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POPOV-BELEVICH-HAUTUS THEOREM FOR LINEAR
MULTITIME AUTONOMOUS DYNAMICAL SYSTEMS

Cristian GHIU'

Aceasta lucrare studiaza sistemele liniare multitemporale comandate. Se
demonstreazda ca un sistem liniar multitemporal stationar este izomorf cu un nou
sistem, mai simplu, punindu-se in evidentd un subsistem complet controlabil pentru
acest nou sistem. In final se demonstreazd o Teoremd de tip Popov-Belevich-Hautus
pentru sisteme multitemporale, scopul acestui articol.

In this paper we are concerned with multitime linear dynamical system. First,
we identify a certain isomorphism between the initial system and another simpler
one, using as a key tool, a completely controllable subsystem. Then, we present a
Popov-Belevich-Hautus type Theorem for multitime systems.
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1. Introduction

Multitime control theory has been developed in many directions. In
Romania, one of them was initiated and well developed by C. Udriste: multitime
dynamical systems; multitime maximum principle ([1] — [8]), and another by V.
Prepelita: the class of hybrid systems: discrete and continuous [9], [10]. In
Germany, there is a research group led by S. Pickenhain ([11], [12], [13]) who
studied Dieudonné — Rashevsky type problems employing advanced techniques
from the distribution theory. In USA, a research group led by J.A. Ball has
obtained different results via discrete and robust control (see [14]).

The present paper follows the direction proposed by the paper [1]. More
precisely, we prove some new theorems concerning the multitime control systems.
These results may be regarded as non-trivial extensions of some well-known
results in the single-time theory (see [15]).

2. Controllability of linear multitime autonomous dynamical sistems

In this section we recall some mathematical ingredients from the paper
[1]. Consider the autonomous control system
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68; =M, x(t) + N,u,(t), Va=1m, (1)

where
I 2 m m 1.2 n\! m n
t:(t St )ER , x:(x LXT, X ) R" >R =M,1’1(R),
M,e M,(R), N,eM,,(R), M, and N, are constant matrices
and u, :R" > R* =M, (R) are C'- control functions.

The system (1) is said to be completely integrable if ‘v’(to,xo) eR"xR",
there exist an open set D,cR", t e€D,, and a differentiable function
x:D, - R" such that x()) verifies the system (1) on D, and x(f,)=x,. In this

case, x(-) will be called a solution for (1).
We reformulate a result in [1] for autonomous systems.

Theorem 1. The system (1) is completely integrable if and only if the
following relations hold

MM,=MM,,  Ya,f=1m, (2)

ou Guﬂ
MaNﬁu/),(t)+NaF;(t):MﬂNaua(t)+NﬁW(t), 3)

VteR", Va,f=1m.
In these conditions, any solution x(-) will be a C*- solution and it can be

uniquely extended to a global solution (x R" —> ]R") . Moreover, if two solutions

coincide at a point, then they will coincide on the whole space R™.

Definition 1. Suppose that the matrices M,,M,,....M, verify (2) for all
a,fp= 1,m. Then the vector space
{u =(u,), i lu, :R" >R =M, (R) isof class C', Ve =Lm
and verifies (3) for all &, 8 }

is called the admissible controls space associated to the system (1).
So, it M My=M,M,, Va,B=1,m, then the system (1) is completely

integrable if and only if (ua )a:m is a control function. Thereafter, by a solution

we mean a global solution.
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b)
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Definition 2. Let us consider the system (1), with the matrices M,
ing the relations (2).

For seR" and yeR", the pair (s,y) is called phase of system (1),

with condition x(t,)=x,, if x(s)=y, where x(-) is the unique solution of

this problem.

For (Zo,xo), (s,y) eR"xR", we say that the phase (t,,x,) is transferred

to the phase (s,y) if the problems {(1) , x(t,) = xo} and {(1) ,x(s) = y}

have the same solution (with the same control u(-) for both); or,

equivalently, the solution x() for problem {(1) , x(t,) =x0} verifies

x(s)=y. We say that u(:) transfers the phase (t,,x,) to the phase

(s,»).

A phase (t,x) is called reachable if there exists t, e R", with t; <t”,

Va, and there exists a control u(-) which transfers the phase (t,,0) to

the phase (t,x).

A phase (t,x) is called controllable if there exist s eR", with s“ >t“,

Va, and a control u(-) which transfers the phase (t,x) to the phase

(5,0).

Let t,,teR", with t <t”,Ya. The system (1) is called completely

reachable from t, to t, if for all xeR", the phase (,,0) is transferred

to the phase (t,x) ; i.e., for all x, the phase (t,x) is reachable for the

same I, .

Let t e R™. The system (1) is called completely reachable at the moment
t, if for all t,eR", with t; <t*, VYo, and for all xeR", the phase
(t,,0) is transferred to the phase (t,x).

Let t,,teR", with tj <t ,Ya. The system (1) is called completely
controllable from t, to t, if for all xeR", the phase (t,,x) is
transferred to the phase (t,0); ie., for all x, the phase (t,,x) is

controllable for the same t.
Let t,eR". The system (1) is called completely controllable at the

moment t,, if for all te R™, with t“>t;, Va, and for all xeR", the
phase (t,,x) is tranferred to the phase (t,0).
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i) The system (1) is called completely reachable if it is completely reachable

at any moment in R™.
The system (1) is called completely controllable if it is completely

controllable at any moment in R".

Definition 3. Let us consider that the matrices M, € M, (]R) Ya=1m

verify the relations (2). For each o = 1,_m , we define the matrix
G,=(N, MN, MN, .. M, .. M{-Mp-.-MYN, ..)
The matrix G, contains all block matrices of the form
M MP - MPN,,

with 0<k;k,;...;k, <n-1.
Further, the order of the block matrices M} -M} -...-M'*N_ in G, has to be
specified. In this way, the matrix G, will be well (unique) defined.
Let us define an order relation on the set {(kl;kz;...;km) |0<k;ky;..5k, <n —1},
denoted by < :

(kpskysesk, ) < (91395539, ) iff

ki +k,+.+k,<q+q,+..+q,

or
ki +k,+..+k, =q +q,+..+q, and

k, > q, or there exists j=2,m such that k, =q,, k,=q,, ... k; ,=q,,,k;>q,, or
(kiskyseik, ) = (913055-34,,) -
This means that the block matrices M -M% -...-M' N are written in the
increasing order of the sum k +k,+..+k, in G, in the case when two such
sums are equal, the block matrices are written in the decreasing lexicographical
order of (k;;ky;..k,).
The matrix

G=(G G, .. G,)
is called the controllability matrix of system (1).

Notations: Let K be a field and 4e M, (K). We denote by Im(4) and
by Ker(A4) the image and the kernel, respectively, of linear map
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f:iK"=M, (K)>K"=M,,(K), f(x)=4x.
One can readily notice that Im(4) is the subspace of K" =M, (K ) generated
by the columns of 4.

Theorem 2 ([1]). Let us consider the system (1), with the matrices M,
verifying the relations (2). Moreover, we suppose that
M,N N +N,NiM! =M N NI +N,N/Mj,, Va,f=Lm. (4)
DIft* >, Ya (or t* <ty, Ya ), then the phase (t,,x,) is transferred to
the phase (t,y) if and only if
X, — M Ug*ﬂ)y e Im(G),
equivalently,
% —eMe ([a_tg)xo e Im(G).
ii) The phase (t,,x,) is controllable if and only if x, € Im(G). If there exists
t, such that the phase (t,,x,) is controllable, then for all t, the phases (t,x,) are

controllable.
iii) The phase (t,y) is reachable if and only if y € Im(G). If there exists t

such that the phase (t,y) is reachable, then for all s, the phases (s,y) are

reachable.
iv) If the phase (t,,x,) is controllable (or reachable), then for all t, the phases

(t,x,) are controllable and reachable.
v) Let t;,t“ eR", with t; <t”, Ya. The system is completely controllable
from t, to t if and only if rank G =n.
vi) Let t,t* eR", cu t; <t*, Ya. The system is completely reachable from
t, to t if and only if rank G =n.
vii) If there exist t; ,t“ e R", with t; <t”, Y, and if the system is completely
controllable (or completely reachable) from t, to t, then the system is completely
controllable and completely reachable (equivalent rank G =n).

3. Isomorphic systems. The Popov - Belevich - Hautus Theorem

In this section we present the main results of our paper. Recall that A,
M,eM,(R), N,, N,e M,,(R) are constant matrices (a =1,m).
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Definition 4. Let us denote by
Y= ((Ma)a ;(N, )a) and 3= ((Ma )a ;(Na)a),

respectively, the following autonomous systems

aa; =M x(O)+Nu, (1),  Va=Lm, ()
Ox ~ - y
67:Max(t)+Naua(t), va:l’m (Z)

The systems ¥ and % are isomorphic if there exists an invertible matrix
T e M, (R) such that

M,=T"'M,T and N,=T"'N,, Va=lm.

In this case, we say that the matrix T determines an isomorphism between X and
3.

It is noteworthy that if such 7" does exist, then the matrices M, verify relations
(2) iff the matrices Ma verify relations (2) ; similarly, the matrices M,, N,
verify (4) iff the matrices Ma, Na verify (4).

The isomorphism of autonomous systems is an equivalence relation.

The next proposition contains some straightforward properties regarding
the systems = and 3.

Proposition 1. Consider the isomorphic systems ¥ and ¥, via the matrix
T . Suppose that ¥ (and hence ¥ ) verifies relations (2).
a) The function (ua )a=17n is a control for ¥ if and only if (ua)

a=l,m

is a control for . In other words, (ua )alen verifies (3) if and only if it also

verifies the corresponding relations (3) for . So two isomorphic systems have
the same control space.

b) The function x(-) is the solution of problem {Z, x(t) = xo} if and
only if ¥(-)=T"'x(") is the solution of problem {i, xX(t)) = T’lxo} .

c) If G and G are the contollability matrices of the systems ¥ and
Y respectively, then G=T"G. So, if the relations (4) hold, we deducem from
Theorem 2 that the system X is completely controllable if and only if the system

Y is completely controllable (The last statement remains valid even if relations
(4) do not hold).



Popov-Belevich-Hautus theorem for linear multitime autonomous dynamical systems 99

Proposition 2. If the matrices M, verify (2) and G is the contollability
matrix of system (1), then MaIm(G)gIm(G), ie., Im(G) is an M, invariant
subspace (Va = I,_m ).

Proof. Let N, be the j-th column of the matrix N . The set Im(G) is
the subspace of R" =M, (R) generated by the columns of G, i.e.,

MMy MwN ., 0<k;ky.;k,<n-1, 0<j<k.

Wehave M, (M{-MP-.-MyN,)=M"-Mf - -Mi" ..M} N, For
k, <n—2, the last matrix is in Im(G).

It rests to study the case k, =n—1. Using Hamilton — Cayley Theorem,
there exist q,,q,,...,a, , € R such that M =§apM0’j . So, for k, =n—-1, we
have .

M, (MM} -...-M,’,‘,"’Njﬂ)ziale"‘ MY M] M N, eIm(G).

1
p=0
Theorem 3. Let us assume that the matrices M, e M,(R), N, e

M, (R), Va= 1L,m verify the relations (2) and (4). Let ¥ = ((Ma ), :(N, )a) be

the system

ox
) )
ot” (%)

whose controllability matrix G has rank G =r. Suppose X is not completely

=M x(t)+ N, u,(t), Va=1,

3

controllable, hence r <n.
Ifr=0,then N,=0, Va, hence = ((Ma)a ;(On,k)a).
If 1<r<n, then:
(1) there exists a system 3= ((Ma )a;(N“)a)’ which is isomorphic with X,

~ La 1 La 2 7 Ka 1
M,= T N, = "l
On—r,r La,3 On—r,k

and L,,eM, (R), L,,eM,, (R), L,eM, (R), K,,eM, (R); O

n-r,r

where

and O,_, , are null matrices;
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(2) the system X, = ((La,1) '(Ka,l)a) is completely controllable (the system

b
a

2, verify also the relations (2) si (4) ).

In fact, if G and G, are the controllability matrices of systems Y and 2z
~ G —
respectively, then G = ( 01 J Also L, Ly, =Lg,L, 5, Va,B=1,m.

Proof. 1t is sufficient to prove the case r >1.
We have dim(Im(G)):r. Let {v,v,,..,v,} be a basis in Im(G). We

complete it to a basis B ={v,,v,,....,V,,V,,;,....,v,} of R" =M, (R).Let T be the

n

matrix which has the vector columns v,,v,,...,v ,v v, . The matrix T is the

RS ERIEY
switching matrix from the canonical basis to the basis B. We consider the linear
application

p:R"=M, (R)>R" =M, (R), o(x)=M,x.
According to Proposition 2, the set Im(G) is a ¢ invariant subspace. It follows

that the matrix of ¢ with respect to the basis B, has the form:

La,l La,2 (5)
0 L,, ’

where L,, e M, (R), L,,eM,, (R), L,;eM, (R). On the other hand, the
associated matrix of ¢ , with respect to the canonical basis, is M. The relation

between the two matrices is
L

-1 La,l a2
T'M,T = [ j . (6)
o L

n—r,r «@,3
We choose M ., as the matrix (5).
Let g be the number of columns for G .We consider the linear application
y:R*=M_ (R)>R" =M, (R), w(»)=GCGy.

Denote by M, , (W) the matrix associated to i/, as linear application from R*®
with the canonical basis, to R" with the basis B. Denote by M, .. (¥) the

matrix associated to y/, as linear application from R* with canonical basis (in
R#), to R" with canonical basis (in R"). Denote by M (Id) the matrix

B,can

associated to the identity on R" with basis B, to R" with canonical basis.
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73 Id
(]Rg,can) - (]R",B) - (]R”,can)
From the equality Id oy =, passing to the associated matrices we find

MB,can (Id) : Mcan,B (W) = an,can (W) * (7)
But M, ..(v)=G and M, . (Ild)=T.

Since y(y)=Gy € Im(G) = Sp{v,,v,,...,v,}, the matrix M, ,(y)is of

K
the form M., ,(v) :[

n-r.g

T K G T'G K 8
On—r,g - o - On—r‘,g - ()

If we multiply, at the left, the columns of N_ (which are columns of the matrix
G ), by the relation (8), we obtain

-1 Ka,l .
T'N, :(O }, with K, , eM, ,(R). )

n—r,k

j ,with K e M, (R). The relation (7) becomes

a

- K
We choose as N :EO @l j From (6) si (9) it follows that 7' determines an

n—r,k
isomorphism between systems T and T . Hence the matrices M,, N, verify the

relations (2) si (4) corresponding to the system X (see the remarks after the
Definition 4).

n—r,k

X7 Lﬂ lezl
We have M N, = O " | and

W AT N, =

a

ki . Ky . . Ko .
(L“ L2,10-~~ L K”’lj, Yk ky;.k, >0,

n—r,k
It follows G G
ollows G = 0

n-r,g

j . The relations (2) for £ become

- - I L, L, Ly\L,,
M M,=M,M, or s = 7 .
@) L,5Lg,s @) Ly,L,,

Hence, the relations (2) are true for X, too. And it follows the
equalities L, L, =L,.L, ;.
The relations (4) for £ are
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i,
or

(La,lKﬂ,lKﬁ,lT +Kﬂ,1Kﬂ,1TL£,1J — [Lﬂ,lKa,lKa,lT +Ka,1Ka,lTLﬂ,1TJ

(0) o) ’

n—r,k n—r,k
so the relations (4) are true for system X, , too.
The system X, is completely controllable because

r=rank G = rank G = rank G,.

Lemma. Let F#&, FcM,(C), such that each pair in the set F

commutes under multiplication. Then there is w#0, weC" =M, (C), which is

an eigenvector of every matrix in F (see [16]).

Theorem 4. Let us consider that the matrices M, e M, (R), N, e

a

M,,(R), Va= 1,m verify the relations (2) and (4). Let S := ((Ma )a ;(N, )a) be

the PDE system
aa;fz :Max(t)+Naua(t)a Va:l,m. (Z)

Then the system X is completely controllable if and only if does not exist
veC"=M, (C), v=0, with the properties

i) V' is a left eigenvector of each matrix M, Ya =1,m;
ii) V'N,=0, Va=1m.

Proof. Let £ completely controllable system. Suppose, by contradiction
that there exists v # 0 with the properties i) and ii); i.e., there exist 4, € C with
VIM, =", Ya=1,m. So, forany k,k,,...k, >0, we have

VM ME M N = A A A VTN =0,
hence v'G=0. Since v#0, it follows rankG<n, contradiction with X
completely controllable (where G is the controllability matrix of the system X).

Conversely, suppose that v 0, with the properties i) and ii), does not
exist. Suppose, by contradiction that X is not completely controllable, that is
r:=rank G<n. We apply the Theorem 3 to the case »>0. Let T be a matrix

which determines an isomorphism between ¥ and % (where ¥ is the system
from Theorem 3).
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Consider the set F = {LT o r } Since

1,322,325 "m,3

La,SLﬂ,3 = Lﬂ,3L

w3 Va=lm,
we may apply the above Lemma. So there exist w=0, we C"" =M, (C) and
A, € C such that

LT

@3

T T _
w=ilw < wil =4w, Va=1lm.

0,
8 j eM,,(C)=C". Clearly, v is nonzero and

Let us choose v= (T’l )T (
w

viM,=(0, w)T-TM, T =

L, L
=(0, WT)[O::,- L::jT_lz(O” WL, )T =

= (Ol,r

/LZWT)Tf1 =1, (OIJ WT)T’1 =" .

VN, =(0, w")TIN,=(0, WT)(OK""1 }:0.

n—r,k
Hence v satisfies i) and ii), that is a contradiction.
The case » =0 can be similarly treated. It is sufficient to apply the above
Lemma to the matrices M, in order to obtain a contradiction.

Theorem 5. (Popov - Belevich - Hautus Theorem)
Let us consider that the matrices M,e M,(R), N,eM,  (R),

Va=1m verify relations (2) and (4). Let X = ((Ma )a ;(N, )a) be the system

aa; =M x()+Nu (), Va=Lm. (2)
Then, the system X is completely controllable if and only if the following
matrix

(Ml—slln N .. M,-sI N, .. M, —s1I Nm) (10)
has rank n, Vs,s,,....s, €C (we remark that it is sufficient to take s, an
eigenvalue for M ).

Proof. Let ¥ be a completely controllable system. Assume that there exist
S,58,,...,8, such that the rank of the matrix in (10) is <n. Then, there is a

veM, (C), v#0, such that v' vanishes the matrix in (10), at the left. This

implies that v verifies i) and ii). According to Theorem 4, we obtain that X is
not completely controllable, which is false.



104 Cristian Ghiu

Conversely, if the rank of the matrices in (10) is n, Vs, €C, let us
suppose that ¥ is not completely controllable. Then, due to Theorem 4, there
exist v#0 and some eigenvalues 4, of M, such that v' (M, —2,,)=0 and
vTNa =0, Va=1,2,...,m;so v vanishes the matrix in (10) at the left, whenever
s,=A,, Va=12,..,m. Since v#0, we deduce that the rank of this matrix is
< n, which is false.

4. Remarks and conclusions

Let us notice that the Popov - Belevich - Hautus Theorem is not valid if
relations (4) do not hold, even if relations (2) are satisfied. For example, for
m=3,n=3, k=1,

not

M =M,=M,=M =

S = O
- O O
S O =

1 0 0
siN,=|0|,N,=| 1], N,=[0].
0 0 1

They satisfy MN, =N,, MN, =N,, MN, = N,.
It is easy to see that relations (2) are verified. Let us determine the control
space. The vector matrix u = (u,,u,,u;)is a control if and only if the relations (3)

hold. If, in (3) we take ¢ =2, f =3, then

M,Nuy(1)+ N, % (£) = MN,u, () + N, 82‘; (t), VteR’,

=
or
ou ou
uy ()N, +a—t§(t)N2 =i, (DN, +§§(t)Ns :
Since N,, N,, N, are linearly independent, we get that u,(#) =0 and

uz(t)+%(t)=0, thatis, u,(t)=u,(t)=0, VteR’.

Similarly, if in (3) we take =1, =2, then we obtain N, %(t) = Nu,(t), so

u(t)=0, VteR’.

We conclude that the control space is null. The only one solution of the
system (1) which vanishes at some point is therefore the null solution. We deduce
that there are no controllable states (#,,x, ), withx, = 0.
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The matrices (10) have rank 3(=n),Vs,,s,,...,s, € C, so Theorem 5 is not
applicable in this case, because relations (4) do not hold.

Our original contributions are contained in Theorem 3, Theorem 4 and
Theorem 5 (Popov - Belevich — Hautus Theorem). In proving these results for
the multitime case, we have used special techniques from the theory of m — flow
type systems as well as geometric interpretations of the m — dimensional
evolutions. Therefore our results complete the theory of the papers [1] — [8].
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