In fact, it is the greatest closed ideal contained in I. If I is a closed ideal, then
0/I = I. Assume that X/I = {x/I : x ∈ X}. Then (X/I, ∗, 0/I) is a BCI-algebra, where
x/I ∗ y/I = (x ∗ y)/I, for all x, y ∈ X. Let (X, ∗, 0) and (Y, ., 0) be two BCI-algebras, the
map f : X −→ Y is called a homomorphism, if f(x ∗ y) = f(x).f(y) for all x, y ∈ X. A non
zero BCI-algebra X is said to be a simple if O and X are the only ideal in X. A BCI-algebra
X is called commutative BCI-algebra if x ≤ y implies x = x ∧ y, where x ∧ y = y ∗ (y ∗ x).
A BCK-algebra X is said to be implicative if x ∗ (y ∗ x) = x for all x, y ∈ X. Let S be a
subset of BCI-algebra X. We call the least ideal of X, containing S, the generated ideal of
X by S, denoted by (S]. If I, J are ideals of X, then we denote I + J by (I ∪ J ]. ([3, 7, 9])
Note: From now on, in this paper, we let (X, ∗, 0) or simply X be a BCI-algebra, unless
otherwise specified.

Definition 2.1. [3, 7, 10, 13] i) A proper ideal I of X is called an irreducible ideal if A∩B = I
implies A = I or B = I, for any ideals A and B of X.
ii) A proper ideal P of X is called prime if A ∩ B ⊆ P implies A ⊆ P or B ⊆ P for all
ideals A and B of X. If X is a lower BCK-semilattice, then this definition is equivalent
with x ∧ y ∈ P implying x ∈ P or y ∈ P .
iii) If M is a maximal ideal of BCK-algebra X, then M is a prime ideal of X.
iv) A commutative BCK-algebra X is said to be cancellative if x∧y = 0 implying that x = 0
or y = 0 for any x, y ∈ X.
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The set of all ideals of X is denoted by Id(X), the set of all prime ideals of X is
denoted by Spec(X), called the spectrum of X (see [2]). A ring of sets is a nonempty set R
of subsets of a set S such that if A,B ∈ R, then A ∪B ∈ R and A ∩B ∈ R. (see [4,5])

Definition 2.2. [7, 15− 20] i) A BCI-algebra X is called normal if for any positive element
a of X, the right stabilizer of a is an ideal of X.
ii) A BCI-algebra X is called J-semisimple if J(X) = {0}, where J(X) is the intersection
of the whole maximal ideals of X.
iii) A non zero BCI-algebra X is called subdirectly irreducible if the intersection of all non
zero ideals of X is not equal to the zero ideal.
iv) A BCI-algebra X is said to be nilpotent of type 2 (respectively, solvable) if there exists
n ∈ N such that Cn(X) = {0} (respectively, Cn(X) = {0}).
v) An element x of X is said to be Engel if [x,k y] = 0 and [y,k x] = 0 for all y ∈ X and for
some k ∈ N, where [x,k y] = [[x,k−1 y], y]. A BCI-algebra X in which all elements are Engel
is said to be an Engel BCI-algebra.

Lemma 2.1. [7] Let I and J be two ideals of BCI-algebra X such that I ⊆ J .
i) J/I is an ideal of X/I.
ii) Let I be closed and J be a prime ideal. Then J/I is a prime ideal of X/I.
iii) Let Y be a BCI-algebra and f : X −→ Y be an onto BCI-homomorphism. If I is a
prime ideal of X contain Ker(f). Then f(I) is a prime ideal of Y .

Theorem 2.1. [7] X is nilpotent if and only if every ideal I of X is closed.

Theorem 2.2. [3] Let X be a BCK-algebra. Then
i) Any proper ideal I of X can be expressed as the intersection of all prime ideals of X
containing I.
ii) For any non zero element x, there exists a prime ideal P such that x /∈ P .

3. Prime BCI-algebras

In this section, we present a definition for the prime BCI-algebras based on ideals.
We show that the prime BCI-algebras are a special class of BCI-algebras, which play an
important role in the theory of BCI-algebras and have close contacts with prime ideals.

Definition 3.1. X is said to be a prime BCI-algebra if the zero ideal is a prime ideal, that
is, I ∩ J = O implies that I = O or J = O, for all proper ideals I and J of X.

Example 3.1. i) Let X = {0, a, b, c} ( Y = {0, a, b, c, d}) be a BCI-algebra in which ∗ (∗′)
operation is defined by the following table, respectively.

∗ 0 a b c
0 0 0 b b
a a 0 b b
b b b 0 0
c c b a 0

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 a 0
b b a 0 b 0
c c c c 0 c
d d d d d 0

By routine calculation, it was observed that {0} and {0, a} are all proper ideals of X. So,
for ideals I, J of X if we have I ∩ J = {0}, then I = {0} or J = {0}. Hence X is a prime
BCI-algebra.
Also, routine calculation shows that {{0}, {0, c}, {0, a, b}, {0, a, b, c}, {0, a, b, d}} is the set of
all proper ideals of Y . For ideals I = {0, a, b} and J = {0, c}, note that I ∩ J = {0} but
I 6= {0} and J 6= {0}. Hence Y is not a prime BCI-algebra.
ii) The adjoint BCI-algebra (G, ∗, e) of the Abelian group (G, ., e) with |G| > 2, where x∗y =
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x.y−1, for x, y ∈ G, is not a prime BCI-algebra. Because I = {e, x} and J = {e, y} are
ideals of G and I ∩ J = {e} = O, but I, J 6= {e} = O.

We know that simple BCI-algebras do not contain any nontrivial ideals. Therefore,
we have the following assertion.

Proposition 3.1. Every simple BCI-algebra X is a prime BCI-algebra.

Remark 3.1. The BCI-algebra X = {0, a, b, c} in Example 3.1 is prime but is not simple,
because {0, a} is a non-trivial ideal of X. So the converse of Proposition 3.1 is not correct
in general.

The following points out that the prime of an ideal P of X can be used to characterize
the primity of the quotient algebra X/P .

Proposition 3.2. A closed ideal P of X is prime if and only if the quotient algebra X/P
is a prime BCI-algebra.

Proof. =⇒) Suppose that P is a prime ideal of X. Let I/P and J/P be ideals of X/P such
that I/P ∩ J/P = O/P . Hence (I ∩ J)/P = O/P . Therefore I ∩ J ⊆ P . Since P is a prime
ideal of X, I ⊆ P or J ⊆ P . If I ⊆ P , then I/P = O/P and if J ⊆ P , then J/P = O/P .
Thus X/P is a prime BCI-algebra.
⇐=) Let X/P be a prime BCI-algebra and π : X −→ X/P be canonical homomorphism
from X into X/P . If I and J are ideals of X such that I ∩ J ⊆ P , then π(I) and π(J) are
ideals of X/P such that π(I ∩J) = (I ∩J)/P = I/P ∩J/P = π(I)∩π(J). Since I ∩J ⊆ P ,
π(I ∩ J) = O/P . But X/P is a prime BCI-algebra, so either π(I) = O/P or π(J) = O/P ;
that is, I/P = O/P or J/P = O/P . Hence I ⊆ P or J ⊆ P . �

Corollary 3.1. The following conditions are equivalent:
i) X is prime,
ii) The zero ideal O is a prime ideal,
iii) O is an irreducible ideal.

Proof. i⇐⇒ ii) Since X ≡ X/O, by Proposition 3.2, it is clear.
ii ⇐⇒ iii) Suppose that the zero ideal O is a prime ideal. Let I, J be proper ideals of X
such that I ∩ J = O. So I ∩ J ⊆ O. Since O is a prime ideal, I ⊆ O or J ⊆ O. Therefore
I = O or J = O. Hence O is a prime ideal of X.
Conversely, if the zero ideal O is an irreducible ideal, then for proper ideals I, J of X such
that I ∩ J ⊆ O we obtain I = O or J = O. Hence O is a prime ideal. �

Proposition 3.3. i) If X is a BCI-chain, then X is prime.
ii) X is prime if and only if every subalgebra Y of X is prime.

Proof. i) Let X be a BCI-chain, then for all ideals I and J of X either I ⊆ J or J ⊆ I. So
I ∩ J = I or I ∩ J = J . Now, if I ∩ J = {0}, then I = {0} or J = {0}. Thus X is a prime
BCI-algebra.
ii) As X is a subalgebra of itself, the sufficiency is obvious, and we only need to show the
necessity. Assume that I and J are two ideals of the subalgebra Y such that I ∩ J = O.
Since impossible I and J are not ideals of X, we use < I > and < J >. As I ∩ J = O,
< I ∩ J >= O. Hence < I > ∩ < J >= O. But X is prime so < I >= O or < J >= O.
Then I = O or J = O. That means Y is a prime BCI-algebra. �

Proposition 3.4. Let f be an isomorphism from X to BCI-algebra (Y, ∗′ , 0′
). Then X is

prime if and only if Y is prime.

Proof. Suppose that f be an isomorphism from prime BCI-algebraX to BCI-algebra (Y, ∗′ , 0′
).

Let I
′
, J

′
be proper ideals of Y such that I

′∩J ′
= {0′}. Thus f−1(I

′∩J ′
) = f−1({0′}) = {0}.
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Since f−1(I
′ ∩ J ′

) = f−1(I
′
) ∩ f−1(J

′
), f−1(I

′
) ∩ f−1(J

′
) = {0}. Then f−1(I

′
) = {0} or

f−1(J
′
) = {0}, as X is prime and f−1(I

′
) and f−1(J

′
) are ideals of X. If f−1(I

′
) = {0},

then f(f−1(I
′
)) = f({0}). As f is onto, f(f−1(I

′
)) = I

′
. Therefore I

′
= {0′}. Similarity, if

f−1(J
′
) = {0}, then J

′
= {0′}. Hence Y is a prime BCI-algebra.

Conversely, let Y be a prime BCI-algebra and I, J be proper ideals ofX such that I∩J = {0}.
So f(I ∩J) = f({0}). Since f is surjective, f(I ∩J) = f(I)∩ f(J). Therefore f(I)∩ f(J) =

f({0}) = {0′}. But Y is a prime BCI-algebra, so f(I) = f({0}) or f(J) = f({0}). As f is
one-to-one, I = {0} or J = {0}. Hence X is prime. �

Theorem 3.1. A product
∏

i∈I Xi of BCI-algebras is prime if and only if Xi is nontrivial
for precisely one i ∈ I, and moreover Xi is prime.

Proof. =⇒) Obviously, If
∏

i∈I Xi is nontrivial, Then for some i ∈ I, Xi is nontrivial. We
shows that a product of BCI-algebras can only be prime if precisely one factor is nontrivial
and prime. Let

∏
i∈I Xi be a nontrivial prime BCI-algebra. Suppose that Ji,Ki are ideals

of Xi such that Ji ∩Ki = {0i}. Hence
∏

i∈I(Ji ∩Ki) =
∏

(0i)i∈I = O and so (
∏

i∈I Ji) ∩
(
∏

i∈I Ki) = O. As (
∏

i∈I Ji) and (
∏

i∈I Ki) are ideals of
∏

i∈I Xi and
∏

i∈I Xi is prime,∏
i∈I Ji = O or

∏
i∈I Ki = O. If

∏
i∈I Ji = O, then Ji = O, for any i ∈ I, if

∏
i∈I Ki = O,

then Ki = O, for any i ∈ I. Hence Xi is prime. Now, let Xi is nontrivial prime BCI-algebra
for more then one i ∈ I. We consider subsets Ii = {(xi)i∈I} where (xi) = (0, 0, ..., xi, 0, ...)
of

∏
i∈I Xi. Then Ii are proper ideals of

∏
i∈I Xi and ∩Ii = O, so in this case the

∏
i∈I Xi

is not prime.
⇐=) Suppose that Xi is a nontrivial BCI-algebra, for precisely one i ∈ I, and moreover Xi

is prime. Then
∏

i∈I Xi
∼= Xi. With using Proposition 3.4 we deduce

∏
i∈I Xi is prime.

�

Proposition 3.5. Every subdirectly irreducible BCI-algebra is a prime BCI-algebra.

Proof. Let X be a subdirectly irreducible BCI-algebra, we have X 6= {0}. Therefore O is
a proper ideal of X. Note that the intersection of the whole non zero ideals of X is not
equal to {0}. For any non zero ideals A1 and A2 of X since

⋂n
i=1Ai ⊆ A1 ∩ A2 we obtain

A1 ∩A2 6= {0}. Hence X is a prime BCI-algebra. �

Theorem 3.2. Let I be a closed ideal of X. Then I is a prime ideal if and only if it is the
kernel of a homomorphism of X onto a prime BCI-algebra.

Proof. =⇒) Let I be a closed ideal of X such that is prime. We define f : X −→ X/I by
f(x) = x/I for all x ∈ X. Obvious, f is a homomorphism of X onto BCI-algebra X/I and
Ker(f) = I. By Proposition 3.2 since I is prime, X/I is a prime BCI-algebra.
⇐=) Let I be the kernel of a homomorphism f of X onto a prime BCI-algebra Y . By first
isomorphism theorem we have X/Ker(f) ∼= Im(f). Hence X/I ∼= Y . Then X/I is a prime
BCI-algebra, as Y is prime. By Proposition 3.2, I is a prime ideal of X. �

We know that simple BCI-algebras do not from variety. Since every simple BCI-
algebra is a prime BCI-algebra. Therefore, we have the following assertion.

Theorem 3.3. Prime BCI-algebras do not form a variety.

Definition 3.2. For S ⊆ X, we define

σ(S) = {P ∈ Spec(X) : S * P}.

Let X be a prime BCI-algebra. Since O = {0} ⊆ I, for all ideals I of X
σ(O) = {P ∈ Spec(X) : O * P} = ∅ and σ(X) = {P ∈ Spec(X) : X * P} = Spec(X). For
short denote σ(a) instead of σ({a}). Also σ(I) = σ((I]) and, in particular, σ(a) = σ((a]),
for a ∈ X.
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Lemma 3.1. Let A,B are subsets of X and I, J two ideals of X.
i) If A ⊆ B, then σ(A) ⊆ σ(B).
ii) σ(I ∩ J) = σ(I) ∩ σ(J).
iii) σ(I ∪ J) = σ(I) ∪ σ(J).

Proof. i) Let A ⊆ B and P ∈ σ(A). Then A * P . As A ⊆ B, B * P . Hence P ∈ σ(B).
Thus σ(A) ⊆ σ(B).
ii) We know that I ∩ J ⊆ I and I ∩ J ⊆ J . Then σ(I ∩ J) ⊆ σ(I) and σ(I ∩ J) ⊆ σ(J).
Hence σ(I ∩ J) ⊆ σ(I) ∩ σ(J).
Conversely, let P ∈ σ(I)∩ σ(J). Then P ∈ σ(I) and P ∈ σ(J). So I * P and J * P . Since
P is a prime ideal, I ∩ J * P . Therefore P ∈ σ(I ∩ J).
iii) Since I ⊆ I ∪ J and J ⊆ I ∪ J , σ(I) ⊆ σ(I ∪ J) and σ(J) ⊆ σ(I ∪ J). Hence
σ(I) ∪ σ(J) ⊆ σ(I ∪ J). Now, if P ∈ σ(I ∪ J), then I ∪ J * P . So at least occurs one of
the two states I * P or J * P . If I * P , then P ∈ σ(I) and if J * P , then P ∈ σ(J).
Therefore P ∈ σ(I) ∪ σ(J). �

Lemma 3.2. For a prime BCI-algebra X the family T (X) = {σ(I) : I ∈ Id(X)} satisfies
in the following conditions:
i) T (X) is a ring of sets.
ii) T (X) forms a topology on Spec(X).

Proof. i) It is obvious by Lemma 3.1 parts (ii) and (iii).
ii) The empty set and Spec(X) itself belong to T (X). By Lemma 3.1 part (ii) the inter-
section of any finite number of members of T (X) belongs to T (X). Also by part (iii) any
arbitrary (finite or infinite) union of members of T (X) belongs to T (X). So the ordered
pair (Spec(X), T (X)) is a topological space of X. �

3.1. Prime BCK-algebras

Theorem 3.4. i) Let X be implicative BCK-algebra. Then X is prime if and only if X is
a chain.
ii) If X is a finite lower BCK-semilattice and I is an ideal of X such that |I| = |X| − 1,
then X/I is a prime BCI-algebra.

Proof. i) Let X be an implicative BCK-algebra such that is prime and let x, y ∈ X. By
(x ∗ y) ∗ z = (x ∗ z) ∗ y, we obtain (x ∗ y) ∧ (y ∗ x) = (y ∗ x) ∗ ((y ∗ x) ∗ (x ∗ y)) =
(y ∗ x) ∗ ((y ∗ (x ∗ y)) ∗ x) = (y ∗ x) ∗ (y ∗ x) = 0. Since X is prime, x ∗ y = 0 or y ∗ x = 0.
Conversely, suppose that x ∗ y = 0 or y ∗ x = 0, for every x, y ∈ X. Let A and B be ideals
of X such that A∩B = {0}, but A 6= {0} and B 6= {0}. Then there exist non zero elements
x, y of X such that x ∈ A and y ∈ B. Let x ∗ y = 0. Then x ∗ y ∈ B and y ∈ B implies that
x ∈ B. Hence x ∈ A∩B = {0}. Thus x = 0 and hence A = {0}. If y ∗x = 0, then y ∗x ∈ A
and x ∈ A implies that y ∈ A. Therefore y ∈ A ∩B = {0}. That means B = {0}. Hence X
is prime.
ii) Suppose that x ∧ y ∈ I, for x, y ∈ X and x /∈ I. Since |I| = |X| − 1, y ∈ I. Hence I is a
prime ideal of X. Then by Proposition 3.2, X/I is a prime BCI-algebra. �

In this theorem the condition |I| = |X| − 1 is a necessary condition. For instance, if
we choose the ideal I = {0, a, b} of BCI-algebra X = {0, a, b, c, d} in Example 3.1 we have
|I| = 3 6= |X| − 1 = 4 and I is not a prime ideal of X, because, for ideals J = {0, a, b, c} and
K = {0, a, b, d} of X we obtain J ∩K ⊆ I, but J,K * I. By Proposition 3.2, the quotient
algebra X/I is not a prime BCI-algebra.

Proposition 3.6. Any cancellative BCK-algebra is a prime BCI-algebra.



(Semi)Prime BCI-algebras: A class of BCI-algebras 81

Proof. Let X be a cancellative BCK-algebra. We show that the zero ideal O is a prime ideal
of X. Let x ∧ y ∈ {0}, for x, y ∈ X. Then x ∧ y = 0 and so by hypothesis, x = 0 or y = 0.
It means that O is a prime ideal of X. �

Remark 3.2. The BCI-algebra X = {0, a, b, c} in Example 3.1 is a prime BCI-algebra which
is not a cancellative BCK-algebra. Therefore, the converse of Proposition 3.6 does not hold,
in general.

4. Semiprime ideals in BCI-algebras

As a generalization of prime ideals, we introduce the concept of semiprime ideals in
BCI-algebras. Some properties of semiprime ideals in BCI-algebra are studied.

Definition 4.1. An ideal P of X is called semiprime if it is an intersection of prime ideals
of X.

It is clear that, if P is a prime ideal of X, then it is a semiprime ideal of X. But in
the following example we show that O is semiprime, but is not a prime ideal. Also, it is
known that intersection of any number of semiprime ideals of X is again a semiprime ideal
of X. But the intersection of any number of prime ideals of X need not be a prime ideal of
X. The set of all semiprime ideals of X is denoted by SI(X).

Example 4.1. i) For any propositional logic L with L = [0, 1] and a continuous residuation
operation → such that x→ y = min{1, 1− x+ y}}, where x, y ∈ [0, 1], (L,→, 1) is a BCI-
Logic. If we define x ∗ y = y → x, then (L, ∗, 0) is a BCI-algebra with only proper ideal O.
Then O is a semiprime ideal of L.
ii) Let X = {0, a, b, c, d, e, f, g} be a BCI-algebra in which ∗ is defined by:

∗ 0 a b c d e f g
0 0 0 0 0 d d d d
a a 0 0 0 e d d d
b b b 0 0 f f d d
c c b a 0 g f e d
d d d d d 0 0 0 0
e e d d d a 0 0 0
f f f d d b b 0 0
g g f e d c b a 0

Routin calculations shows that O, I = {0, a}, J = {0, d}, K = {0, a, b, c}, L = {0, a, d, e}
are proper ideals of X. O, I are not prime, but J,K,L are prime. As O = J ∩K, then O
is a semiprime ideal of X. Also I is not prime, but since K ∩L = I, then I is a semiprime
ideal of X.

Now, we want to study of the semiprime ideals of BCI-algebras and give some char-
acterizations of these ideals.

Theorem 4.1. Let I be a closed ideal of X. An ideal P of X containing I is semiprime if
and only if P/I is a semiprime ideal of X/I.

Proof. =⇒) If P is a semiprime ideal of X, then there exist prime ideals P1, ..., Pn of X such
that P = P1 ∩P2 ∩ ...∩Pn. Since I is a closed ideal of X, by Lemma 2.1, P/I is an ideal of
X/I. So P/I = (P1∩P2∩ ...∩Pn)/I = P1/I ∩P2/I ∩ ...∩Pn/I. Since I is a closed ideal and
P1, ..., Pn are prime ideals of X, P1/I, P2/I, ..., Pn/I are prime ideals of X/I. Hence P/I is
an intersection of prime ideals of X/I. Therefore P/I is a semiprime ideal of X/I.
⇐=) Let P/I be a semiprime ideal of X/I. Then there exist prime ideals P1/I, ..., Pn/I of
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X/I such that P/I = P1/I∩P2/I∩ ...∩Pn/I. Hence P/I = (P1∩P2∩ ...∩Pn)/I. Therefore
P = P1 ∩ P2 ∩ ... ∩ Pn and hence P is a semiprime ideal of X. �

Proposition 4.1. A semiprime ideal P is prime if and only if P is irreducible.

Proof. =⇒) Let P be a semiprime ideal of X such that is a prime ideal. If I and J are ideals
of X such that P = I ∩ J , then I ∩ J ⊆ P . Since P is a prime ideal of X, I ⊆ P or J ⊆ P .
If I ⊆ P , then P = I ∩ J ⊆ I and so in this case I = P . Also if J ⊆ P , then P = I ∩ J ⊆ J
hence J = P . Thus P is a irreducible ideal.
⇐=) Suppose that P is a semiprime ideal of X such that is irreducible. Then there are
prime ideals Pi (i ∈ I) of X such that P =

⋂
i∈I Pi. But P is irreducible, so there exists

i ∈ I such that P = Pi. Hence P is a prime ideal of X. �

Proposition 4.2. Let I, J,K be closed ideals of X such that J ⊆ I. If I/J is semiprime
ideal of X/J , so is (I +K)/(J +K).

Proof. Since J ⊆ I, we have I+(J+K) = I+K and J ⊆ I∩(J+K). Therefore (I+K)/(J+
K) = (I + (J +K))/(J +K) ∼= I/(I ∩ (J +K)). Applying Third isomorphism theorem and
noticing J ⊆ I ∩ (J +K), we obtain I/(I ∩ (J +K)) ∼= (I/J)/(I ∩ (J +K))/J). Comparison
gives (I +K)/(J +K) ∼= (I/J)/(I ∩ (J +K))/J). By Theorem 4.1, (I/J)/(I ∩ (J +K))/J)
is semiprime and so is (I +K)/(J +K). �

In [2] for an ideal I of a lower BCK-semilattice X the radical of I is defined and
some properties of these concept are studied. In the following definition, we generalize these
concept to each BCI algebra X.

Definition 4.2. Let I be a proper ideal of X. The radical of I, denoted Rad I, is the ideal⋂
P , where the intersection is taken over all prime ideals P which contain I. If the set of

prime ideals containing I is empty, then Rad I is defined to be X.

Note that Rad(I) is an ideal and I ⊆ Rad(I). If I is a prime ideal of X, then
Rad(I) = I. Despite the inconsistency of terminology, the radical of the zero ideal is
sometimes called the nilradical or prime radical of X. We will study it in the next section.

Example 4.2. i) Let X = {0, a, b, c} be the BCI-algebra defined in Example 4.1 (ii). For
proper ideals I = {0, a} and J = {0, d} of X, we obtain Rad(I) = I and Rad(J) = J . Also
Rad(O) = I ∩K ∩ L = O.
ii) (Z,−, 0) is a BCI-algebra ([4]). Simple calculation show that Rad(< 4 >) =< 2 >,
Rad(< 8 >) =< 2 > and Rad(O) = O.

Theorem 4.2. Let I and J be ideals of X.
(1) If I ⊆ J , then Rad(I) ⊆ Rad(J).
(2) Rad(Rad(I)) = Rad(I), i.e. radicalization is an idempotent operation.
(3) If I and J are ideals of X such that I is closed and J is contains I, then Rad(J/I) =
Rad(J)/I.

Proof. (1) Let I ⊆ J . Since that the all prime ideals containing J are contain I, the
intersection of all prime ideals containing I are contain the intersection of all prime ideals
containing J . Therefore Rad(I) ⊆ Rad(J).
(2) We know that I ⊆ Rad(I). Hence by (1) we obtain Rad(I) ⊆ Rad(Rad(I)).
Conversely, let x ∈ Rad(Rad(I)). By definition of Rad(I) we have x ∈ P for all prime
ideals containing Rad(I). As I ⊆ Rad(I), x ∈ P for all prime ideals containing I. Then
x ∈ Rad(I). Hence Rad(I) ⊆ Rad(Rad(I)).
(3) Suppose x/I be arbitrary element in Rad(J/I). Therefore x/I ∈ P/I for all prime ideals
P/I of BCI-algebra X/I which contain J/I. Hence x ∈ P for all prime ideals P of X contain
J . Then x ∈ Rad(J) and hence x/I ∈ Rad(J)/I. So Rad(J/I) ⊆ Rad(J)/I.
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Conversely, let x/I be an element in Rad(J)/I. Then x ∈ Rad(J). Hence x ∈ P for all
prime ideals P contain J . Therefore x/I ∈ P/I for all prime ideals P/I contain J/I. Thus
x/I ∈ Rad(J/I). Then Rad(J)/I ⊆ Rad(J/I). �

Theorem 4.3. Let {Ii}i∈J be a family of ideals of X. Then
(1)Rad(

⋂
i∈J Ii) =

⋂
i∈J Rad(Ii).

(2)Rad(
⋃

i∈J Ii) =
⋃

i∈J Rad(Ii).
(3)If {Ii}i∈J is semiprime ideals of X, then

⋂
i∈J Ii is a semiprime ideal of X. Also, if⋃

i∈J Ii is an ideal of X and {Ii}i∈J be semiprime ideals of X, then
⋃

i∈J Ii is a semiprime
ideal of X.

Proof. (1) Since
⋂

i∈J Ii ⊆ Ii for any i ∈ J , by (1), Rad(
⋂

i∈J Ii) ⊆ Rad(Ii) for any i ∈ J .
Then Rad(

⋂
i∈J Ii) ⊆

⋂
i∈J(Rad(Ii)).

Conversely, let x ∈
⋂

i∈J(Rad(Ii)). Then x ∈ Rad(Ii) for any i ∈ J . Thus x ∈ P for all
prime ideals P contain Ii and for any i ∈ J . Hence x ∈ P for all prime ideals P contain⋂

i∈J Ii. Therefore x ∈ Rad(
⋂

i∈J Ii).
(2) Since Ii ⊆

⋃
i∈J Ii for any i ∈ J , Rad(Ii) ⊆ Rad(

⋃
i∈J Ii) for any i ∈ J . Therefore⋃

i∈J Rad(Ii) ⊆ Rad(
⋃

i∈J Ii).
Conversely, let x ∈ Rad(

⋃
i∈J Ii). Then x ∈ P for all prime ideals P contain

⋃
i∈J Ii and for

any i ∈ J . Hence x ∈ P for all prime ideals P containing Ii and for any i ∈ J . Therefore
x ∈

⋃
i∈J Rad(Ii).

(3) Let {Ii}i∈J be a family of semiprime ideals of X. Then for all i ∈ J , Rad(Ii) = Ii.
Now Rad(

⋂
i∈J Ii) =

⋂
i∈J Rad(Ii) =

⋂
i∈J Ii. Then

⋂
Ii is a semiprime ideal of X. Also if⋃

i∈J Ii is an ideal of X we obtain Rad(
⋃

i∈J Ii) =
⋃

i∈J Rad(Ii) =
⋃

i∈J Ii. Then
⋃
Ii is a

semiprime ideal of X. �

Theorem 4.4. An ideal I of X is semiprime if and only if Rad(I) = I.

Proof. =⇒) Assume that {Pj : j ∈ J} is the family of all prime ideals of X. If I is a
semiprime ideal of X, then there are prime ideals Pi of X such that I =

⋂
i∈J Pi. Therefore

Rad(I) = Rad(
⋂

i∈J Pi) =
⋂

i∈J Rad(Pi) =
⋂

i∈J Pi = I.
⇐=) Let I = Rad(I). Then I =

⋂
{Pi : Pi is prime ideal of X containing I}. Hence I is a

semiprime ideal of X. �

Corollary 4.1. Any proper ideal I of a BCK-algebra X is semiprime.

Proof. By Theorem 2.2 we obtain Rad(I) = I for any proper ideal I of a BCK-algebra X.
Then by Theorem 4.4 any proper ideal I is semiprime. �

5. Semiprime BCI-algebras

In this section, we define the notion of the semiprime BCI-algebras and show that
any BCK-algebra is a semiprime BCI-algebra.

Definition 5.1. A BCI-algebra X is called semiprime BCI-algebra if the zero ideal O is a
semiprime ideal of X.

Now, we give examples to show that the semiprime BCI-algebra exist.

Example 5.1. i) In BCI-algebra (Z,−, 0), if we put P1 = N ∪ {0} and P2 = {−n : n ∈
N} ∪ {0}, then P1, P2 are maximal ideals of Z. Therefore P1, P2 are prime ideals of Z ([3]).
Then (Z,−, 0) is a semiprime BCI-algebra, because P1 ∩ P2 = {0}.
ii) Let X = {0, a, b, c, d} be a BCI-algebra in which ∗ is defined by the following table:
{{0}, {0, c}, {0, d}, {0, a, b}, {0, c, d}, {0, a, b, c}, {0, a, b, d}} is the set of all proper ideals of X.
But only 3 ideals {0, c, d}, {0, a, b, c}, {0, a, b, d} are prime. The zero idea O is semiprime,
because {0, c, d} ∩ {0, a, b, c} ∩ {0, a, b, d} = {0}. Hence X is semiprime.
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∗′ 0 a b c d
0 0 0 0 0 0
a a 0 0 a a
b b a 0 b b
c c c c 0 c
d d d d d 0

iii) The adjoint BCI-algebra of Klein,s four group appear in the following table is not
semiprime.

∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

{{0}, {0, a}, {0, b}, {0, c}} is the set of all proper ideals of X. By simple calculation we see
that the none of them are not prime ideal. Hence X is not semiprime.

In the following we study relationship between prime and semiprime BCK/BCI-
algebras.

Theorem 5.1. Any prime BCI-algebra is a semiprime BCI-algebra.

Proof. Let X be a prime BCI-algebra. By definition of prime BCI-algebra the zero ideal O
is prime and hence semiprime ideal of X. Thus X is semiprime. �

Remark 5.1. The BCI-algebra in Example 4.1 is semiprime but is not prime, because O
is semiprime ideal of X, but is not a prime ideal. Also, in this example X is a semiprime
BCI-algebra, which is not a BCK-algebra.

Corollary 5.1. Semi prime BCI-algebras do not form a variety.

Theorem 5.2. Let I be a closed ideal of X. Then X is semiprime if and only if X/I is a
semiprime BCI-algebra.

Proof. =⇒) Let {Pj : j ∈ J} is the set of all prime ideals of X. Suppose that X is semiprime.
Then

⋂
j∈J Pj = O. Hence O/I = (

⋂
j∈J Pj)/I =

⋂
j∈J(Pj/I). Since I is a closed ideal

and Pj for all j ∈ J are prime ideals of X, Pj/I are prime ideals of X/I. Hence X/I is a
semiprime BCI-algebra.
⇐=) Let X/I be a semiprime BCI-algebra, but X is not semiprime. Let {Pj : j ∈ J} be
the set of all prime ideals of X and any arbitrary intersection of these ideals is not zero. So⋂

j∈J Pj 6= O. Hence there exists non zero element x ∈ X such that x ∈ Pj , for all j ∈ J .

Therefore x/I ∈ Pj/I, for all j ∈ J . Hence x/I ∈
⋂

j∈J Pj/I and so
⋂

j∈J Pj/I 6= O/I. This
contradicts our assumption and so X is semiprime. �

Corollary 5.2. If for S ⊆ X, we define

σ(S) = {P ∈ SI(X) : S * P}.

For a semiprime BCI-algebra X the family T (X) = {σ(I) : I ∈ Id(X)} forms a topology
on SI(X) and T (X) is a ring of sets. Also σ(O) = {P ∈ SI(X) : O * P} = ∅ and
σ(X) = {P ∈ SI(X) : X * P} = SI(X).
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We now introduce the prime radical of a BCI-algebra and we prove that a BCI-algebra
X is semiprime if it has zero prime radical (Theorem 5.3). We then develop the analogues
of the results proved in the previous section for the radical of ideal and semisimple BCI-
algebras. There is a strong analogy between the prime radical, prime ideals, semiprime
BCI-algebras, prime BCI-algebras and the simple BCI-algebras respectively.

Definition 5.2. The intersection of all prime ideals of X is called the prime radical of X,
and denoted by PR(X). If X does not contain any prime ideals, we provide PR(X) = X.

So, the smallest of all the semiprime ideals

∩{P : P is a prime ideal of X}
is prime radical of X.
Obviously, PR(X) is an ideal of X, which is not necessarily prime. Also, by Definition 4.2,
the radical of zero ideal O is intersection of all prime ideals of X, including O, which is equal
to PR(X). So PR(X) = Rad(O).

Example 5.2. For BCI-algebra in Example 5.1(i) we obtain PR(X) = {0, c, d}
∩ {0, a, b, c} ∩ {0, a, b, d} = {0}. Also, for BCI-algebra in Example 5.1(ii), since X is not
contains any prime ideal, we obtain PR(X) = X.

Theorem 5.3. X is semiprime if and only if PR(X) = {0}.
Proof. =⇒) Let X be semiprime. Then the zero ideal O is a semiprime ideal of X and
hence it is an intersection of prime ideals of X. Thus PR(X) = ∩{P : P is a prime ideal of
X} = {0}.
⇐=) If PR(X) = {0}, then ∩{P : P is a prime ideal of X} = {0}. Hence O is a semiprime
ideal of X. So X is semiprime. �

Proposition 5.1. i) Let X be a nilpotent BCI-algebra. Then PR(X) ⊆ P, where P is
P-semisimple part of X.
ii) If X is contain at least one prime ideal, then PR(X) ⊆ J(X).

Proof. i) Let x /∈ P. Then 0 ∗ (0 ∗x) 6= x. But 0 ∗ (0 ∗x) ≤ x, then x 
 0 ∗ (0 ∗x). Therefore
x ∗ (0 ∗ (0 ∗ x)) 6= 0. In the other hand, 0 ∗ (x ∗ (0 ∗ (0 ∗ x))) = (0 ∗ x) ∗ (0 ∗ (0 ∗ (0 ∗ x))) =
(0 ∗ x) ∗ (0 ∗ x) = 0 so x ∗ (0 ∗ (0 ∗ x)) is a non zero element of BCK-part of X. Hence by
Theorem 2.2, there is a prime ideal Q of X such that x ∗ (0 ∗ (0 ∗ x)) /∈ Q. In this case,
we claim that x /∈ Q. For proof of this claim we let x ∈ Q, then (x ∗ (0 ∗ (0 ∗ x))) ∗ x =
(x ∗ x) ∗ (0 ∗ (0 ∗ x)) = 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ x ∈ Q. Since X is nilpotent, by Theorem 2.1,
Q is closed and so x ∗ (0 ∗ (0 ∗ x)) ∈ Q, which is a contradiction. Therefore x /∈ Q for some
prime ideal Q and hence x /∈ PR(X).
ii) At first by Zorn’s Lemma we show that every prime ideal in X is contained in a maximal
ideal. Let P be a prime ideal in X and S be the set of all ideals I such that P ⊆ I. S is
nonempty since P ∈ S. Partially order S by set theoretic inclusion. Let C = {Cj : j ∈ J}
be an arbitrary chain of prime ideals in S. We put C =

⋃
j∈J Cj . We claim that C is a

prime ideal. If x ∗ y, y ∈ C, then for some i, j ∈ J , x ∗ y ∈ Ci and y ∈ Cj . Since C is a
chain, either Ci ⊆ Cj or Cj ⊆ Ci, say the latter. Hence x ∗ y, y ∈ Ci. Since Ci is an ideal,
x ∈ Ci. Therefore x ∗ y, y ∈ C imply y ∈ Ci ⊆ C. Consequently, C is an ideal of X. As C

is a chain of prime ideals, there exists k ∈ J such that C = Ck. Hence C is a prime ideal.
Since P ⊆ Ci for every i ∈ J , P ⊆

⋃
i∈J Ci = C. Since each Ci is in S, C ∈ S. Clearly C

is an upper bound of the chain C. Thus the hypotheses of Zorn’s Lemma are satisfied and
hence C contains a maximal element. But a maximal element of C is obviously a maximal
ideal in X that contains P .
Now, suppose that x /∈ J(X). Then there exists maximal ideal M of X such that x /∈ M .
Since every prime ideal is contained in a maximal ideal, there exists prime ideal P such that
x /∈ P . Hence x /∈ PR(X). Thus PR(X) ⊆ J(X). �
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Theorem 5.4. Any BCK-algebra is a semiprime BCI-algebra.

Proof. Let X be a BCK-algebra. Then the P-semisimple part of X = {0}. Therefore
PR(X) = {0}. �

Proposition 5.2. If I is a closed ideal of X, then PR(X/I) = PR(X)/I. In particular, if
PR(X) is closed, then PR(X/PR(X)) = 0, whence X/PR(X) is semiprime.

Proof. Let x/I ∈ PR(X/I). Then

x/I ∈ PR(X/I)⇐⇒x/I ∈ P/I, forallprimeidealsP/IofX/I

⇐⇒x ∈ P, foreveryprimeidealPofX

⇐⇒x ∈ PR(X)

⇐⇒x/I ∈ PR(X)/I

�

Proposition 5.3. A non zero BCI-algebra X is semiprime if and only if for any non zero
element x ∈ X there is a prime ideal P of X such that x /∈ P .

Proof. Suppose that X is semiprime, then PR(X) = {0}. Since X 6= {0}, by the definition
of PR(X), there is at least a prime ideal of X. Let {Pi : i ∈ I} be the set of all prime ideals
of X, then

⋂
i∈I Pi = PR(X) = {0}. Therefore, for any non zero element x ∈ X we have

x /∈
⋂

i∈I Pi. So there is i ∈ I such that x /∈ Pi.
Conversely, for any non zero element x ∈ X, letting Px be a prime ideal of X such that x /∈
Px, we have PR(X) ⊆

⋂
x∈X−{0} Px = {0}, then PR(X) = {0}. Hence X is semiprime. �

Proposition 5.4. X is semiprime if and only if every subalgebra Y of X is semiprime.

Proof. Since X is a subalgebra of itself, the sufficiency is obvious, and we only need to show
the necessity. Let Y be any subalgebra of X. There is no harm in assuming Y 6= {0}. For
any non zero element x ∈ Y as X is semiprime, then by Proposition 5.3 there exists a prime
ideal P of X such that x /∈ P . So x /∈ Y ∩ P . Also, by routine verification Y ∩ P is a prime
ideal of Y . Now, an application of Proposition 5.3 to Y gives that Y is semiprime. �

In the following remark we study relationship between prime and semiprime BCI-
algebras with normal, semisimple, J-semisimple, solvable, nilpotent of type 2 and Engel
BCI-algebras.

Remark 5.2. 1) [4] The BCI-algebra X = {0, a, b, c} in Example 3.1 is prime and semiprime,
but is not normal and hence is neither J-semisimple and nor semisimple.
2) The BCI-algebra X in Example 4.1 is semisimple, J-semisimple and normal, but is not
prime.
3) The BCI-algebra X in Example 5.1(iii) is semisimple, J-semisimple and normal, but is
not semiprime.
4) The BCI-algebra X in Example 5.1(iii) is solvable, nilpotent of type 2 and Engel [17], but
is neither semiprime nor prime.

In general, the homomorphic image of a (Semi)prime BCI-algebra is not a BCI-
algebra. Thus (Semi)prime BCI-algebras do not form a variety (for more details see Example
5.8 of [14]).

Corollary 5.3. Putting Theorem 5.1, Remarks 5.1 and 5.2 together. Therefore so far we
have clarified various relations among the six types of BCI-algebras described in the following
diagram, for the whole BCI-algebras
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Simple
BCI-algebras

Prime BCI-
algebras

Semisimple
BCI-algebras

Semiprime
BCI-algebras

J-semisimple
BCI-algebras

Normal
BCI-algebras

6. Conclusions

The results of this paper are be devoted to study prime ideals in BCI-algebras. We
presented a characterization and several properties of the prime and semiprime ideals in
BCI-algebras. Anyway, we also note that new fields like radical theory could find in this
framework the more appropriate ground where to develop. Also, in this paper we consider
the relation between some kinds of BCI-algebras and giving the following diagram.

Semiprime

Prime
Normal

J-Semisimple

Semisimple

Simple

Some important topics for future work are:
i) Determine relationships between prime (and also semiprime) BCI-algebras and other types
of BCI-algebras.
ii) Checking the conditions under which the inverse of relations in diagram Corollary 5.3 are
confirmed could be interesting subject for studies.
iii) Study topological properties of prime (and also semiprime) BCI-algebras X and Spec(X).
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