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KEY TECHNOLOGIES FOR DENSE MUSHROOM GROUP
PICKING BASED ON IMPROVED DBSCAN CLUSTERING
ALGORITHM

Yafei LI, Xuanzhang ZHU?

Traditional mushroom harvesting techniques are inadequate to meet the
increasing demands of modern agriculture. This study proposes a dense mushroom
cluster harvesting planning technique based on an improved Density-Based Spatial
Clustering of Applications with Noise (DBSCAN). The proposed method combines
clustering and harvesting planning by optimizing the DBSCAN algorithm. Key metrics
such as clustering accuracy, intra-cluster point omission probability, and running
time were analyzed and compared to existing algorithms. The optimized DBSCAN
showed superior performance with clustering accuracy of 94.6%, intra-cluster
omission probability of 2.5%, and a reduced running time of 0.25s. The system
achieved a recognition accuracy of 93.8% and 95.8% for mushroom clusters, with
picking success rates of 93.2% and 94.7%, respectively. This study introduces a novel
harvesting planning approach that improves the efficiency and success rate of
mushroom harvesting, reducing damage and meeting the required harvesting

efficiency.

Keywords: DBSCAN clustering algorithm; clusters of mushrooms; classification;
concentrated; picking planning

1. Introduction

Mushroom plants contain rich nutritional and medicinal values, which can
be processed and transformed into diverse foods, health products, and medicines,
demonstrating extremely high economic value. However, the growth of mushroom
colonies exhibits significant randomness, leading to diversity in size, shape, and
density, and often overlapping between adjacent mushrooms. This undoubtedly
increases the difficulty of harvesting and reduces harvesting efficiency. With the
continuous growth of mushroom demand and production, the global mushroom
industry is facing challenges such as harvesting costs difficultly to be controlled
and urgent need to improve production efficiency [1-2]. In this context, mechanical
harvesters are gradually being applied in the mushroom industry and have
demonstrated the advantages of efficient harvesting. However, in high-value
applications, there are extremely strict requirements for the size, quality, and
integrity of mushrooms. Whether it is manual picking or one-time mechanical
harvesting, it is difficult to find a perfect balance between quality, efficiency, and
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cost. In response to the current situation, there is an urgent need to develop a
Mushroom Harvesting Robot (MHR) with high-precision intelligent harvesting
capabilities to meet production needs [3-4].

At present, the continuous improvement of artificial intelligence algorithms
has further developed mushroom harvesting technology. To ensure timely
harvesting of mushrooms and improve harvesting efficiency, Ji et al. proposed an
online mushroom size detection algorithm built on deep image processing. In the
process of machine vision recognition, the recognition accuracy of this algorithm
was higher than 92.50%, the missed detection rate was lower than 4.95%, the false
detection rate was lower than 2.15%, and the Diameter Measurement Error (DME)
was less than 4.50%. This image processing algorithm had a high recognition rate
and small DME, which could satisfy the demands of picking operations [5]. To
achieve fully autonomous harvesting of shiitake mushrooms in greenhouses, Rong
et al. proposed a shiitake mushroom harvesting robot based on deep model detection
algorithm. Field experiments have verified the feasibility of the robot system, with
a mushroom recognition Success Rate (SR) of 95% and a harvesting SR of 86.8%.
The harvesting time for a single mushroom was 8.85 seconds [6]. To promote the
development of the mushroom industry, Sujatanagarjuna et al. constructed an
intelligent, automated, and scalable indoor mushroom harvesting system based on
an improved convolutional neural network. It was found that the system had a
training accuracy of 91.7% and a semi-automatic harvesting system, and its
modularity and scalability allow for industrial grade use, which could be expanded
according to the mushroom planting system required in the facility [7]. To promote
harvesting robots to overcome complex growth environments, diverse shapes,
dense shadows, and variable fields of view, Cong et al. proposed a lightweight
mushroom detection model built on YOLO v3. The model achieved an average
accuracy of 97.03%, with parameters of 29.8M and a detection speed of 19.78ms,
demonstrating good real-time and detectability, and having 2.08 times fewer
parameters than the original model. This study provided a vital theoretical basis for
the automatic harvesting of fresh shiitake mushrooms [8].

Huang et al. designed a robotic mushroom harvesting machine to address
the time-consuming and labor-intensive harvesting of mushrooms. This design
includes a harvesting end effector based on bending motion, a mushroom stem
trimming end effector, and an electric pneumatic control system. The machine
ultimately achieved a SR of 97% [9]. To achieve intelligent and automated
harvesting of white mushrooms, Recchia et al. developed a collaborative robot with
dedicated arm end tools for harvesting mature mushrooms from selected areas. This
method improved the working environment for workers and reduced work-related
musculoskeletal disorders [10]. The labor cost of mushroom harvesting accounted
for 50-80% of the total labor cost, and the high humidity and low temperature
factory environment posed a risk of rheumatism for workers. Given this, Shi et al.
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proposed a new underactuated gripper based on screw and linear bearings, which
can perform flexible force control operations while measuring mushroom diameter.
The static grasping force error of the gripper during the entire grasping process was
0.195N, and the mean separation force overshoot was 1.3IN. The in-situ
measurement of mushroom diameter achieved an accuracy of 97.3% and a SR of
98.3% [11]. To achieve the goal of automated mushroom harvesting, Hubay et al.
proposed an image processing-based cultivation mushroom automatic harvesting
technology. This technology processed images at a mean speed of 0.78s and
generated coordinates with a SR of 92% [12].

In summary, current research on mushroom harvesting technology has
achieved certain results in harvesting area segmentation, harvesting sequence
planning, and recognition detection, which can realize automatic mushroom
harvesting and grading. However, when mushrooms grow in clusters, some of them
are obscured by other mushrooms, resulting in incomplete contour information and
a large number of mushrooms growing in clusters. In this case, the accuracy of the
detection algorithm will significantly decrease. Therefore, this study innovatively
combines the ideas of clustering and harvesting planning and proposes a Dense
Mushroom Cluster Harvesting (DMCH) planning technique based on an improved
Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The
purpose is to plan a suitable harvesting sequence based on the different growth
characteristics of the mushroom population, ultimately achieving efficient and low
loss harvesting of the mushroom population.

2. Methods and materials

2.1 Design of Dense Mushroom Group Classification Algorithm Based
on Improved DBSCAN Algorithm

In practical application scenarios, traditional mushroom harvesting
algorithms face two major challenges: low harvesting efficiency and high damage
rate. Especially in the two key mushroom clusters where overlapping phenomena
occur frequently and are densely packed, the problem is particularly prominent. To
address these issues, this study conducts a detailed classification of mushroom
populations based on their different growth characteristics. Specifically, this study
categorizes mushroom populations with severe overlapping phenomena as the first
type of region. The second type of area includes closely arranged mushroom
clusters with small differences in height, characterized by high density and low
overlap, making them relatively easy to pick [13-14]. The last category is easy to
pick areas, where dispersed, low-density, and low overlapping mushroom clusters
are the main ones. Based on the above observations, this study clearly divides
mushroom populations into three categories: Overlapping Mushroom Populations
(OverMP), Dense Mushroom Populations (DenseMP), and Discrete Mushroom
Populations (DisMP) according to the two major indicators of overlap rate and
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density [15]. After establishing the classification criteria for mushroom clusters,
this study designed a mushroom cluster classification algorithm based on density
and overlap rate parameters. The overall structure is displayed in Fig.1.
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Fig. 1. Mushroom Group Classification Algorithm

In this algorithm, this study first divides the entire mushroom population
within the view into clusters using a clustering algorithm constructed grounded on
density indicators and filters out DisMP among them. Then, using a classification
algorithm grounded on the Overlap Rate Index (ORI), the clustered mushroom
clusters were classified into three categories: OverMP, DenseMP, and DisMP [16].
This study summarizes the clustering problem based on density indicators as a
clustering problem and selects DBSCAN to achieve mushroom clustering based on
specific information of the mushroom population. The core idea of the DBSCAN is
to use the density of sample points to construct cluster classes and handle noise in
the dataset. It does not require a preset number of clusters, can handle clusters of
any shape, and is insensitive to outliers, as shown in Fig.2.
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DBSCAN has a wide range of application scenarios, and the radius 7 and

minimum sample size N of the algorithm will have a significant effect on the
clustering performance. When dealing with the complex task of clustering
mushroom clusters, the disorderly growth of mushroom clusters leads to significant
density differences between them. The non-uniformity of this density poses a
challenge to the algorithm, especially when selecting neighborhood radii [17]. If
the radius value is not appropriate, it may cause a decrease in the SR of clustering.
In other words, for datasets with uneven distribution or significant density changes,
traditional clustering algorithms may struggle to achieve ideal clustering results. To
solve this problem and improve the clustering effect, the DBSCAN clustering
algorithm is improved. DBSCAN The improvement of the DBSCAN algorithm is
to introduce adaptive local radius @, which dynamically adjusts the neighborhood
range of the core point according to the distance of the furthest core point in the
unclassified point, so as to filter instead of the preset parameter values. The
improved algorithm flow is shown in Fig. 3.

The core of improving the algorithm is to change the neighborhood range
of the core point but still pre-set the value of » . After randomly selecting the
unclassified point O in the dataset, if O is determined as the core point, that is,
there are at least N core points within a circle with O as the center and » as the
radius. Afterwards, only N core points are retained in the O neighborhood, and the
value of a is taken as the distance from O to the farthest core point in the
neighborhood. Then, o is used to replace r for filtering at point O . In the
modified DBSCAN algorithm, the algorithm first computes the distance from the
unclassified point to the furthest core point within its neighborhood and
dynamically determines the neighborhood radius of each core point based on that
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For range image data, this improved method enables better adaptation to the
density changes in different regions in the image. For example, in an image, the
high density area (such as the target object) will have a smaller neighborhood radius,
while the low density area (such as background or noise) will have a larger
neighborhood radius. This dynamic adjustment allows the algorithm to more
accurately identify the target area in the image while effectively filtering the noise.
In the point cluster class, the adaptive radius mechanism optimizes the clustering
process through local density information, which makes the algorithm perform
better in processing uneven distributed data, and can more accurately divide cluster
boundaries and reduce misclassification.

2.2 Design of Mushroom Group Classification Method Based on ORI

After using the density-based clustering algorithm to cluster the mushroom
population, it will be subdivided into several mushroom population sets and several
discrete mushroom population individuals. Next, this study needs to further classify
these clustered mushroom populations into OverMP, DenseMP, or DisMP based on
the ORI. Firstly, this study will examine whether there is overlap within each
mushroom group set. If there is no overlap, then the mushroom group set is
classified as DisMP. If there is an overlap, this study will further calculate the
overlap rate of individual mushroom groups and calculate the average overlap rate
of the mushroom group. If the average overlap rate is greater than or equal to the
preset threshold, then the mushroom group is classified as OverMP. If it is less than
the preset threshold, it is classified as DenseMP. To accurately calculate the
overlapping area of the mushroom group, this study first uses the cosine theorem to
calculate the angle between the centers of two circles, as well as their corresponding
fan-shaped areas. Then, through mathematical operations, the overlapping area §
between the two circles is calculated, as shown in equation (1) [18].

S:sqrt[s(s—a)(s—b)(s—c)] 1)

In equation (1), ¢, b, and ¢ represent the lengths of the three sides of a
triangle.  represents half of the circumference of the triangle. If ¢ and ./ are two
mushroom groups with overlapping relationships. If ./ is obstructed by €, the

overlap rate ®. of individuals in mushroom group € can be calculated using
equation (2).

¢ 2)
In equation (2), Sy is the overlapping area between mushroom group € and

f. S represents the area of mushroom group €. If a single mushroom group

(O

overlaps with several mushroom groups, the ™ value is calculated twice. The
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formula for calculating the mean ORI of mushroom clusters is given by equation

3).
€ (3)

In equation (3), @ is the overlap rate of the mushroom group. ® is the
overlap rate of individuals in the mushroom group that have overlapping
relationships. ¢ is the number of overlapping individual mushrooms in the
mushroom group. The mushroom community is classified and defined based on the
actual environmental conditions. Specifically, this study defines mushroom
populations with minimal overlap between individuals and an overlap rate of almost
0 as DenseMP. On the contrary, if there are a large number of overlapping
individuals within the mushroom group, and the overlap rate is high, it is defined
as OverMP. To clearly distinguish between these two mushroom groups, this study
sets an overlap rate threshold of 4.5%. When the overlap rate of the mushroom
group is below this threshold, it is considered DenseMP. When the overlap rate is
higher than or equal to this threshold, it is considered OverMP.

2.3 Design of DMCH Planning Method

To output the sequence of harvesting all mushroom clusters while ensuring
high efficiency and low damage rate, this study proposes a DMCH planning method
that combines global planning and local planning. The overall process of this
picking method is shown in Fig.4.
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Fig. 4. Process of DMCH Planning Method

This method combines global planning with local harvesting strategies. At
the global planning level, the main goal is to improve harvesting efficiency, and to
plan the harvesting sequence for each mushroom group, treating the mushroom
group as the smallest planning unit. The planning process comprehensively



154 Yafei Li, Xuanzhang Zhu

considers factors such as the difficulty of harvesting three types of mushroom
clusters, the calculation time required by the algorithm, and the actual harvesting
time, and finally outputs a reasonable mushroom cluster harvesting sequence. In
terms of local harvesting strategies, this study focuses more on reducing the damage
rate during the harvesting process, while also taking into account efficiency
indicators. This study specifically designs a strategy to address the issue of high
harvesting damage caused by overlapping mushroom populations. For densely
grown mushroom clusters, this study aims to address high picking resistance caused
by the close arrangement of mushroom clusters. For dispersed mushroom
populations, this study aims to improve harvesting efficiency and conducts
corresponding harvesting planning. The schematic diagram of the picking planning
strategy that combines global and local aspects is shown in Fig. 5.

Global picking planning

Local picking planning

Fig. 5. DMCH Planning Method

In Fig.5, the proposed classification algorithm divides the mushroom
population into three categories: I, I, and III. I is OverMP, II is DenseMP, and III
is DisMP. The global harvesting plan plans the harvesting sequence of three
mushroom groups based on corresponding indicators. The picking sequence is to
pick DisMP first, then DenseMP, and finally OverMP. Local harvesting planning
refers to the planning of harvesting sequences within three types of mushroom
clusters: I, II, and III.

The path planning for mushroom harvesting this time uses Genetic
Algorithm (GA). This algorithm simulates phenomena such as genetics, mutation,
and natural selection in the process of biological evolution to solve complex
optimization problems. It has strong global search capability and wide applicability
and has been widely utilized in path planning issues in various fields [19-21]. GA
has unique advantages in solving complex optimization problems, but it also has
problems such as slow convergence speed and susceptibility to getting stuck in local
optima. In practical applications, algorithms need to be improved based on the
specific characteristics and requirements of the problem [22-23]. Therefore, this
study focuses on OverMP and proposes an improved GA based on introducing a
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priority constraint matrix, considering its overlapping occlusion characteristics. The
improved GA operation process is shown in Fig.6.
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Fig. 6. Improved GA Process Diagram

In improving GA, the first step is to establish a priority constraint matrix
M , built on the occlusion between mushroom clusters. M, is an nxn-dimensional

matrix, where n represents the quantity of harvestable mushroom populations and
i,j=12,.,n. The formula for generating the initial population based on M, is

shown in equation (4).

_Pn Po 0 Dy ot P 1
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M, =
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Next, the fitness function f defined by calculating the actual path of
mushroom harvesting is shown in equation (5).

y—

\”yiﬂ - yi|2 + xi2+1
(%)

The optimization process first applies the roulette wheel selection operator
and combines it with the elite retention strategy to ensure that the top » individuals
with the best performance in the population can be retained. Subsequently, the
roulette wheel selection method is used again to select individuals and involve them
in the process of crossover and mutation. During the crossover process, this study
employs the single point mapping crossover method. This method effectively

1
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avoids the occurrence of duplicated gene fragments by establishing a mapping table
between two parental chromosomes. The mutation process uses the exchange
mutation operator, which randomly selects two gene fragments and exchanges their
positions. When the fitness value of the population gradually stabilizes or reaches
the maximum iterations set by the algorithm, the optimization process ends. For
densely growing mushroom clusters, due to their tight arrangement and high
friction during harvesting, this study specially designs a spiral harvesting sequence
that gradually advances from the periphery to the center. The dispersed mushroom
clusters are optimized using basic GA to minimize the total harvesting path and
output the optimal harvesting sequence.By the above methods, the overall scheme
of dense mushroom group picking was obtained, as shown in Fig. 7.
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Fig.7 Design and architecture diagram of the overall picking scheme of dense mushrooms

In Fig. 7, the visual module is responsible for identifying the mushroom group
in the field of vision, identifying and filtering the depth information through the
algorithm, obtaining the actual position and size of the mushroom group after
converting the coordinate system, and then transmitting it to the picking planning
module. The picking planning module includes mushroom group classification and
picking sequence planning. The former divides mushroom groups into three
categories: overlapping, dense and dispersed, while the latter plans the picking
order between and within clusters. The control module carries out the picking task
according to the plan, and the area is re-detected to pick the leaky mushroom group.
The whole process cycles until the current area is picked and then transferred to the
next area. The system realizes the accurate identification, classification, planning
of the picking sequence and the execution of the picking task, and improves the
picking efficiency.
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3. Results

3.1 Algorithm Performance Testing

To validate the DMCH method, this study captured 4,870 images (1280 X
720 pixels) of mushroom clusters across four growth stages in an industrial park
using a RealsenseD435i depth camera mounted 25 - 30 cm above the mushrooms
on an MHR. The dataset included 1,640 photos for the densest group, 1,450 for the
second stage, 930 for the third, and 850 for the fourth. Using OpenCV, images were
enhanced via flipping, cropping, rotation, color adjustment, noise addition, and
scaling, expanding the dataset to 7,300 images for improved recognition accuracy.
Table 1 shows the configuration parameters for this experiment.

Table 1
Experimental environment
parameter Experimental environment
Tool Intel Core 15-4200 CPU

Processor 11th GenlIntel(R)Core(TM)i5-1135G7@2.40GHz-2.42GHz
Memory capacity 4GB RAM
Operating system Windows7

Data mining software SPSS Modeler18.0

Programming environment Python3.8.3
Programming IDE Anaconda3
model building Python3.8.3

0.18
0.16

0.14
0.12

Loss degree

0.10
0.08

This study used Intel Core 15-4200 CPU as the platform and divided the
corresponding training and validation sets in a 4:1 ratio, and trained the research
model on them, as shown in Fig.8.
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Fig. 8. Model Training Results

In Fig.8 (a), the loss of the research method in the two sets gradually
decreases with the iteration of learning times. When the last training ended, the loss
rates in the training and validation sets decrease from 0.1800 to 0.1084, and 0.1362
to 0.0915, indicating a continuous growth in generalization ability. In Fig.8 (b), the
research model achieves a prediction accuracy of over 90% on both sets, and as the
iterations increase, the final accuracies are 96.93% and 98.21%, respectively.



158 Yafei Li, Xuanzhang Zhu

The paper uses the Clustering Accuracy (CA), Intra-Cluster Point Omission
Rate (ICPOR), and Out Of Cluster Point Partitioning Error Rate (OOCPPER) as
evaluation indicators and compares the clustering effect of the proposed algorithm
with spectral clustering, K-means, and traditional DBSCAN algorithms, as shown
in Fig.9 (a). This study also uses mean Average Precision (mAP) and Single Image
Detection Speed (SIDS) as indicators, and Faster-RCNN, YOLOv4, and YOLOvS5s
as comparison algorithms to test the performance. Fig.9 (b) shows the results.
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Fig. 9. Algorithm Comparison Results

Fig.9 (a) compares clustering algorithms, with the improved DBSCAN
achieving 94.6% CA, 2.5% ICPOR, and 5.8% OOCPPER, outperforming others by
automatically adjusting the neighborhood radius based on clustering data features.
Its runtime (0.25s) is 0.16s faster than traditional DBSCAN, demonstrating superior
efficiency in non-spherical clustering. Fig.9 (b) highlights recognition performance,
where the research algorithm reaches 94.1% mAP (4.6% higher than competitors)
and 0.073s/spic SIDS, indicating better detection capabilities. Table 2 shows the
actual and fitted parameters of OverMP obtained.

Table 2
Calculation results of OverMP actual parameters and fitting parameters
Figure Research algorithm Traditional DBSCAN algorithm
serial Relative Relative Relative Relative Relative Relative
number | error of the | error of the | deviation | error of the error of the deviation
center (%) radius (%) (%) center (%) radius (%) (%)
1 0 3.92 0 2.76 3.92 2.89
2 1.47 0 0.87 3.28 4.41 1.93
3 1.81 29.49 1.43 1.81 28.21 1.43
4 4.08 4.08 3.39 8.65 0 7.19
5 4 2.53 2.35 4 1.27 2.35
6 6.56 14.71 4.86 27.74 26.47 20.56
7 15.69 13.73 12.45 19.98 17.65 15.86
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8 5.42 3.95 3.27 8.82 5.26 5.32

9 5.98 3.33 3.69 20.76 2.22 12.79

10 10.53 10.53 6.84 47.05 36.84 30.56
Mean 5.554 8.627 3915 14.485 12.625 10.088

The research algorithm exhibits superior performance in circle-fitting for
mushroom colonies. Its calculated center position has a shorter distance and lower
relative error (6.90% ARE) compared to the actual center than traditional
algorithms (10.93% ARE). The fitted radius is also closer to the actual, with a 6.07%
ARE versus traditional algorithms' 7.21%. Additionally, the radius deviation is
4.12%, 2.75% lower than traditional methods. Overall, the research algorithm
significantly enhances accuracy and precision. The distance error under the above
method is analyzed later, and the results are shown in Fig.10.
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Fig. 10. Comparison Results of Distance Error

In Fig. 10(a), the ranging error of the optimization algorithm is significantly
reduced, with its minimum distance error below 1.0m, while the minimum values
of the other three algorithms are all greater than 1.25m. When the number of
samples is less than 150, the error reduction rate of the optimization algorithm is
slower compared to the other comparison algorithms; however, overall, the error
values of the other three algorithms remain higher than those of the optimization
algorithm. In Fig. 10(b), as the distance increases, the distance errors of the other
three comparison algorithms show a more pronounced and rapid increase, with their
maximum ranging errors all exceeding 3.0m. In contrast, the error of the research
algorithm remains below 1.5m and is relatively less affected by distance.

To further verify the reliability of the proposed method, the publicly available
datasets in literature [7] were used to compare the performance of each algorithm.
Through the data preprocessing method described above, 5475 images were
obtained, and the training set and test set were divided according to the ratio of 4:1.
Of these, 1095 images were used for algorithm testing and 4380 images were used
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for algorithm training. The test results of each algorithm evaluation index are shown

in Table 3.
Table 3

Test results of the different algorithms

Algorithm cluster effect Algorithm generalization
. ability
]1)1ff§rl(:,nt Cluster Within-cluster Out-of-cluster D .
algorithms racy/% point omission point partition mAP/% etecg/on
accuracyrzo probability/ % error rate/ % speeds
RCNN 81.4 9.7 8.3 78.9 0.306
YOLOv4s 79.8 11.2 5.7 82.1 0.142
YOLOV5s 82.4 4.9 6.8 85.3 0.223
;};f)iifi 95.2 1.9 4.0 93.8 0.065

Table 3 reveals the proposed algorithm's notable advantages. It achieved
95.2% clustering accuracy, outperforming others, with only 1.9% omission and 4.0%
error rates, ensuring comprehensive and precise mushroom group detection. It also
boasts high generalization (93.8% mAP) and fast speed (0.065s).

Then, the study selected the widely recognized open dataset &quot;
FungalGrowth-2023 Dataset&quot; in the field of agricultural robotics (containing
3D point cloud data for 180 real greenhouse mushrooms, covering different density
distributions and lighting conditions, with each cluster of mushrooms labeled with
the optimal picking path and priority). The performance of the improved DBSCAN
algorithm compared to traditional DBSCAN, Mean-Shift Clustering (Mean-Shift),
and Gaussian Mixture Model (Gaussian Mixture Model) was evaluated in terms of
clustering accuracy, path optimization rate, noise handling capability, and real-time
performance. The test results are shown in Table 4.

Table 4
Comparison of the average performance of each algorithm on the data set (n=180)
. Path False time
. Clustering accuracy L .
Algorithm (%) optimization acceptance consuming
° rate rate (%) (ms)
improve
DBSCAN 94.2 1.12 1.5 320
tradition
DBSCAN 86.7 1.31 4.8 285
Mean-Shift 79.4 1.45 8.3 410
GMM 82.1 1.38 6.9 375

Table 4 shows the improved DBSCAN excels in clustering accuracy (7.5%
better than traditional DBSCAN) and path optimization (1.12x theoretical
optimum). It adapts to mushroom density with a 1.5% false detection rate, meeting
real-time needs post-optimization, and outperforms rivals by 14.8% in dense
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clusters.

3.2 System Integration Testing Analysis

To further verify the reliability of the proposed method, this study integrates
various modules based on the Robot Operating System (ROS) platform to achieve
data communication between modules. Then, this study conducts whole machine
harvesting experiments on actual mushroom planting bases. 182 mushroom groups
are tested for their three-dimensional localization. The number of successfully
located mushroom clusters reaches 173, while only 9 fails, indicating a SR 0f 95.4%.
Further analysis of cases of failed positioning reveals that the positioning error of 5
mushroom clusters is controlled within a range of 3-5mm. This indicates that
although there are a few cases of positioning failure, the overall accuracy of
positioning is still quite high. Table 5 shows the positioning of selected mushroom
populations.

Table 5
Localization results of mushroom groups
The number of mushroom Identify the coordinates Absol Positioning
group at/mm solute error results
1 (115.2,167.8,24.3) (0.7,0.9,1.5) y
2 (179.7,96.4,25.9) (1.6,1.8,1.1) \
3 (212.4,100.6,24.1) (0.8,0.9,0.9) \
4 (231.8,212.4,26.8) (3.4,2.4,0.4) X
5 (261.1,45.6,27.4) (0.4,04,2.3) \
6 (289.4,86.1,26.2) (1.2,1.2,0.9) \
7 (300.3,110.4,25.7) (1.1,1.8,0.5) \
8 (321.9,143.3,28.3) (3.2,0.8,1.4) X
9 (379.5,189.2,26.5) (0.5,0.9,0.6) \
10 (390.7,120.5,27.4) (2.5,1.4,2.2) X
11 (423.1,140.8,23.9) (0.4,0.6,0.1) \
12 (445.6,110.2,25.2) (1.3,1.5,0.7) \

After system integration, the robot's 3D positioning error is <2mm, with a
95.4% positioning SR. Even with 3-5mm errors, the adaptive suction cup enables
successful picking, meeting MHR design goals and aiding harvest planning.To
comprehensively assess the robot’s performance, this study also compares the
recognition accuracy, picking SR, Average Picking Time (APT), and picking
efficiency of different regions during the picking process, as shown in Fig.11.
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Fig. 11. Comparison Results of Data in Various Picking Areas

For the overlapping and DenseMP areas with high picking difficulty and
damage rate, the robot has an accuracy rate of 93.8% and 95.8% for recognizing
mushroom clusters, a SR 0of 93.2% and 94.7% for picking, and an APT of 4.52s and
4.15s for mushroom clusters. This proves that the harvesting algorithms designed
for OverMP and DenseMP have good performance, improving the SR of mushroom
harvesting, reducing the rate of harvesting damage, and ensuring that the harvesting
efficiency meets the design requirements. In the whole-range picking process, the
robot estimates a SR of 92.9%, with an APT of 4.23s for mushroom clusters and a
picking efficiency of 21.25 kg/h. This satisfies the design goals of the robot and
enables automated selection of mushroom clusters in the factory building.

4. Conclusion

This study proposed a global-local optimization picking planning technique
for DenseMP using an improved DBSCAN algorithm to enhance cluster mushroom
harvesting. The model achieved prediction accuracies of 96.93% and 98.21% on
training and validation sets. The improved DBSCAN had a CA of 94.6%, ICPOR
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of 2.5%, and OOCPPER of 5.8%, outperforming other algorithms. Its runtime was
0.25s, 0.16s faster than traditional DBSCAN. The mAP reached 94.1%, with an
optimal SIDS of 0.073s/pc. The 3D positioning error was <2mm, and SR was 95.4%.
For OverMP and DenseMP, cluster recognition accuracy was 93.8% and 95.8%,
with SRs 0f 93.2% and 94.7%, and APTs of 4.52s and 4.15s. Overall, the robot had
a 92.9% SR and 21.25 kg/h efficiency, though occasional cap damage occurred,
prompting future research.
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