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KEY TECHNOLOGIES FOR DENSE MUSHROOM GROUP 

PICKING BASED ON IMPROVED DBSCAN CLUSTERING 

ALGORITHM 

Yafei LI1*, Xuanzhang ZHU2 

Traditional mushroom harvesting techniques are inadequate to meet the 

increasing demands of modern agriculture. This study proposes a dense mushroom 

cluster harvesting planning technique based on an improved Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN). The proposed method combines 

clustering and harvesting planning by optimizing the DBSCAN algorithm. Key metrics 

such as clustering accuracy, intra-cluster point omission probability, and running 

time were analyzed and compared to existing algorithms. The optimized DBSCAN 

showed superior performance with clustering accuracy of 94.6%, intra-cluster 

omission probability of 2.5%, and a reduced running time of 0.25s. The system 

achieved a recognition accuracy of 93.8% and 95.8% for mushroom clusters, with 

picking success rates of 93.2% and 94.7%, respectively. This study introduces a novel 

harvesting planning approach that improves the efficiency and success rate of 

mushroom harvesting, reducing damage and meeting the required harvesting 

efficiency. 
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concentrated; picking planning 

1. Introduction 

Mushroom plants contain rich nutritional and medicinal values, which can 

be processed and transformed into diverse foods, health products, and medicines, 

demonstrating extremely high economic value. However, the growth of mushroom 

colonies exhibits significant randomness, leading to diversity in size, shape, and 

density, and often overlapping between adjacent mushrooms. This undoubtedly 

increases the difficulty of harvesting and reduces harvesting efficiency. With the 

continuous growth of mushroom demand and production, the global mushroom 

industry is facing challenges such as harvesting costs difficultly to be controlled 

and urgent need to improve production efficiency [1-2]. In this context, mechanical 

harvesters are gradually being applied in the mushroom industry and have 

demonstrated the advantages of efficient harvesting. However, in high-value 

applications, there are extremely strict requirements for the size, quality, and 

integrity of mushrooms. Whether it is manual picking or one-time mechanical 

harvesting, it is difficult to find a perfect balance between quality, efficiency, and 
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cost. In response to the current situation, there is an urgent need to develop a 

Mushroom Harvesting Robot (MHR) with high-precision intelligent harvesting 

capabilities to meet production needs [3-4]. 

At present, the continuous improvement of artificial intelligence algorithms 

has further developed mushroom harvesting technology. To ensure timely 

harvesting of mushrooms and improve harvesting efficiency, Ji et al. proposed an 

online mushroom size detection algorithm built on deep image processing. In the 

process of machine vision recognition, the recognition accuracy of this algorithm 

was higher than 92.50%, the missed detection rate was lower than 4.95%, the false 

detection rate was lower than 2.15%, and the Diameter Measurement Error (DME) 

was less than 4.50%. This image processing algorithm had a high recognition rate 

and small DME, which could satisfy the demands of picking operations [5]. To 

achieve fully autonomous harvesting of shiitake mushrooms in greenhouses, Rong 

et al. proposed a shiitake mushroom harvesting robot based on deep model detection 

algorithm. Field experiments have verified the feasibility of the robot system, with 

a mushroom recognition Success Rate (SR) of 95% and a harvesting SR of 86.8%. 

The harvesting time for a single mushroom was 8.85 seconds [6]. To promote the 

development of the mushroom industry, Sujatanagarjuna et al. constructed an 

intelligent, automated, and scalable indoor mushroom harvesting system based on 

an improved convolutional neural network. It was found that the system had a 

training accuracy of 91.7% and a semi-automatic harvesting system, and its 

modularity and scalability allow for industrial grade use, which could be expanded 

according to the mushroom planting system required in the facility [7]. To promote 

harvesting robots to overcome complex growth environments, diverse shapes, 

dense shadows, and variable fields of view, Cong et al. proposed a lightweight 

mushroom detection model built on YOLO v3. The model achieved an average 

accuracy of 97.03%, with parameters of 29.8M and a detection speed of 19.78ms, 

demonstrating good real-time and detectability, and having 2.08 times fewer 

parameters than the original model. This study provided a vital theoretical basis for 

the automatic harvesting of fresh shiitake mushrooms [8]. 

Huang et al. designed a robotic mushroom harvesting machine to address 

the time-consuming and labor-intensive harvesting of mushrooms. This design 

includes a harvesting end effector based on bending motion, a mushroom stem 

trimming end effector, and an electric pneumatic control system. The machine 

ultimately achieved a SR of 97% [9]. To achieve intelligent and automated 

harvesting of white mushrooms, Recchia et al. developed a collaborative robot with 

dedicated arm end tools for harvesting mature mushrooms from selected areas. This 

method improved the working environment for workers and reduced work-related 

musculoskeletal disorders [10]. The labor cost of mushroom harvesting accounted 

for 50-80% of the total labor cost, and the high humidity and low temperature 

factory environment posed a risk of rheumatism for workers. Given this, Shi et al. 
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proposed a new underactuated gripper based on screw and linear bearings, which 

can perform flexible force control operations while measuring mushroom diameter. 

The static grasping force error of the gripper during the entire grasping process was 

0.195N, and the mean separation force overshoot was 1.31N. The in-situ 

measurement of mushroom diameter achieved an accuracy of 97.3% and a SR of 

98.3% [11]. To achieve the goal of automated mushroom harvesting, Hubay et al. 

proposed an image processing-based cultivation mushroom automatic harvesting 

technology. This technology processed images at a mean speed of 0.78s and 

generated coordinates with a SR of 92% [12]. 

In summary, current research on mushroom harvesting technology has 

achieved certain results in harvesting area segmentation, harvesting sequence 

planning, and recognition detection, which can realize automatic mushroom 

harvesting and grading. However, when mushrooms grow in clusters, some of them 

are obscured by other mushrooms, resulting in incomplete contour information and 

a large number of mushrooms growing in clusters. In this case, the accuracy of the 

detection algorithm will significantly decrease. Therefore, this study innovatively 

combines the ideas of clustering and harvesting planning and proposes a Dense 

Mushroom Cluster Harvesting (DMCH) planning technique based on an improved 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The 

purpose is to plan a suitable harvesting sequence based on the different growth 

characteristics of the mushroom population, ultimately achieving efficient and low 

loss harvesting of the mushroom population. 

2. Methods and materials 

2.1 Design of Dense Mushroom Group Classification Algorithm Based 

on Improved DBSCAN Algorithm 

In practical application scenarios, traditional mushroom harvesting 

algorithms face two major challenges: low harvesting efficiency and high damage 

rate. Especially in the two key mushroom clusters where overlapping phenomena 

occur frequently and are densely packed, the problem is particularly prominent. To 

address these issues, this study conducts a detailed classification of mushroom 

populations based on their different growth characteristics. Specifically, this study 

categorizes mushroom populations with severe overlapping phenomena as the first 

type of region. The second type of area includes closely arranged mushroom 

clusters with small differences in height, characterized by high density and low 

overlap, making them relatively easy to pick [13-14]. The last category is easy to 

pick areas, where dispersed, low-density, and low overlapping mushroom clusters 

are the main ones. Based on the above observations, this study clearly divides 

mushroom populations into three categories: Overlapping Mushroom Populations 

(OverMP), Dense Mushroom Populations (DenseMP), and Discrete Mushroom 

Populations (DisMP) according to the two major indicators of overlap rate and 
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density [15]. After establishing the classification criteria for mushroom clusters, 

this study designed a mushroom cluster classification algorithm based on density 

and overlap rate parameters. The overall structure is displayed in Fig.1. 
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Fig. 1. Mushroom Group Classification Algorithm 

 

In this algorithm, this study first divides the entire mushroom population 

within the view into clusters using a clustering algorithm constructed grounded on 

density indicators and filters out DisMP among them. Then, using a classification 

algorithm grounded on the Overlap Rate Index (ORI), the clustered mushroom 

clusters were classified into three categories: OverMP, DenseMP, and DisMP [16]. 

This study summarizes the clustering problem based on density indicators as a 

clustering problem and selects DBSCAN to achieve mushroom clustering based on 

specific information of the mushroom population. The core idea of the DBSCAN is 

to use the density of sample points to construct cluster classes and handle noise in 

the dataset. It does not require a preset number of clusters, can handle clusters of 

any shape, and is insensitive to outliers, as shown in Fig.2. 

Each dense area is treated as a cluster

A core idea of DBSCAN algorithm  
Fig. 2. DBSCAN Algorithm Structure 
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DBSCAN has a wide range of application scenarios, and the radius r  and 

minimum sample size N   of the algorithm will have a significant effect on the 

clustering performance. When dealing with the complex task of clustering 

mushroom clusters, the disorderly growth of mushroom clusters leads to significant 

density differences between them. The non-uniformity of this density poses a 

challenge to the algorithm, especially when selecting neighborhood radii [17]. If 

the radius value is not appropriate, it may cause a decrease in the SR of clustering. 

In other words, for datasets with uneven distribution or significant density changes, 

traditional clustering algorithms may struggle to achieve ideal clustering results. To 

solve this problem and improve the clustering effect, the DBSCAN clustering 

algorithm is improved. DBSCAN The improvement of the DBSCAN algorithm is 

to introduce adaptive local radius  , which dynamically adjusts the neighborhood 

range of the core point according to the distance of the furthest core point in the 

unclassified point, so as to filter instead of the preset parameter values. The 

improved algorithm flow is shown in Fig. 3. 

The core of improving the algorithm is to change the neighborhood range 

of the core point but still pre-set the value of r  . After randomly selecting the 

unclassified point O  in the dataset, if O  is determined as the core point, that is, 

there are at least N  core points within a circle with O  as the center and r  as the 

radius. Afterwards, only N  core points are retained in the O  neighborhood, and the 

value of    is taken as the distance from O   to the farthest core point in the 

neighborhood. Then,    is used to replace r   for filtering at point O  . In the 

modified DBSCAN algorithm, the algorithm first computes the distance from the 

unclassified point to the furthest core point within its neighborhood and 

dynamically determines the neighborhood radius of each core point based on that 

distance.   
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Fig. 3. Improved DBSCAN Clustering Algorithm Flowchart 
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For range image data, this improved method enables better adaptation to the 

density changes in different regions in the image. For example, in an image, the 

high density area (such as the target object) will have a smaller neighborhood radius, 

while the low density area (such as background or noise) will have a larger 

neighborhood radius. This dynamic adjustment allows the algorithm to more 

accurately identify the target area in the image while effectively filtering the noise. 

In the point cluster class, the adaptive radius mechanism optimizes the clustering 

process through local density information, which makes the algorithm perform 

better in processing uneven distributed data, and can more accurately divide cluster 

boundaries and reduce misclassification. 

2.2 Design of Mushroom Group Classification Method Based on ORI 

After using the density-based clustering algorithm to cluster the mushroom 

population, it will be subdivided into several mushroom population sets and several 

discrete mushroom population individuals. Next, this study needs to further classify 

these clustered mushroom populations into OverMP, DenseMP, or DisMP based on 

the ORI. Firstly, this study will examine whether there is overlap within each 

mushroom group set. If there is no overlap, then the mushroom group set is 

classified as DisMP. If there is an overlap, this study will further calculate the 

overlap rate of individual mushroom groups and calculate the average overlap rate 

of the mushroom group. If the average overlap rate is greater than or equal to the 

preset threshold, then the mushroom group is classified as OverMP. If it is less than 

the preset threshold, it is classified as DenseMP. To accurately calculate the 

overlapping area of the mushroom group, this study first uses the cosine theorem to 

calculate the angle between the centers of two circles, as well as their corresponding 

fan-shaped areas. Then, through mathematical operations, the overlapping area S  

between the two circles is calculated, as shown in equation (1) [18]. 

( )( )( )S sqrt s s a s b s c= − − −                                        (1) 

In equation (1), a , b , and c  represent the lengths of the three sides of a 

triangle. s  represents half of the circumference of the triangle. If e  and f  are two 

mushroom groups with overlapping relationships. If f   is obstructed by e  , the 

overlap rate e   of individuals in mushroom group e   can be calculated using 

equation (2). 

ef
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e
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S
 =

                                                      (2) 

In equation (2), efS
 is the overlapping area between mushroom group e  and 

f  . eS   represents the area of mushroom group e  . If a single mushroom group 

overlaps with several mushroom groups, the e   value is calculated twice. The 
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formula for calculating the mean ORI of mushroom clusters is given by equation 

(3). 
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

                                                      (3) 

In equation (3),    is the overlap rate of the mushroom group. i   is the 

overlap rate of individuals in the mushroom group that have overlapping 

relationships. e   is the number of overlapping individual mushrooms in the 

mushroom group. The mushroom community is classified and defined based on the 

actual environmental conditions. Specifically, this study defines mushroom 

populations with minimal overlap between individuals and an overlap rate of almost 

0 as DenseMP. On the contrary, if there are a large number of overlapping 

individuals within the mushroom group, and the overlap rate is high, it is defined 

as OverMP. To clearly distinguish between these two mushroom groups, this study 

sets an overlap rate threshold of 4.5%. When the overlap rate of the mushroom 

group is below this threshold, it is considered DenseMP. When the overlap rate is 

higher than or equal to this threshold, it is considered OverMP. 

2.3 Design of DMCH Planning Method 

To output the sequence of harvesting all mushroom clusters while ensuring 

high efficiency and low damage rate, this study proposes a DMCH planning method 

that combines global planning and local planning. The overall process of this 

picking method is shown in Fig.4. 
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Fig. 4. Process of DMCH Planning Method 

 

This method combines global planning with local harvesting strategies. At 

the global planning level, the main goal is to improve harvesting efficiency, and to 

plan the harvesting sequence for each mushroom group, treating the mushroom 

group as the smallest planning unit. The planning process comprehensively 
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considers factors such as the difficulty of harvesting three types of mushroom 

clusters, the calculation time required by the algorithm, and the actual harvesting 

time, and finally outputs a reasonable mushroom cluster harvesting sequence. In 

terms of local harvesting strategies, this study focuses more on reducing the damage 

rate during the harvesting process, while also taking into account efficiency 

indicators. This study specifically designs a strategy to address the issue of high 

harvesting damage caused by overlapping mushroom populations. For densely 

grown mushroom clusters, this study aims to address high picking resistance caused 

by the close arrangement of mushroom clusters. For dispersed mushroom 

populations, this study aims to improve harvesting efficiency and conducts 

corresponding harvesting planning. The schematic diagram of the picking planning 

strategy that combines global and local aspects is shown in Fig. 5. 
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Ⅱ
Ⅲ Ⅲ Ⅱ Ⅰ

Global picking planning

Local picking planning

 

Fig. 5. DMCH Planning Method 

 

In Fig.5, the proposed classification algorithm divides the mushroom 

population into three categories: I, II, and III. I is OverMP, II is DenseMP, and III 

is DisMP. The global harvesting plan plans the harvesting sequence of three 

mushroom groups based on corresponding indicators. The picking sequence is to 

pick DisMP first, then DenseMP, and finally OverMP. Local harvesting planning 

refers to the planning of harvesting sequences within three types of mushroom 

clusters: I, II, and III. 

The path planning for mushroom harvesting this time uses Genetic 

Algorithm (GA). This algorithm simulates phenomena such as genetics, mutation, 

and natural selection in the process of biological evolution to solve complex 

optimization problems. It has strong global search capability and wide applicability 

and has been widely utilized in path planning issues in various fields [19-21]. GA 

has unique advantages in solving complex optimization problems, but it also has 

problems such as slow convergence speed and susceptibility to getting stuck in local 

optima. In practical applications, algorithms need to be improved based on the 

specific characteristics and requirements of the problem [22-23]. Therefore, this 

study focuses on OverMP and proposes an improved GA based on introducing a 
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priority constraint matrix, considering its overlapping occlusion characteristics. The 

improved GA operation process is shown in Fig.6. 
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Fig. 6. Improved GA Process Diagram 

 

In improving GA, the first step is to establish a priority constraint matrix 

pM  built on the occlusion between mushroom clusters. pM  is an n n -dimensional 

matrix, where n  represents the quantity of harvestable mushroom populations and 

, 1,2,...,i j n=  . The formula for generating the initial population based on pM   is 

shown in equation (4). 
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Next, the fitness function f   defined by calculating the actual path of 

mushroom harvesting is shown in equation (5). 
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The optimization process first applies the roulette wheel selection operator 

and combines it with the elite retention strategy to ensure that the top n  individuals 

with the best performance in the population can be retained. Subsequently, the 

roulette wheel selection method is used again to select individuals and involve them 

in the process of crossover and mutation. During the crossover process, this study 

employs the single point mapping crossover method. This method effectively 
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avoids the occurrence of duplicated gene fragments by establishing a mapping table 

between two parental chromosomes. The mutation process uses the exchange 

mutation operator, which randomly selects two gene fragments and exchanges their 

positions. When the fitness value of the population gradually stabilizes or reaches 

the maximum iterations set by the algorithm, the optimization process ends. For 

densely growing mushroom clusters, due to their tight arrangement and high 

friction during harvesting, this study specially designs a spiral harvesting sequence 

that gradually advances from the periphery to the center. The dispersed mushroom 

clusters are optimized using basic GA to minimize the total harvesting path and 

output the optimal harvesting sequence.By the above methods, the overall scheme 

of dense mushroom group picking was obtained, as shown in Fig. 7. 
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Fig.7 Design and architecture diagram of the overall picking scheme of dense mushrooms 
 

In Fig. 7, the visual module is responsible for identifying the mushroom group 

in the field of vision, identifying and filtering the depth information through the 

algorithm, obtaining the actual position and size of the mushroom group after 

converting the coordinate system, and then transmitting it to the picking planning 

module. The picking planning module includes mushroom group classification and 

picking sequence planning. The former divides mushroom groups into three 

categories: overlapping, dense and dispersed, while the latter plans the picking 

order between and within clusters. The control module carries out the picking task 

according to the plan, and the area is re-detected to pick the leaky mushroom group. 

The whole process cycles until the current area is picked and then transferred to the 

next area. The system realizes the accurate identification, classification, planning 

of the picking sequence and the execution of the picking task, and improves the 

picking efficiency. 
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3. Results 

3.1 Algorithm Performance Testing 

To validate the DMCH method, this study captured 4,870 images (1280×
720 pixels) of mushroom clusters across four growth stages in an industrial park 

using a RealsenseD435i depth camera mounted 25–30 cm above the mushrooms 

on an MHR. The dataset included 1,640 photos for the densest group, 1,450 for the 

second stage, 930 for the third, and 850 for the fourth. Using OpenCV, images were 

enhanced via flipping, cropping, rotation, color adjustment, noise addition, and 

scaling, expanding the dataset to 7,300 images for improved recognition accuracy. 

Table 1 shows the configuration parameters for this experiment. 
Table 1 

Experimental environment 

parameter Experimental environment 

Tool Intel Core i5-4200 CPU 

Processor 11th GenIntel(R)Core(TM)i5-1135G7@2.40GHz-2.42GHz 

Memory capacity 4GB RAM 

Operating system Windows7 

Data mining software SPSS Modeler18.0 

Programming environment Python3.8.3 

Programming IDE Anaconda3 

model building Python3.8.3 

 

This study used Intel Core i5-4200 CPU as the platform and divided the 

corresponding training and validation sets in a 4:1 ratio, and trained the research 

model on them, as shown in Fig.8. 
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Fig. 8. Model Training Results 

 

In Fig.8 (a), the loss of the research method in the two sets gradually 

decreases with the iteration of learning times. When the last training ended, the loss 

rates in the training and validation sets decrease from 0.1800 to 0.1084, and 0.1362 

to 0.0915, indicating a continuous growth in generalization ability. In Fig.8 (b), the 

research model achieves a prediction accuracy of over 90% on both sets, and as the 

iterations increase, the final accuracies are 96.93% and 98.21%, respectively. 
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The paper uses the Clustering Accuracy (CA), Intra-Cluster Point Omission 

Rate (ICPOR), and Out Of Cluster Point Partitioning Error Rate (OOCPPER) as 

evaluation indicators and compares the clustering effect of the proposed algorithm 

with spectral clustering, K-means, and traditional DBSCAN algorithms, as shown 

in Fig.9 (a). This study also uses mean Average Precision (mAP) and Single Image 

Detection Speed (SIDS) as indicators, and Faster-RCNN, YOLOv4, and YOLOv5s 

as comparison algorithms to test the performance. Fig.9 (b) shows the results. 
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Fig. 9. Algorithm Comparison Results 
 

Fig.9 (a) compares clustering algorithms, with the improved DBSCAN 

achieving 94.6% CA, 2.5% ICPOR, and 5.8% OOCPPER, outperforming others by 

automatically adjusting the neighborhood radius based on clustering data features. 

Its runtime (0.25s) is 0.16s faster than traditional DBSCAN, demonstrating superior 

efficiency in non-spherical clustering. Fig.9 (b) highlights recognition performance, 

where the research algorithm reaches 94.1% mAP (4.6% higher than competitors) 

and 0.073s/spic SIDS, indicating better detection capabilities. Table 2 shows the 

actual and fitted parameters of OverMP obtained. 

Table 2 

Calculation results of OverMP actual parameters and fitting parameters 

Figure 

serial 

number 

Research algorithm Traditional DBSCAN algorithm 

Relative 

error of the 

center (%) 

Relative 

error of the 

radius (%) 

Relative 

deviation 

(%) 

Relative 

error of the 

center (%) 

Relative 

error of the 

radius (%) 

Relative 

deviation 

(%) 

1 0 3.92 0 2.76 3.92 2.89 

2 1.47 0 0.87 3.28 4.41 1.93 

3 1.81 29.49 1.43 1.81 28.21 1.43 

4 4.08 4.08 3.39 8.65 0 7.19 

5 4 2.53 2.35 4 1.27 2.35 

6 6.56 14.71 4.86 27.74 26.47 20.56 

7 15.69 13.73 12.45 19.98 17.65 15.86 
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8 5.42 3.95 3.27 8.82 5.26 5.32 

9 5.98 3.33 3.69 20.76 2.22 12.79 

10 10.53 10.53 6.84 47.05 36.84 30.56 

Mean 5.554 8.627 3.915 14.485 12.625 10.088 

 

The research algorithm exhibits superior performance in circle-fitting for 

mushroom colonies. Its calculated center position has a shorter distance and lower 

relative error (6.90% ARE) compared to the actual center than traditional 

algorithms (10.93% ARE). The fitted radius is also closer to the actual, with a 6.07% 

ARE versus traditional algorithms' 7.21%. Additionally, the radius deviation is 

4.12%, 2.75% lower than traditional methods. Overall, the research algorithm 

significantly enhances accuracy and precision. The distance error under the above 

method is analyzed later, and the results are shown in Fig.10. 
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Fig. 10. Comparison Results of Distance Error 

 

In Fig. 10(a), the ranging error of the optimization algorithm is significantly 

reduced, with its minimum distance error below 1.0m, while the minimum values 

of the other three algorithms are all greater than 1.25m. When the number of 

samples is less than 150, the error reduction rate of the optimization algorithm is 

slower compared to the other comparison algorithms; however, overall, the error 

values of the other three algorithms remain higher than those of the optimization 

algorithm. In Fig. 10(b), as the distance increases, the distance errors of the other 

three comparison algorithms show a more pronounced and rapid increase, with their 

maximum ranging errors all exceeding 3.0m. In contrast, the error of the research 

algorithm remains below 1.5m and is relatively less affected by distance. 

To further verify the reliability of the proposed method, the publicly available 

datasets in literature [7] were used to compare the performance of each algorithm. 

Through the data preprocessing method described above, 5475 images were 

obtained, and the training set and test set were divided according to the ratio of 4:1. 

Of these, 1095 images were used for algorithm testing and 4380 images were used 



160                                                           Yafei Li, Xuanzhang Zhu 

for algorithm training. The test results of each algorithm evaluation index are shown 

in Table 3. 
Table 3 

Test results of the different algorithms 

Different 

algorithms 

Algorithm cluster effect 
Algorithm generalization 

ability 

Cluster 

accuracy/％ 

Within-cluster 

point omission 

probability/％ 

Out-of-cluster 

point partition 

error rate/％ 

mAP/％ 
Detection 

speed/s 

RCNN 81.4 9.7 8.3 78.9 0.306 

YOLOv4s 79.8 11.2 5.7 82.1 0.142 

YOLOv5s 82.4 4.9 6.8 85.3 0.223 

Research 

algorithm 
95.2 1.9 4.0 93.8 0.065 

Table 3 reveals the proposed algorithm's notable advantages. It achieved 

95.2% clustering accuracy, outperforming others, with only 1.9% omission and 4.0% 

error rates, ensuring comprehensive and precise mushroom group detection. It also 

boasts high generalization (93.8% mAP) and fast speed (0.065s). 

Then, the study selected the widely recognized open dataset &quot; 

FungalGrowth-2023 Dataset&quot; in the field of agricultural robotics (containing 

3D point cloud data for 180 real greenhouse mushrooms, covering different density 

distributions and lighting conditions, with each cluster of mushrooms labeled with 

the optimal picking path and priority). The performance of the improved DBSCAN 

algorithm compared to traditional DBSCAN, Mean-Shift Clustering (Mean-Shift), 

and Gaussian Mixture Model (Gaussian Mixture Model) was evaluated in terms of 

clustering accuracy, path optimization rate, noise handling capability, and real-time 

performance. The test results are shown in Table 4. 

Table 4 

Comparison of the average performance of each algorithm on the data set (n=180) 

Algorithm 
Clustering accuracy 

(%) 

Path 

optimization 

rate 

False 

acceptance 

rate (%) 

time 

consuming 

(ms) 

improve 

DBSCAN 
94.2 1.12 1.5 320 

tradition 

DBSCAN 
86.7 1.31 4.8 285 

Mean-Shift 79.4 1.45 8.3 410 

GMM 82.1 1.38 6.9 375 
 

Table 4 shows the improved DBSCAN excels in clustering accuracy (7.5% 

better than traditional DBSCAN) and path optimization (1.12x theoretical 

optimum). It adapts to mushroom density with a 1.5% false detection rate, meeting 

real-time needs post-optimization, and outperforms rivals by 14.8% in dense 
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clusters. 
 

3.2 System Integration Testing Analysis 

To further verify the reliability of the proposed method, this study integrates 

various modules based on the Robot Operating System (ROS) platform to achieve 

data communication between modules. Then, this study conducts whole machine 

harvesting experiments on actual mushroom planting bases. 182 mushroom groups 

are tested for their three-dimensional localization. The number of successfully 

located mushroom clusters reaches 173, while only 9 fails, indicating a SR of 95.4%. 

Further analysis of cases of failed positioning reveals that the positioning error of 5 

mushroom clusters is controlled within a range of 3-5mm. This indicates that 

although there are a few cases of positioning failure, the overall accuracy of 

positioning is still quite high. Table 5 shows the positioning of selected mushroom 

populations. 
Table 5 

Localization results of mushroom groups 

The number of mushroom 

group 

Identify the coordinates 

at/mm 
Absolute error 

Positioning 

results 

1 (115.2,167.8,24.3) (0.7,0.9,1.5) √ 

2 (179.7,96.4,25.9) (1.6,1.8,1.1) √ 

3 (212.4,100.6,24.1) (0.8,0.9,0.9) √ 

4 (231.8,212.4,26.8) (3.4,2.4,0.4) × 

5 (261.1,45.6,27.4) (0.4,0.4,2.3) √ 

6 (289.4,86.1,26.2) (1.2,1.2,0.9) √ 

7 (300.3,110.4,25.7) (1.1,1.8,0.5) √ 

8 (321.9,143.3,28.3) (3.2,0.8,1.4) × 

9 (379.5,189.2,26.5) (0.5,0.9,0.6) √ 

10 (390.7,120.5,27.4) (2.5,1.4,2.2) × 

11 (423.1,140.8,23.9) (0.4,0.6,0.1) √ 

12 (445.6,110.2,25.2) (1.3,1.5,0.7) √ 

 

After system integration, the robot's 3D positioning error is <2mm, with a 

95.4% positioning SR. Even with 3-5mm errors, the adaptive suction cup enables 

successful picking, meeting MHR design goals and aiding harvest planning.To 

comprehensively assess the robot’s performance, this study also compares the 

recognition accuracy, picking SR, Average Picking Time (APT), and picking 

efficiency of different regions during the picking process, as shown in Fig.11. 
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Fig. 11. Comparison Results of Data in Various Picking Areas 
 

For the overlapping and DenseMP areas with high picking difficulty and 

damage rate, the robot has an accuracy rate of 93.8% and 95.8% for recognizing 

mushroom clusters, a SR of 93.2% and 94.7% for picking, and an APT of 4.52s and 

4.15s for mushroom clusters. This proves that the harvesting algorithms designed 

for OverMP and DenseMP have good performance, improving the SR of mushroom 

harvesting, reducing the rate of harvesting damage, and ensuring that the harvesting 

efficiency meets the design requirements. In the whole-range picking process, the 

robot estimates a SR of 92.9%, with an APT of 4.23s for mushroom clusters and a 

picking efficiency of 21.25 kg/h. This satisfies the design goals of the robot and 

enables automated selection of mushroom clusters in the factory building. 

4. Conclusion 

This study proposed a global-local optimization picking planning technique 

for DenseMP using an improved DBSCAN algorithm to enhance cluster mushroom 

harvesting. The model achieved prediction accuracies of 96.93% and 98.21% on 

training and validation sets. The improved DBSCAN had a CA of 94.6%, ICPOR 
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of 2.5%, and OOCPPER of 5.8%, outperforming other algorithms. Its runtime was 

0.25s, 0.16s faster than traditional DBSCAN. The mAP reached 94.1%, with an 

optimal SIDS of 0.073s/pc. The 3D positioning error was <2mm, and SR was 95.4%. 

For OverMP and DenseMP, cluster recognition accuracy was 93.8% and 95.8%, 

with SRs of 93.2% and 94.7%, and APTs of 4.52s and 4.15s. Overall, the robot had 

a 92.9% SR and 21.25 kg/h efficiency, though occasional cap damage occurred, 

prompting future research. 
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