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EXIT TIMES FOR GEOMETRIC BROWNIAN MOTION

Jingmin He1, Zhongqin Gao2, Yitao Yang3

Geometric Brownian motion(GBM) process has been applied to numerous

fields including finance, insurance, engineering and so on. In this paper, the surplus

process of an insurance company are modeled by GBM. Some exit times for the process

is studied, and the Laplace-Stieltjes transform (LST) of the exit times is obtained. Then,

numerical examples are given to illustrate the applications of the LST of some exit times.
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1. Introduction

Geometric Brownian motion(GBM) process was initially proposed by Fischer Black

and Myron Scholes(1973)[2]. Since then, the model has been applied to numerous fields

including finance, insurance, engineering and has been further studied by many authors.

For example, Postali and Picchetti(2006)[14] showed that GBM process performs well as a

proxy for the movement of oil prices and for a state variable to evaluate oil deposits. Gao and

Yin(2008)[7] considered the perturbed classical compound Poisson risk model compounded

by GBM with a constant dividend barrier strategy. Vajargah and Shoghi(2015)

[15] studied the simulation of stochastic differential equation of GBM by quasi-Monte Carlo

method and its application in prediction of total index of stock market and value at risk.

The surplus process {X(t), t ≥ 0} of an insurance company are modeled by GBM as follows{
dX(t) = µX(t)dt+ σX(t)dB(t),

X(0) = x,
(1)

where µ be the drift in which represents deterministic trends, σ > 0 be the volatility refer

to the influence of unpredictable events, x is the initial surplus of an insurance company,

and {B(t), t ≥ 0} is a standard Brownian motion in which the mean change in the value of

the variable is zero and the variance of change equal to one per unit time.

For any interval [b, a], where b < u < a, define the first hitting time of the upper

barrier a and the first hitting time of the lower barrier b for the risk process {X(t), t ≥ 0}
to be

Ta =

{
inf{t ≥ 0, X(t) = a},
∞, ifX(t) 6= a for all t ≥ 0,

Tb =

{
inf{t ≥ 0, X(t) = b},
∞, if X(t) 6= b for all t ≥ 0.

Then Ta,b = Ta ∧ Tb := min(Ta, Tb) is the first exit time of the process {X(t), t ≥ 0} from

the interval (b, a). For a boundary a and a fixed α > 0, let the Laplace-Stieltjes transforms
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(LST) of Ta is Ex[e−αTa ] = E[e−αTa |X(0) = x]. Then the probability of Ta < ∞ can be

defined as follows

Px(Ta <∞) = P (Ta <∞|X(0) = x) = lim
α→0

Ex[e−αTa ]. (2)

The mathematical expectation of Ta can be obtained by the formula

Ex[TaI(Ta <∞)] = E[TaI(Ta <∞)|X(0) = x] = − lim
α→0

d(Ex[e
−αTa ])

dα
, (3)

where I(·) is the indicator function. In particular, when a = 0, Px(T0 <∞) is the probability

of ultimate ruin and Ex[T0I(T0 <∞)] is the average of the ruin time. For an interval [b, a],

let the LST of Ta for Ta < Tb is Ex[e−αTaI(Ta < Tb)] and the LST of Tb for Tb < Ta
is Ex[e−αTbI(Tb < Ta)]. In particular, when b = 0, the former can be represented as the

expected present value of a payment of 1 due at the time when the surplus reaches the level

a for the first time, provided that ruin has not occurred in the meantime, which plays an

important role in dividend problems with barrier strategies, the latter can be represented

as the LST of the time of ruin before reaching the upper barrier a, which plays a key role

in the problems of negative duration and occupation time. Then the probability of Ta < Tb
and Tb < Ta can be defined as follows

Px(Ta < Tb) = lim
α→0

Ex[e−αTaI(Ta < Tb)],

Px(Tb < Ta) = lim
α→0

Ex[e−αTbI(Tb < Ta)]. (4)

The mathematical expectation of the first exit time from the upper barrier a and the lower

barrier b can be derived by the formulas

Ex[TaI(Ta < Tb)] = − lim
α→0

d(Ex[e
−αTaI(Ta<Tb)])

dα
,

Ex[TbI(Tb < Ta)] = − lim
α→0

d(Ex[e
−αTbI(Tb<Ta)])

dα
. (5)

Correspondingly, the relation between LST of the exit times Ta, Tb and Ta,b as follows

Ex[e−αTa,b ] = Ex[e−αTaI(Ta < Tb)] + Ex[e−αTbI(Tb < Ta)].

This paper investigates the LST of some exit times for GBM process. The exit

times have been studied by many authors in some risk models, such as Gerber(1990)[9]

and Alfredo and Dos Reis(1993)[6] studied some stopping times of the classical risk process.

Kella and Stadje(2001)[12] and Perry and Stadje(2001)[13] considered some exit times of

the compound Poisson risk process. Chiu and Yin (2002, 2002, 2005)[3][4][5] investigated

some passage times of the reserve-dependent risk process and the spectrally negative Lévy

process. Alili, Patie and Pedersen(2005)[1] considered the first hitting time of an Ornstein-

Uhlenbeck process. Jacobsen and Jensen(2007)[10] considered the exit times of the piecewise

exponential Markov processes with two-sided jumps.

The remainder of the paper is organized as follows. In section 2, some preliminaries

of GBM process are given. In section 3, using infinitesimal operators and martingale, the

LST of some exit times are obtained. Then, several numerical examples are discussed in

order to illustrate the influence of the upper barrier and lower barrier of an interval and the

initial surplus on the exit times in section 4.

2. Preliminaries

The model (1) is a time-homogeneous Markov process (see Karatzas and Shreve(1991)[11])

taking values in R with generator A that satisfies

A f(z) = σ2

2 z
2f ′′(z) + µzf ′(z),
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where f belongs to the domain D(A ) of the generator A of {X(t), t ≥ 0}. Furthermore

(X(t), t) is also Markovian with generator B that satisfies

Bh(z, t) = A h(z, t) + ∂
∂th(z, t), (6)

provided that h(z, ·) has a continuous first derivative for each z and that, for each t, h(·, t) is

in the domain of A , then h(z, t) ∈ D(B). Denote by Ft = σ{X(s), 0 < s ≤ t} the natural

filtration. For later use, we give the following Lemma.

Lemma 2.1. If h(z, t) is a twice continuously differentiable in z and once in t function with

bounded first derivative in z, then h(z, t) ∈ D(B) and furthermore

Mh(t) = h(X(t), t)−
∫ t
0

Bh(X(s), s)ds

is a martingale.

In order to obtain the LST of some exit times, it is required to find a solution of the

equation as follows

A f(z) = αf(z), for α > 0, (7)

that is

σ2

2 z
2f ′′(z) + µzf ′(z) = αf(z).

The above equation is a second-order linear differential equation, the general solution is a

linear combination of the form C1h1(z)+C2h2(z), where C1, C2 are arbitrary constants and

the two positive independent solutions h1, h2 as follows

h1(z) = z
−2
√

2µ+
√

2σ2−
√

8µ2+16ασ2−8µσ2+2σ4

2
√

2σ2 ,

h2(z) = z
−2
√

2µ+
√

2σ2+
√

8µ2+16ασ2−8µσ2+2σ4

2
√

2σ2 .

It is easy to verify that h1 is strictly decreasing, h2 is strictly increasing and h1(z) → 0 as

z → +∞.

3. The LST of some exit times

Theorem 3.1. Given that the initial surplus 0 < a < x, the LST of the time to hit a

boundary a is given by

Ex[e−αTa ] = f1(x)
f1(a)

, (8)

where f1(z) = h1(z).

Proof. Let h(z, t) takes the form h(z, t) = e−αtf1(z), it is clear that h(z, t) is in the domain

of B. It follows from (6) and (7) that

Bh(z, t) = A h(z, t) + ∂
∂th(z, t) = 0, for all z and t > 0.

By Lemma 2.1, one can get Ex[e−αtf1(X(t)] = f1(x). Thus, for every stopping time Ta and

initial surplus x, one have

Ex[e−α(t∧Ta)f1(X(t ∧ Ta))] = f1(x). (9)

Because f1(z) is bounded on the range of possible values of {X(t∧Ta), t ≥ 0}, letting t→∞
in (9), dominated convergence theorem yields

Ex[e−αTaf1(X(Ta))] = f1(a)Ex[e−αTa ] = f1(x).
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So that

Ex[e−αTa ] =
f1(x)

f1(a)
.

This completes the proof.

Theorem 3.2. For 0 < b < x < a, the LST of the first exit time from the upper barrier a

is given by

Ex[e−αTaI(Ta < Tb)] = f2(x)
f2(a)

, (10)

where f2(z) = C1h1(z) + C2h2(z) and C1, C2 satisfies f2(b) = 0.

Proof. Let h(z, t) takes the form h(z, t) = e−αtf2(z), it is clear that h(z, t) is in the domain

of B. It follows from (6) and (7) that

Bh(z, t) = A h(z, t) + ∂
∂th(z, t) = 0, for all z and t > 0.

By Lemma 2.1, one can get Ex[e−αtf2(X(t)] = f2(x). Thus, for every stopping time Ta,b
and initial surplus x, one have

Ex[e−α(t∧Ta,b)f2(X(t ∧ Ta,b))] = f2(x). (11)

Letting t→∞ in (11), dominated convergence theorem yields

Ex[e−αTa,bf2(X(Ta,b))] = f2(x).

By the definitions of Ta,b, one have

Ex[e−αTaf2(X(Ta))I(Ta < Tb)] + Ex[e−αTbf2(X(Tb))I(Tb < Ta)] = f2(x).

It follows from f2(b) = 0 that

Ex[e−αTaf2(X(Ta))I(Ta < Tb)] = f2(a)Ex[e−αTaI(Ta < Tb)] = f2(x).

Thus,

Ex[e−αTaI(Ta < Tb)] =
f2(x)

f2(a)
.

This completes the proof.

Theorem 3.3. For 0 < b < x < a, the LST of the first exit time from the lower barrier b

is given by

Ex[e−αTbI(Tb < Ta)] = f3(x)
f3(b)

, (12)

where f3(z) = C1h1(z) + C2h2(z) and C1, C2 satisfies f3(a) = 0.

Proof. Let h(z, t) takes the form h(z, t) = e−αtf3(z), it is clear that h(z, t) is in the domain

of B. It follows from (6) and (7) that

Bh(z, t) = A h(z, t) + ∂
∂th(z, t) = 0, for all z and t > 0.

By Lemma 2.1, one can get Ex[e−αtf3(X(t)] = f3(x). Thus, for every stopping time Ta,b
and initial surplus x, one have

Ex[e−α(t∧Ta,b)f3(X(t ∧ Ta,b))] = f3(x). (13)

Letting t→∞ in (13), dominated convergence theorem yields

Ex[e−αTa,bf3(X(Ta,b))] = f3(x).

By the definitions of Ta,b, one have

Ex[e−αTaf3(X(Ta))I(Ta < Tb)] + Ex[e−αTbf3(X(Tb))I(Tb < Ta)] = f3(x).
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It follows from f3(a) = 0 that

Ex[e−αTbf3(X(Tb))I(Tb < Ta)] = f3(b)Ex[e−αTbI(Tb < Ta)] = f3(x).

Thus,

Ex[e−αTbI(Tb < Ta)] =
f3(u)

f3(b)
.

This completes the proof.

4. Numerical examples

In this section, numerical examples are presented to illustrate the application of the

exit times for GBM process. Gao(2010)[8] used GMB to describe stock price indices and

estimated µ = 0.53512, σ = 0.30758 by means of the Shanghai Composite Index (000001)

closing index from December 1, 2008 to November 30, 2009. Wang(2007)[16]used GMB to

depict the price of oil and obtained µ = 0.1, σ = 0.11 with the aid of an oil project in the

Gulf of Mexico from 1970 to 1997. In describing oil prices and some stock prices with GBM,

the drift coefficient and volatility coefficient are roughly equivalent. Thus, we take the drift

coefficient and volatility coefficient as one unit to study. All illustrations will be based on

the parameters µ = 1 and σ = 1.

By Theorem 3.1, we study the LST of exit time Ta. The LST of Ta are plotted in

Figure 1 for different initial surplus and different boundaries. It follows from (2), (3) that

the numerical characteristics of Ta are obtained in Table 1.

Figure 1. The LST of Ta
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Table 1. The numerical characteristics of Ta

a b x Px[Ta < ∞] Ex[Ta]

1 b 3 0.3333333333333333 0.7324081924454064‘
1 b 4 0.25 0.6931471805599453‘

2 b 3 0.6666666666666666 0.5406201441442191‘
2 b 4 0.5 0.6931471805599453‘
2 b 5 0.4 0.7330325854993242‘

3 b 4 0.75 0.4315231086776712‘
3 b 5 0.6 0.6129907485191889‘

The results in Figure 1 and Table 1 show that, the LST of exit time Ta and the

probability of Ta < ∞ trend to decreasing along with the initial surplus increased, the

mathematical expectation of Ta trends to increasing along with the initial surplus increased.
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Note that, on one hand, Ex[e−αTa ] is decreasing as α increases and increasing as a increases.

On the other hand, Ex[e−αTa ] and Px(Ta <∞) are increasing as a increases, and Ex[Ta] is

decreasing as a increases.

By Theorem 3.2 and Theorem 3.3, we study the LST of the first exit times from an

interval [b, a]. The LST of Ta for Ta < Tb are plotted in Figure 2 for different upper barriers

of an interval. The LST of Tb for Tb < Ta are plotted in Figure 3 for different lower barriers

of an interval. It follows from (4) and (5) that the numerical characteristics of Ta and Tb
are obtained in Table 2.

Figure 2. The LST of Ta for Ta < Tb
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Figure 3. The LST of Tb for Tb < Ta
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Table 2. The numerical characteristics of Ta and Tb

b x a Px[Ta < Tb] Px[Tb < Ta] Ex[TaI(Ta < Tb)] Ex[TbI(Tb < Ta)]

0.1 1 5 0.9183673469387754 0.08163265306122448 2.309559326812696 0.27061886451621503
0.1 2 5 0.9693877551020407 0.03061224489795918 1.474680930389038 0.11838892078203708
0.1 2 6 0.9661016949152542 0.033898305084745756 1.7816140086446755 0.13802788650699355
0.1 3 6 0.9830508474576269 0.016949152542372878 1.1744964314976283 0.07300658852998436

1 2 5 0.625 0.375 0.4183941587141433‘ 0.2071088707085913‘
1 3 5 0.8333333333333334 0.1666666666666666 0.3615538188582179‘ 0.12361812452906257‘
1 3 6 0.8 0.2 0.49798188733289184‘ 0.17160868609577648‘

2 3 4 0.6666666666666667 0.3333333333333333 0.06948800151868384‘ 0.04377802301158035‘
2 3 5 0.5555555555555556 0.4444444444444444 0.12298463018393169‘ 0.08418596679324386‘
2 4 6 0.75 0.25 0.17667455348457528‘ 0.08494951839769871‘
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The results in Figure 2−3 and Table 2 show that the LST of Ta for Ta < Tb and the

LST of Tb for Tb < Ta is decreasing as α increases. It Follows from Figure 2 and Table 2

that, the LST of Ta for Ta < Tb and the probability of Ta < Tb trend to increasing along

with the initial surplus increased, the mathematical expectation of the first exit time from

the upper barrier a trends to decreasing along with the initial surplus increased. Note that,

on one hand, Ex[e−αTaI(Ta < Tb)] and Px(Ta < Tb) are decreasing as a or b increases. On

the other hand, Ex[TaI(Ta < Tb)] is increasing as a increases and decreasing as b increases.

It Follows from Figure 3 that, the situation is converse, the LST of Tb for Tb < Ta, the

probability of Tb < Ta and the mathematical expectation of the first exit time from the

lower barrier b trend to decreasing along with the initial surplus increased. Note that,

Ex[e−αTbI(Tb < Ta)], Px(Tb < Ta) and Ex[TbI(Tb < Ta)] are increasing as a or b increases.

It means that the change of a and b has a great influence on its value.
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