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POPOV-BELEVICH-HAUTUS THEOREM FOR LINEAR 
MULTITIME AUTONOMOUS DYNAMICAL SYSTEMS  

Cristian GHIU1 

Această lucrare studiaza sistemele liniare multitemporale comandate.  Se 
demonstrează că un sistem liniar multitemporal staţionar este izomorf cu un nou 
sistem, mai simplu, punîndu-se în evidenţă un subsistem complet controlabil pentru 
acest nou sistem. În final se demonstrează o Teoremă de tip Popov-Belevich-Hautus 
pentru sisteme  multitemporale, scopul acestui articol.  

 
In this paper we are concerned with multitime linear dynamical system. First, 

we identify a certain isomorphism between the initial system and another simpler 
one, using as a key tool, a completely controllable subsystem. Then, we present a 
Popov-Belevich-Hautus type Theorem for multitime systems.  

  
Keywords: controllability, control matrix, isomorphic systems, Popov theorems.  
MSC2000: 93B05; 49J20; 93C05; 93C35. 

1. Introduction 

Multitime control theory has been developed in many directions. In 
Romania, one of them was initiated and well developed by C. Udrişte: multitime 
dynamical systems; multitime maximum principle ([1] – [8]), and another by V. 
Prepeliţă: the class of hybrid systems: discrete and continuous [9], [10]. In 
Germany, there is a research group led by S. Pickenhain ([11],  [12],  [13]) who 
studied Dieudonné – Rashevsky  type problems employing advanced techniques 
from the distribution theory. In USA, a research group led by J.A. Ball has 
obtained different results via discrete and robust control (see [14]). 

The present paper follows the direction proposed by the paper [1]. More 
precisely, we prove some new theorems concerning the multitime control systems. 
These results may be regarded as non-trivial extensions of some well-known 
results in the single-time theory (see [15]).     

2. Controllability of linear multitime autonomous dynamical sistems 

In this section we recall some mathematical ingredients from the paper  
[1]. Consider the autonomous control system  
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( ) ( )x M x t N u t
t α α αα

∂
= +

∂
,         1, mα∀ = ,                                                (1) 

where  

( )1 2, ,..., m mt t t t= ∈R , ( ) ( )1 2
,1, ,..., :

Tn m n
nx x x x M= → =R R R , 

Mα ∈  ( )nM R , ( ),n kN Mα ∈ R , Mα  and Nα  are constant matrices   

and ( ),1: m k
ku Mα → =R R R  are 1C - control functions. 

 The system (1) is said to be completely integrable if ( )0 0, m nt x∀ ∈ ×R R , 

there exist an open set 0
mD ⊆ R , 0 0t D∈ , and a differentiable function 

0: nx D →R  such that ( )x ⋅  verifies the system (1) on 0D  and ( )0 0x t x= . In this 
case,  ( )x ⋅  will be called a solution for (1).  
 We reformulate a result in [1] for autonomous systems. 
 
 Theorem 1. The system (1) is completely integrable if and only if the 
following relations hold 

M M M Mα β β α= ,         , 1,mα β∀ = ,                                                (2) 

          ( ) ( ) ( ) ( )
uuM N u t N t M N u t N t

t t
βα

α β β α β α α ββ α

∂∂
+ = +

∂ ∂
,                        (3) 

mt∀ ∈R , , 1, mα β∀ = . 
 In these conditions, any solution ( )x ⋅  will be a 2C - solution and it can be 
uniquely extended to a global solution ( ): m nx →R R . Moreover, if  two solutions 

coincide at a point, then they will coincide on the whole space mR .  
 

Definition 1.  Suppose that the matrices 1 2, ,..., nM M M  verify (2) for all 

, 1, mα β = . Then the vector space 

( ){ ( )
}

1
,11,

| :  is of class , 1,

      and verifies (3) for all , 

m k
km

u u u M C mα αα
α

α β
=

= → = ∀ =R R R
 

is called the admissible controls space associated to the system (1). 
 So, if M M M Mα β β α= , , 1, mα β∀ = , then the system (1) is completely 

integrable if and only if ( ) 1,m
uα α=

 is a control function. Thereafter, by a solution 
we mean a global solution. 
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      Definition 2.  Let us consider the system (1), with the matrices Mα  
verifying the relations (2). 

a) For ms∈R  and ny∈R , the pair ( , )s y  is called  phase of system (1),  
with condition 0 0( )x t x= , if ( )x s y= , where ( )x ⋅  is the unique solution of 
this problem. 

b) For ( ) ( )0 0, , , m nt x s y ∈ ×R R , we say that the phase 0 0( , )t x  is  transferred 

to the phase ( , )s y  if the problems { }0 0(1) , ( )x t x=  and { }(1) , ( )x s y=  
have  the same solution (with the same control ( )u ⋅  for both); or, 
equivalently, the solution ( )x ⋅  for problem { }0 0(1) , ( )x t x=  verifies 

( )x s y= . We say that ( )u ⋅  transfers  the phase 0 0( , )t x  to  the phase 
( , )s y . 

c) A phase ( , )t x  is called reachable if there exists 0
mt ∈R , with 0t tα α< , 

α∀ , and there exists a control ( )u ⋅  which transfers the phase 0( ,0)t  to 
the phase ( , )t x . 

d) A phase ( , )t x  is called controllable if there exist ms∈R , with s tα α> , 
α∀ , and a control ( )u ⋅  which transfers the phase ( , )t x  to the phase 

( ,0)s . 
e) Let 0 , mt t∈R , with 0t tα α< , α∀ . The system (1) is called completely 

reachable from 0t  to t , if  for all nx∈R , the phase 0( ,0)t  is  transferred 
to the phase ( , )t x  ; i.e., for all x , the phase ( , )t x  is reachable for the 
same 0t .  

f) Let mt∈R .  The system (1) is called completely reachable at the moment 
t , if for all 0

mt ∈R , with 0t tα α< , α∀ , and for all nx∈R , the phase 

0( ,0)t  is  transferred to the phase ( , )t x . 
g) Let 0 , mt t∈R , with 0t tα α< , α∀ . The system (1) is called completely 

controllable from 0t  to t , if for all nx∈R ,  the phase 0( , )t x  is  
transferred to the phase ( ,0);t  i.e., for all x , the phase 0( , )t x  is 
controllable for the same t . 

h) Let 0
mt ∈R . The system (1) is called completely controllable at the 

moment 0t , if for all mt∈R , with 0t tα α> , α∀ , and for all nx∈R , the 
phase 0( , )t x  is  tranferred to the phase ( ,0)t . 
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i) The system (1) is called completely reachable if it is completely reachable 
at any  moment  in mR . 

      The system (1) is called completely controllable if it is completely 
controllable at any moment in mR . 

 
Definition 3.  Let  us consider that the matrices Mα ∈ ( )nM R , 1, mα∀ =  

verify the relations (2). For each 1, mα = , we define the matrix 

( )1 2
1 2 1 2: ... ... ... ...mkk k

m mG N M N M N M N M M M Nα α α α α α= ⋅ ⋅ ⋅  

The matrix Gα  contains all block matrices of the form 
1 2

1 2 ... mkk k
mM M M Nα⋅ ⋅ ⋅ , 

with  1 20 ; ;...; 1mk k k n≤ ≤ − .  
Further, the order of the block matrices 1 2

1 2 ... mkk k
mM M M Nα⋅ ⋅ ⋅  in Gα  has to be 

specified. In this way, the matrix Gα  will be well (unique) defined. 

Let us define an order relation on the  set  ( ){ }1 2 1 2; ;...; | 0 ; ;...; 1m mk k k k k k n≤ ≤ − , 
denoted by ≺  : 

( ) ( )1 2 1 2; ;...; ; ;...;m mk k k q q q≺  iff  

1 2 1 2... ...m mk k k q q q+ + + < + + +   
or  

1 2 1 2... ...m mk k k q q q+ + + = + + +  and  

1 1k q>  or there exists 2,j m=  such that 1 1 2 2 1 1, , ..., ,j j j jk q k q k q k q− −= = = > , or 

( ) ( )1 2 1 2; ;...; ; ;...;m mk k k q q q=  .  

 This means that the block matrices 1 2
1 2 ... mkk k

mM M M Nα⋅ ⋅ ⋅  are written in the 
increasing order of the sum 1 2 ... mk k k+ + +  in Gα ; in the case when two such 
sums are equal, the block matrices are written in the decreasing lexicographical 
order of ( )1 2; ;...; mk k k . 
The matrix 

( )1 2: ... mG G G G=  
is called the controllability matrix of  system (1). 
 
 
 Notations: Let K  be a field and ( ),m nA M K∈ . We denote by Im( )A  and 
by Ker( )A  the image and the kernel, respectively, of linear map 
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( ) ( ),1 ,1: n m
n mf K M K K M K= → = ,   ( )f x Ax= . 

One can  readily notice that Im( )A  is the subspace of ( ),1
m

mK M K=  generated 
by the columns of A . 
 
 Theorem 2 ([1]).  Let us consider the system (1), with the matrices Mα  
verifying  the relations (2). Moreover,  we suppose that 

T T T T T TM N N N N M M N N N N Mα β β β β α β α α α α β+ = + ,      , 1,mα β∀ = .                  (4) 

      i) If 0t tα α> , α∀  (or 0t tα α< , α∀ ), then the phase 0 0( , )t x  is  transferred to 
the phase ( , )t y  if and only if  

0
( )0 Im( )M t tx e y G
α αα −− ∈ , 

equivalently, 

0
( )0 Im( )M t ty e x G
α αα −− ∈ . 

     ii) The phase 0 0( , )t x  is controllable if and only if 0 Im( )x G∈ . If there exists  

0t  such that the phase 0 0( , )t x  is controllable, then for all t , the phases 0( , )t x  are 
controllable. 
     iii) The phase ( , )t y  is reachable if and only if Im( )y G∈ . If there exists t  
such that the phase ( , )t y  is reachable, then for all s , the phases ( , )s y  are 
reachable. 
     iv) If the phase 0 0( , )t x  is controllable (or reachable), then for all t , the phases 

0( , )t x  are controllable and reachable. 
     v) Let 0 , mt tα α ∈R , with 0t tα α< , α∀ . The system is completely controllable 
from 0t  to t   if and only if rank G n= . 
     vi) Let 0 , mt tα α ∈R , cu  0t tα α< , α∀ .  The system is completely reachable from 

0t  to t  if and only if rank G n= . 
     vii) If there exist 0 , mt tα α ∈R , with 0t tα α< , α∀ , and if the system is completely 
controllable (or completely reachable) from 0t  to t , then the system is completely 
controllable and completely reachable (equivalent  rank G n= ). 

3. Isomorphic systems. The Popov - Belevich - Hautus Theorem 

In this section we present the main results of our paper. Recall that Mα , 

Mα
� ∈ ( )nM R , Nα , Nα

� ∈ ( ),n kM R  are constant matrices ( 1, mα = ). 
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Definition 4. Let us denote by 
( ) ( )( ): ;M Nα αα α

Σ =   and ( ) ( )( ): ;M Nα αα α
Σ = � �� , 

 respectively, the following autonomous systems 

( ) ( )x M x t N u t
t α α αα

∂
= +

∂
,         1, mα∀ = ,                                              (Σ ) 

( ) ( )x M x t N u t
t α α αα

∂
= +

∂
� � ,         1, mα∀ = .                                             (Σ� ) 

The systems Σ  and Σ�  are isomorphic if there exists an invertible matrix 
T ∈ ( )nM R  such that  

1M T M Tα α
−=�   and  1N T Nα α

−=� ,    1, mα∀ = . 
In this case, we say that the matrix T  determines an isomorphism between Σ  and 
Σ� . 
 
It is noteworthy that if such T  does exist, then  the matrices Mα  verify relations 
(2) iff the matrices Mα

�  verify relations (2) ; similarly, the matrices Mα , Nα  
verify (4)  iff  the matrices Mα

� , Nα
�  verify (4). 

 The isomorphism of autonomous systems is an equivalence relation. 
 The next proposition contains some straightforward properties regarding  
the systems Σ  and Σ� . 
 
 Proposition 1. Consider the isomorphic systems Σ  and Σ� , via the matrix 
T . Suppose that Σ  (and hence Σ� ) verifies relations (2). 

a) The function ( ) mu ,1=αα   is a control for Σ  if and only if  ( ) mu ,1=αα  

is a control for Σ� . In other words, ( ) mu ,1=αα  verifies (3) if and only if it also 

verifies the corresponding relations (3) for Σ� . So two isomorphic systems have 
the same control space. 

b) The function ( )x ⋅  is the solution of problem { }0 0, ( )x t xΣ =  if and 

only if 1( ) ( )x T x−⋅ = ⋅�  is the solution of problem  { }1
0 0, ( )x t T x−Σ =� � . 

c) If G  and G�  are the contollability matrices of the systems Σ  and 
Σ�  respectively, then 1G T G−=� . So, if the relations (4) hold, we deducem from 
Theorem 2 that the system Σ  is completely controllable if and only if the system 
Σ�  is completely controllable (The last statement remains valid even if relations 
(4) do not hold). 
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Proposition 2.  If the matrices Mα  verify (2) and G  is the contollability 
matrix  of  system (1), then ( ) ( )Im ImM G Gα ⊆ , i.e., ( )Im G  is an Mα  invariant 

subspace ( 1, mα∀ = ). 
Proof.  Let jN β  be the j -th column of the matrix Nβ . The set ( )Im G  is 

the subspace of ( ),1
n

nM=R R  generated by the columns of G , i.e., 
1 2

1 2 ... mkk k
m jM M M N β⋅ ⋅ ⋅ ,    1 20 ; ;...; 1mk k k n≤ ≤ − ,    0 j k≤ ≤ .    

We have   ( )1 2 1 2 1
1 2 1 2... ... ...m mk k kk k k k

m j m jM M M M N M M M M Nα
α β α β

+⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ . For 

2k nα ≤ − , the last matrix is in ( )Im G .  
It rests to study the case 1k nα = − . Using Hamilton – Cayley Theorem,  

there exist 0 1 1, ,..., na a a − ∈R  such that  
1

0

n
n p

p
p

M a Mα α

−

=

= ∑ . So, for 1k nα = − , we 

have 

( ) ( )1 2 1 2

1

1 2 1 2
0

... ... ... Imm m

n
k kk k k k p
m j p m j

p
M M M M N a M M M M N Gα β α β

−

=

⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ∈∑ . 

 
Theorem 3. Let us assume that the matrices Mα ∈ ( )nM R , Nα ∈  

( ),n kM R , 1,mα∀ =  verify the relations (2) and (4). Let ( ) ( )( ): ;M Nα αα α
Σ =  be 

the system 

( ) ( )x M x t N u t
t α α αα

∂
= +

∂
,         1, mα∀ = ,                                              (Σ ) 

whose controllability matrix G  has rank G r= . Suppose Σ  is not completely 
controllable,  hence r n< . 
 If 0r = , then 0Nα = , α∀ , hence ( ) ( )( ),: ; n kM Oα α α

Σ = . 

 If  1 r n≤ < , then :  
(1) there exists a system ( ) ( )( ): ;M Nα αα α

Σ = � �� , which is isomorphic with Σ , 

where 
,1 ,2

, ,3n r r

L L
M

O L
α α

α
α−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

� ,   ,1

,n r k

K
N

O
α

α
−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

� , 

and ( ),1 rL Mα ∈ R , ( ),2 ,r n rL Mα −∈ R , ( ),3 n rL Mα −∈ R , ( ),1 ,r kK Mα ∈ R  ; ,n r rO −  
and ,n r kO −  are null matrices;  
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(2) the system ( ) ( )( )1 ,1 ,1: ;L Kα αα α
Σ =  is completely controllable (the system 

1Σ verify also the relations (2) şi (4) ). 
 

In fact, if G�  and 1G  are the controllability matrices of systems Σ�  and 1Σ  

respectively,  then 1G
G

O
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

� .  Also ,3 ,3 ,3 ,3L L L Lα β β α= , , 1,mα β∀ = . 

Proof. It is sufficient to prove the case 1r ≥ . 
 We have ( )( )dim Im G r= . Let { }1 2, ,..., rv v v  be a basis in ( )Im G . We 

complete it to a basis B { }1 2 1, ,..., , ,...,r r nv v v v v+=  of ( ),1
n

nM=R R . Let T  be the 
matrix which has the vector columns 1 2 1, ,..., , ,...,r r nv v v v v+ . The matrix T  is the 
switching matrix from the canonical basis to the basis B . We consider the linear 
application  

( ) ( ),1 ,1: n n
n nM Mϕ = → =R R R R ,   ( )x M xαϕ = . 

According to Proposition 2, the set ( )Im G  is a ϕ  invariant subspace. It follows 
that the matrix of ϕ  with respect to the basis B , has the form: 
 

      ,1 ,2

, ,3n r r

L L
O L

α α

α−

⎛ ⎞
⎜ ⎟
⎝ ⎠

,                                                   (5) 

where ( ),1 rL Mα ∈ R , ( ),2 ,r n rL Mα −∈ R , ( ),3 n rL Mα −∈ R . On the other hand, the 
associated matrix of ϕ  , with respect to the canonical basis, is Mα . The relation 
between the two matrices is  

,1 ,21

, ,3n r r

L L
T M T

O L
α α

α
α

−

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

.                                            (6) 

We choose Mα
�  as the matrix (5). 

 Let g  be the number of columns for G .We consider the linear application 
( ) ( ),1 ,1: g n

g nM Mψ = → =R R R R ,   ( )y G yψ = . 

Denote by ( ),can BM ψ  the matrix associated to ψ , as linear application from gR  

with the canonical basis, to nR  with the basis B . Denote by ( ),can canM ψ  the 

matrix associated to ψ , as linear application from gR  with canonical basis (in 
gR ), to nR  with canonical basis (in nR ). Denote by ( ),B canM Id  the matrix 

associated to the identity on nR  with basis B , to nR  with canonical basis. 
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( ),g canR
ψ

→ ( ),n BR
Id
→ ( ),n canR  

From the equality Id ψ ψ=D , passing to the associated matrices we find 
                    ( ),B canM Id ⋅ ( ),can BM ψ = ( ),can canM ψ .                              (7) 

But ( ),can canM Gψ =  and ( ),B canM Id T= .  

Since ( )y Gyψ = ∈ ( )Im G = { }1 2, ,..., rSp v v v , the matrix ( ),can BM ψ is of 

the  form ( ),
,

can B
n r g

K
M

O
ψ

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, with ( ),r gK M∈ R . The relation (7) becomes 

,n r g

K
T G

O −

⎛ ⎞
=⎜ ⎟

⎝ ⎠
  or   1

,n r g

K
T G

O
−

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

.                                  (8) 

If we multiply, at the left, the columns of Nα  (which are columns of the matrix 
G ), by the relation (8), we obtain 

,11

,n r k

K
T N

O
α

α
−

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

,    with  ( ),1 ,r kK Mα ∈ R .                                (9) 

We choose as ,1

,n r k

K
N

O
α

α
−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

� . From (6) şi (9) it follows that T  determines an 

isomorphism between systems Σ  and Σ� . Hence the matrices Mα
� , Nα

� verify the 
relations (2) şi (4) corresponding to the system Σ�  (see the remarks after  the 
Definition 4). 

 We have ,1 ,1

,n r k

L K
M N

O
β α

β α
−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

� �  and 

           
1 2

1 2 1,1 2,1 ,1 ,1
1 2

,

...
...

m

m

kk k
mkk k

m
n r k

L L L K
M M M N

O
α

α
−

⎛ ⎞⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ = ⎜ ⎟⎜ ⎟

⎝ ⎠
� � � � ,  1 2; ;...; 0mk k k∀ ≥ . 

It follows 1

,n r g

G
G

O −

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

� . The relations (2) for Σ�  become 

             M M M Mα β β α=� � � �  or  ,1 ,1 ,1 ,1

, ,3 ,3 , ,3 ,3

... ...

n r r n r r

L L L L
O L L O L L
α β β α

α β β α− −

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.  

Hence, the relations (2) are  true for 1Σ , too. And it follows the 
equalities ,3 ,3 ,3 ,3L L L Lα β β α= . 

The relations (4) for Σ�  are  
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T T T T T TM N N N N M M N N N N Mα β β β β α β α α α α β+ = +� � � � � � � � � � � �  
or  

                   ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1

, ,

T T T T T T

n r k n r k

L K K K K L L K K K K L
O O

α β β β β α β α α α α β

− −

⎛ ⎞ ⎛ ⎞+ +
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,  

so the relations (4) are true for system 1Σ , too. 
 The system 1Σ  is completely controllable because  

1rank rank rank r G G G= = =� . 
 

Lemma. Let F ≠ ∅ , ( )nF M⊆ C , such that each pair in the set F  

commutes under multiplication. Then there is 0w ≠ , ( ),1
n

nw M∈ =C C , which is 
an  eigenvector of every matrix in F  (see [16]). 

 
Theorem 4. Let us consider that the matrices Mα ∈ ( )nM R , Nα ∈ 

( ),n kM R , 1,mα∀ =  verify the relations (2) and (4). Let ( ) ( )( ): ;M Nα αα α
Σ =  be 

the PDE system 

( ) ( )x M x t N u t
t α α αα

∂
= +

∂
,         1, mα∀ = .                                              (Σ ) 

Then the system Σ  is completely controllable if and only if does not exist 
( ),1

n
nv M∈ =C C , 0v ≠ , with the properties 

i) Tv  is a left eigenvector of each matrix Mα , 1, mα∀ = ; 

ii)  0Tv Nα = , 1, mα∀ = . 
Proof. Let Σ  completely controllable system. Suppose, by contradiction 

that there exists 0v ≠  with the properties )i  and )ii ; i.e., there exist αλ ∈C  with 
T Tv M vα αλ= , 1,mα∀ = .  So, for any 1 2, ,..., 0mk k k ≥ , we have 

1 2 1 2
1 2 1 2... ... 0m mk kk k k kT T

m mv M M M N v Nα αλ λ λ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = , 
hence 0Tv G = . Since 0v ≠ , it follows rank ,G n<  contradiction with Σ  
completely controllable (where G  is the controllability matrix of the system Σ ). 
 Conversely, suppose that 0v ≠ , with the properties )i  and )ii , does not 
exist. Suppose, by contradiction that Σ  is not completely controllable, that is 

: rankr G n= < . We apply the Theorem 3 to the case 0r > . Let T  be a matrix 
which determines an isomorphism between Σ  and Σ�  (where Σ�  is the system 
from Theorem 3). 
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 Consider the set { }1,3 2,3 ,3, ,...,T T T
mF L L L= . Since  

,3 ,3 ,3 ,3L L L Lα β β α= ,   1,mα∀ = , 

we may apply the above Lemma. So there exist 0w ≠ , ( ),1
n r

n rw M−
−∈ =C C  and 

αλ ∈C  such that  

,3
TL w wα αλ=  ⇔  ,3

T Tw L wα αλ= ,  1, mα∀ = . 

Let us choose ( ) ( ),11
,1

T r n
n

O
v T M

w
− ⎛ ⎞

= ∈ =⎜ ⎟
⎝ ⎠

C C . Clearly, v  is nonzero and 

( ) 1 1
1,

T T
rv M O w T TM Tα α

− −= ⋅ =�  

( ) ( ),1 ,2 1 1
1, 1, ,3

, ,3

T T
r r

n r r

L L
O w T O w L T

O L
α α

α
α

− −

−

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

( ) ( )1 1
1, 1,

T T T
r rO w T O w T vα α αλ λ λ− −= = = . 

( ) ( ) ,11
1, 1,

,

0T T T
r r

n r k

K
v N O w T TN O w

O
α

α α
−

−

⎛ ⎞
= ⋅ = =⎜ ⎟

⎝ ⎠
� .  

Hence v  satisfies )i  and )ii , that is a contradiction. 
 The case 0r =  can be similarly treated. It is sufficient to apply the above 
Lemma to the matrices Mα  in order to obtain a contradiction. 
 

Theorem 5. (Popov - Belevich - Hautus Theorem) 
Let us consider that the matrices Mα ∈ ( )nM R , Nα ∈ ( ),n kM R , 

1,mα∀ =  verify relations (2) and (4). Let ( ) ( )( ): ;M Nα αα α
Σ =  be the system  

( ) ( )x M x t N u t
t α α αα

∂
= +

∂
,         1, mα∀ = .                                       (Σ ) 

Then, the system Σ  is completely controllable if and only if the following 
matrix 

( )1 1 1 ... ...n n m m n mM s I N M s I N M s I Nα α α− − −          (10) 
has rank n , 1 2, ,..., ms s s∀ ∈C  (we remark that it is sufficient to take sα  an 
eigenvalue for Mα ). 

Proof. Let Σ  be a completely controllable system. Assume that there exist 
1 2, ,..., ms s s  such that the rank of the matrix in (10) is n< . Then, there is a 

( ),1nv M∈ C , 0v ≠ , such that Tv  vanishes the matrix in (10), at the left. This 
implies that v  verifies )i  and )ii . According to Theorem 4, we obtain that Σ  is 
not completely controllable, which is false. 
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 Conversely, if the rank of the matrices in (10) is n , sα∀ ∈C , let us 
suppose that Σ  is not completely controllable. Then, due to Theorem 4, there 
exist 0v ≠  and some eigenvalues αλ  of Mα  such that ( ) 0T

nv M Iα αλ− =  and 

0Tv Nα = , 1, 2,...,mα∀ = ; so Tv  vanishes the matrix in (10) at the left, whenever 
sα αλ= , 1, 2,...,mα∀ = . Since 0v ≠ , we deduce that the rank of this matrix is 

n< , which is false. 

4. Remarks and conclusions 

Let us notice that the Popov - Belevich - Hautus Theorem is not valid if 
relations (4) do not hold, even if relations (2) are satisfied. For example, for 

3m = , 3n = , 1k = ,  

1 2 3

0 0 1
1 0 0
0 1 0

not
M M M M

⎛ ⎞
⎜ ⎟= = = = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 şi 1

1
0
0

N
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 2

0
1
0

N
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

,  3

0
0
1

N
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
They satisfy 1 2MN N= , 2 3MN N= , 3 1MN N= . 

It is easy to see that relations (2) are verified. Let us determine the control 
space.  The vector matrix ( )1 2 3, ,u u u u= is a control if and only if the relations (3) 
hold. If, in (3) we take 2α = , 3β = , then  

32
2 3 3 2 3 2 2 33 2( ) ( ) ( ) ( )uuM N u t N t M N u t N t

t t
∂∂

+ = +
∂ ∂

,  3t∀ ∈R ,      

or     
32

3 1 2 2 3 33 2( ) ( ) ( ) ( )uuu t N t N u t N t N
t t

∂∂
+ = +
∂ ∂

. 

Since 1N , 2N , 3N  are linearly independent, we get that 3( ) 0u t =  and  

3
2 2( ) ( ) 0uu t t

t
∂

+ =
∂

,    that is,    2 3( ) ( ) 0u t u t= = ,     3t∀ ∈R . 

Similarly, if  in (3)  we take 1α = , 2β = , then we obtain 1
1 2 12 ( ) ( )uN t N u t

t
∂

=
∂

, so 

1( ) 0u t = , 3t∀ ∈R . 
We conclude that the control space is null. The only one solution of the 

system (1) which vanishes at some point is therefore the null solution. We deduce 
that there are no controllable states ( )0 0,t x , with 0 0x ≠ . 
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The matrices (10) have rank 3( )n= , 1 2, ,..., ms s s∀ ∈C , so Theorem 5 is not 

applicable in this case, because relations (4) do not hold. 
 
Our original contributions are contained in Theorem 3, Theorem 4 and 

Theorem 5 (Popov - Belevich – Hautus Theorem). In proving these results for 
the multitime case, we have used special techniques from the theory of m  – flow 
type systems as well as geometric interpretations of the m  – dimensional 
evolutions. Therefore our results complete the theory of the papers [1] – [8]. 
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