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ACCURATE ELEMENT METHOD NUMERICAL 
INTEGRATION OF A NONLINEAR FIRST ORDER 

ORDINARY DIFFERENTIAL EQUATION BY SOLVING AN 
EQUIVALENT NONLINEAR ALGEBRAIC EQUATION 

 
Maty Blumenfeld1 

 
 O metodologie pentru integrarea numerică a ecuatiilor diferenţiale 

ordinare (ODE) neliniare a fost prezentată în [4], dar ea este greoaie şi se bazează 
pe un calcul iterativ. Aceiaşi problemă se rezolva aici pe altă cale în care nu mai se 
recurge la iteraţii, ci se transformă integrarea unei ODE neliniare într-o banală 
rezolvare a unei ecuaţii algebrice neliniare. Se consideră ODE neliniară cu 
coeficienţi constanţi A, B 

)x(WBA n +φ+φ=φ′  
Pentru determinarea valorii functiei Tφ la capatul T al domeniului de 

integrare trebuie rezolvată ecuaţia neliniară 
( ) ( ) ( ) 0KKKKK 5T4

1n
T3

n
T2

1n2
T1 =+φ+φ+φ+φ −−  

în care coeficienţii Ki(i=1,2,3,4,5) se obţin direct pe parcursul procesului 
de calcul. Precizia calculului poate fi evaluată direct prin determinarea reziduului, 
fără a se efectua alte operaţii ajutatoare. Se prezintă deasemenea metodologia de 
rezolvare a ODE cu coeficienţi variabili. 

 
A methodology for the numerical integration of first order non-linear 

Ordinary Differential Equations (ODE) has been already developed by the Accurate 
Element Method (AEM) in [4], but it is cumbersome and based on an iterative 
procedure. Here the same problem is solved without any iteration, by a more 
natural approach that transforms the problem of a nonlinear ODE in a trivial 
nonlinear algebraic equation. For example considering the ODE with constant 
coefficients A, B 

)x(WBA n +φ+φ=φ′  
the value Tφ of the function at the target abscissa Tφ can be obtained by 

solving the polynomial non-linear equation 
( ) ( ) ( ) 0KKKKK 5T4

1n
T3

n
T2

1n2
T1 =+φ+φ+φ+φ −−  

where the coefficients Ki(i=1,2,3,4,5) can be obtained directly during the 
computation procedure. The accuracy of the computation can be evaluated without 
any modification of the integration mesh or any further work using a powerful tool 
developed by AEM, namely the residual. The methodology for solving ODEs with 
variable coefficients is also described.  
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1. ODE to be integrated 
 

Let be the following first order Ordinary Differential Equation (ODE)  
)x(W)(FBA +φ+φ=φ′     (1.1) 

In order to simplify the exposure, the coefficients A and B will be initially 

considered as constants2. Besides
dx
dφ ,φ and the free term W(x), the ODE (1.1) 

includes also a non-linear term )]x([(F φ  that can be any function of φ such as  
n)(F φ=φ      (1.2) 

or )(cos)(F φ=φ , )(cos)(F 34 φφ=φ , )ln()sin()(F 2 φφ+φφ=φ … 
 The ODE will be integrated numerically between a starting point xS and a 
target point xT by dividing the domain in sub-domains (elements). The initial 
(start) condition is  

SS)xx( φ==φ      (1.3) 
The ends of each element will be noted x=L (Left) and x=R (Right), so that the 
left end condition becomes 

L)Lx( φ==φ      (1.4) 
 

2. The integral equation 
 
 The “classical” numerical integration methods accepted today, such as 
Euler, Heun, Runge-Kutta, avoid carefully any integration procedure. On the 
contrary the Accurate Element Method (AEM) starts by the integration of the 
ODE (1.1) that leads to an integral equation 

∫∫∫∫ +φ+φ=
φ

R

L

R

L

R

L

R

L

dx)x(Wdx)(FBdx)x(Adx
dx
d   (2.1) 

The first and the last integrals can be performed straightforward 

LR
R
L

R

L

dx
dx
d

φ−φ=φ=
φ

∫   (2.2a)   ;      ∫=
R

L

dx)x(W)WInt(    (2.2b) 

(Int W) being usually a trivial integral. On the contrary the two remaining 
integrals cannot be performed directly because both φ(x) and Fφ) are unknown 

∫φ=φ
R

L

dx)x()Int(  (2.3)   ; ∫ φ=
R

L

dx)(F)FInt(  (2.4) 

The Accurate Element Method performs numerically these integrals 
replacing φ(x) and F(φ) by Concordant Functions (CF) [2,3,4,5,6,7]. A 
                                                           
2 The case of ODEs with variable coefficients is analyzed in §10 
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methodology for the integration of nonlinear ODEs based on CFs was already 
established [4], but the approach developed there lead to cumbersome procedures. 
A small formal modification of the methodology transforms the quite complicated 
problem of the integration of a nonlinear ODE into a trivial problem of solving a 
one dimensional nonlinear algebraic or transcendental equation. 
 

3. Concordant Function f(x) 
 
 A Concordant Function (CF) is a polynomial of high or very high degree 
whose coefficients are obtained rigorously using the information furnished by the 
governing ODE (1.1) itself. Though the procedure for finding the coefficients was 
extensively described in [4], it will be shortly presented here in order to introduce 
a small modification of the approach.  

The CF analyzed below is a third degree polynomial noted as f(x), which 
will be written in the following matrix form 

[ ] [ ]T
4

3
4

2
321 CXxCxCxCC)x(f =+++=     (3.1) 

where    [ ] [ ]32
4 xxx1X =         (3.2)     ;      [ ] [ ]T

4321 CCCCC =      (3.3) 
 The first derivative of (3.1) is 

2
432 xC3xC2C)x(f ++=′          (3.4) 

Let be Q(x) the function that has to be replaced by the Concordant 
Function f(x). Because (3.1) includes four constants that have to be obtained, it is 
referred as CF4. These constants are obtained by the Accurate Element Method 
using the following four conditions obtained by equating the end values of f(x) 
and Q(x) and their derivatives at the two ends L and R 
Condition 1:   L

3
4

2
321 Q)Lx(QLCLCLCC)L(f ===+++=      (3.5a) 

Condition 2:     R
3

4
2

321 Q)Rx(QRCRCRCC)R(f ===+++=     (3.5b) 
Condition 3:     L

2
432 Q)Lx(QLC3LC2C)L(f ′==′=++=′     (3.5c) 

Condition 4:     R
2

432 Q)Rx(QRC3RC2C)R(f ′==′=++=′       (3.5d) 
 Based on the four conditions (3.5,a,b,c,d) it results the system of equations 
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 The four end values RLRL Q,Q,Q,Q ′′  have been separated by multiplying 
them with an appropriate vector. Suppose – in order to simplify the exposure– that 
L=0 and R=1, in which case the inverse of the square matrix [4×4] is 
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If (3.6) is multiplied by (3.7) it results the vector of the unknown coefficients 
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 From (3.1) it results now CF4 as a sum of four 3rd degree polynomials 
[ ] [ ]

R
32

L
32

R
32

L
32

T
4

Q)xx(Q)xx2x(Q)x2x3(Q)x2x31(

CX)x(f

′+−+′+−+−++−=

==
     (3.9) 

 If L≠0 or R≠1 the same procedure will lead to the general relation 
R4L3R2L1 Q)x(fQ)x(fQ)x(fQ)x(f)x(f ′+′++=   (3.10) 

where )x(f),x(f),x(f),x(f 4321 are four known polynomials.  
 

4. Integration of Int φ (2.3) and Int F (2.4) 
4.1 Integration of the term A(Int φ)  

 
 In order to perform the integral (2.3), the function that has to be replaced 
here is φ(x) instead of Q(x), while the Concordant Function will be noted as y(x) 
instead of f(x). Consequently, (3.10) becomes  

R4L3R2L1 )x(y)x(y)x(y)x(y)x(y φ′+φ′+φ+φ=    (4.1) 
If (4.1) is replaced in (2.3) it results 

( )

R4yL3yR2yL1y

R

L
R4L3R2L1

R

L

R

L
IIII

dx)x(y)x(y)x(y)x(ydx)x(ydx)x(Int

φ′+φ′+φ+φ=

φ′+φ′+φ+φ=≈φ=φ ∫∫∫     (4.2) 

where   ∫∫∫∫ ====
R

L
44y

R

L
33y

R

L
22y

R

L
11y dx)x(yI;dx)x(yI;dx)x(yI;dx)x(yI     (4.3) 

These integrals are performed using the known polynomials )x(y1 , )x(y2 , )x(y3 , 
)x(y4 . For instance if L=0 and R=1 – as it was considered in (3.7) – it results  

Iy1=1/2    ;    Iy2=1/2    ;     Iy3=1/12    ;     Iy4= – 1/12    (4.4) 
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 The product A(Int φ) results finally as 
R4L3R2L1 JJJJ)Int(A φ′+φ′+φ+φ=φ     (4.5) 

where    4y43y32y21y1 AIJ;AIJ;AIJ;AIJ ====      (4.6) 
Besides Ji (i=1,2,3,4) the relation (4.5) includes also  
1. The Left end value of the function φL that is known as initial condition (1.3). 
2. The Right end value φR, which represents the unknown that has to be found. 
3. The Left end value of the derivative Lφ′ can be evaluated using the ODE (1.1) 
itself  

LLLL WFBA ++φ=φ′      (4.7) 
where WL= W(x=L) and – if F is given by (1.2) –  FL = (φL)n. 
4. The Right end value of the derivative Rφ′ is unknown, but using also ODE (1.1) 
it can be expressed as function of φR. Because WR= W(x=R ) and FR = (φR)n 

 ( ) R
n

RRRRRR WBAWFBA +φ+φ=++φ=φ′   (4.8) 
 

4.2 Integration of Int F (2.4) 
 
 The integral (2.4) can be performed replacing in (3.10) Q by F while the 
Concordant Function will be noted as z(x) instead of f(x). It is necessary to 
specify that the Concordant Function used for the integration of (2.4) can still be 
CF4 (third degree polynomial) used above or a higher degree polynomial as those 
that will be established in §7.  At this stage the exposure is simplified if as z(x) 
will be used the same CF4, so that the replacing function (3.10) becomes 

R4L3R2L1 F)x(zF)x(zF)x(zF)x(z)x(z ′+′++=    (4.9) 
 The integral (2.4) is given by 
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where   ∫∫∫∫ ====
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11z dx)x(zI;dx)x(zI;dx)x(zI;dx)x(zI     (4.11) 

Remark. If the Concordant Function is still CF4 these integrals are in fact (4.4) 
Iz1=1/2    ;    Iz2=1/2    ;     Iz3=1/12    ;     Iz4= – 1/12    (4.12) 

 The term B(Int F) results finally as 
R4L3R2L1 FGFGFGFG)FInt(B ′+′++=     (4.13) 

where   4z43z32z21z1 BIG;BIG;BIG;BIG ====     (4.14) 
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All the terms from (4.13) depending on F(φ) have to be thoroughly 
analyzed. If n)(F φ=φ  (1.2) it results 

1. The value of the function F at the Left end ( )nLLF φ= is known. 
2. The value of the function F at the Right end   

( )nRRF φ=      (4.15) 
 is unknown because it depends on the unknown value Rφ . 

3. The Left end derivative LF′  requires a special analysis. In fact F is a 
function of φ, while the integral Int F (2.4) depends on x, so that  
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The Left end it results as 
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LF′ is known because Lφ is (1.4) and Lφ′ is given by (4.7). 
4. The unknown right end derivative RF′ can be expressed as function of φR, if 

Rφ′ is replaced by (4.8) 
( ) ( ) ( ) ( ) R

1n
R

1n2
R

n
RR

1n
RR WnnBnAnF −−− φ+φ+φ=φ′φ=′     (4.18) 

 
5. The integral equation  
 

 Because all the integrals included in (2.1) have received a specific form, it 
results replacing (2.2a), (2.2b), (4.5) and (4.13)  

( ) ( ) 0WIntFGFGFGFGJJJJ R4L3R2L1R4L3R2L1RL =+′+′+++φ′+φ′+φ+φ+φ−φ (5.1) 
 If (4.8), (4.15), (4.18) are used it results a nonlinear equation whose 
unknown is the target value φR. This equation transforms in fact the integration 
of the nonlinear ODE (1.1), in another more simple problem, namely to find 
the appropriate root of a nonlinear one dimension equation. 
 If F is given by (1.2) it results the non-linear equation 

( ) ( ) ( ) 0KKKKK 5R4
1n

R3
n

R2
1n2

R1 =+φ+φ+φ+φ −−   (5.2) 
whose coefficients Ki(i=1,2,3,4,5) can be evaluated straightforward 

1JAJK;WnGK;nAGGBJK;nBGK 424R43424241 −+==++==  
WIntWJFGFGJJK R4L3L1L3L1L5 ++′++φ′+φ+φ=  

If n=2 the equation (5.2) becomes  ( ) ( ) ( ) 0KKKKK 5R43
2

R2
3

R1 =+φ++φ+φ (5.3) 
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6. Verification of the solution 
6.1 Residual evaluation 
 

 The root of (5.1) or – as a particular case – (5.2) is represented by the 
target value Rφ . Thus ( )2RRF φ= is also known, so that the right end derivative Rφ′  
can be obtained form (4.8). The replacing function (4.1) that result can be 
considered as a quasi-analytic solution [6] of the ODE (1.1). The best way to 
verify its accuracy to replace (4.1) in the ODE (1.1). Because (4.1) is not an exact 
solution it will result a residual function different from zero given by  

)x(W)y(FB
dx
dyAy)x(sRe ++−=       (6.1) 

 A simple way to appreciate numerically the accuracy of the solution is to 
divide the integration interval in NP points having the abscissas xi (i=1,2..NP) 
where the residual is computed. This allows getting a synthetic result as the mean 
square root value 

[ ]∑
=

=

=
NPi

1i

2
iMS )x(sRe

NP
1R     (6.2) 

 The problem of the accuracy of the numerical results obtained by ODEs 
numerical integration is analyzed thoroughly in [Fox], from which we quote: “A 
good method for solving any differential equation will not only produce an 
accurate result but also give at least a reasonable indication of the accuracy 
achieved. With one unrefined application of the any step-by-step method there is 
no possibility of assessing the accuracy, and at least some further work is 
needed”. 

The residual reflected by (6.2) presents many particularities as compared 
to other methods used for the appreciation of the accuracy achieved: 

1. The residual is evaluated using the information already found. It makes 
possible assessing the accuracy without any “further work”. 

2. The value of RMS (5.2) obtained for a given element does not depend on 
the previous history of the computation. Consequently, evaluating the truncation 
and/or round-up errors is useless for AEM. 

3. The residual reflects the closeness between y(x) and the exact solution3. 
The value of RMS (5.2) represents a tool that allows following the evolution of the 
computation at each step. For instance a sudden increase of RMS can indicate that 
the solution is moving off from the exact solution. In such case the results are no 
more reliable and some decision4 has to be taken to improve them. 

4. The residual reflects the evolution of a complex relation, not of a 
particular parameter.  The RMS evaluation is based on the ODE, which includes 
                                                           
3 If such a solution exists 
4 Modifying the dimensions of the elements or/and using a higher degree polynomial as CF 
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besides Rφ at least the derivative Rφ′ . Therefore the value of RMS indicates the 
evolution of the whole integration procedure and can not be used a direct 
appreciation of the accuracy of the Target value φR. 
Example 1. The ODE 

654322 x12x36x75x40x6x701634
dx
d

−+−++−−φ+φ=φ′=
φ     (6.3) 

will be integrated imposing as initial condition     2Start =φ      (6.4) 
Here the nonlinear term is (1.2), where n=2. Because as replacing 

functions y(x) and z(x) will be used CF4 (which is a poor replacing function that 
can give only lowery results, similar to those obtained by the fourth order Runge-
Kutta method) the integration domain will be quite small, being limited at 
xFinal=0.1. With the purpose to follow the behavior of CF4 when the integration 
interval is modified, several integrations will be performed, each time the entire 
domain being covered by a single element. There were considered 10 different 
intervals, starting form xTarget=0.01 and increasing step 0.01 until the xFinal=0.1 is 
reached. 
Remark. The exact solution of (6.3) is               32

exact x2x3x42 +−+=φ      (6.5) 
 The results of the computations are summarized in Table 1. Because the 
exact target value can be obtained (in this particular case) from (6.5), the true 
errors have been given in the fourth column. The variations of the absolute value 
of the true errors and of the RMS [calculated with (6.2)] are represented in Fig.1.  
 

         Table 1 
Computations using a single element 

xTarget Target value φR True 
error 

Residual 
 (RMS) Computed Exact 

(1) (2) (3) (4) (5) 
0.01 2.039698012094537 2.039702 -1.95×10-6 2.39×10-8 

0.02 2.078784243263860 2.078816 -1.52×10-5 3.28×10-7 
0.03 2.117247609102766 2.117354 -5.02×10-5 1.59×10-6 
0.04 2.155078795607963 2.155328 -1.15×10-4 4.91×10-6 

0.05 2.192271629931732 2.192750 -2.18×10-4 1.17×10-5 
0.06 2.228820795332329 2.229632 -3.63×10-4 2.44×10-5 

0.07 2.264712455934159 2.265986 -5.62×10-4 4.63×10-5 
0.08 2.299924713646576 2.301824 -8.25×10-4 7.96×10-5 
0.09 2.334441517690581 2.337158 -1.16×10-3 1.24×10-4 
0.10 2.368254112961083 2.372000 -1.58×10-3 1.84×10-4 
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  Fig.1      Fig.2 
 
 It results from Table 1 and from Fig.1 that the RMS values are more 
optimistic than the true errors. It is useful to observe that both curves have a 
similar trend. This fact is important because the values of the RMS are available to 
the user at any phase of the computation, so that RMS can be a tool to follow the 
evolution of the computation. It seems that residuals like RMS ≈ (10-4 … 10-5) 
show that the corresponding target value is far from accurate. Obviously these 
values – resulted from a small number of tests – are disputable. 
Example 2. The same ODE (6.3) will be integrated on a larger domain between 
xStart=0 and xTarget=0.5, using each time a different number of elements between 
NE=20 and NE=200. The results (together with the true errors) are given in Table 
2 and Fig.2. 

                         Table 2 
 

 
The descending trends of both RMS and true errors are to be expected, 

because as NE increases the length of each element decreases leading therefore to 
a better result. From this example it results that a RMS ≈ (10-11 … 10-12) may 
indicate a very good value of the target value, which can be considered as 
accurate. 

Exact Target Value  =  3.5 
NE Target value φR True error Residual (RMS) 
(1) (2) (3) (4) 
20 3.498298373701107 -4.86×10-4 4.90×10-6

40 3.499893369734073 -3.04×10-5 4.50×10-8 
60 3.499978932029412 -6.02×10-6 2.82×10-9 
80 3.499993333507704 -1.90×10-6 4.13×10-10

100 3.499997269341086 -7.80×10-7 1.05×10-10 
120 3.499998683076844 -3.76×10-7 3.97×10-11

140 3.499999289156937 -2.03×10-7 1.92×10-11 
160 3.499999583312941 -1.19×10-7 1.08×10-11 
180 3.499999739848328 -7.43×10-8 6.59×10-12

200 3.499999829339440 -4.87×10-8 4.25×10-12 
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The results reflected in Fig.2 especially for higher NEs seem to be 
reassuring, but they can be delusive. In fact the exact solution (6.5) has the same 
degree as CF4. If the exact solution is a higher degree polynomial or non-
polynomial, the results could be inaccurate. Obviously, if the residuals indicate 
that the solution is inaccurate, one can resort to a trivial solution, namely to 
increase the number of elements. But the Accurate Element Method furnishes a 
better alternative: the use of higher order CFs. 
 

7. Higher degree polynomials used as Concordant Functions 
 
 Higher degree polynomials – up to CF16 (15th degree polynomial) – have 
been used in [4] in order to improve the accuracy. Here the spectrum will be 
limited to CF6 (5th degree polynomial), CF8 (7th degree polynomial) and CF10 
(9th degree polynomial).  
 The Concordant Function referred as CF6 is a fifth degree polynomial 
given by 

5
6

4
5

3
4

2
321 xCxCxCxCxCC)x(f +++++=     (7.1) 

From the six conditions necessary to obtain the unknown coefficients, four are 
those represented by (3.5a), (3.5b), (3.5c), (3.5d) using obviously (7.1) instead of 
(3.1). The two more necessary conditions are obtained using the second derivative 
of (7.1) 
Condition 5:      L

3
6

2
543 QLC20LC12LC6C2)L(f ′′=+++=′′     

Condition 6:      R
3

6
2

543 QRC20RC12RC6C2)R(f ′′=+++=′′      
 The procedure that follows is similar to that described in §3, §4.1 and §4.2 
including some obvious modifications due to the increase of the polynomial 
degree. The replacing functions (4.1) and (4.9) become 

R6L5R4L3R2L1 )x(y)x(y)x(y)x(y)x(y)x(y)x(y φ′′+φ′′+φ′+φ′+φ+φ=          (7.2a) 
R6L5R4L3R2L1 F)x(zF)x(zF)x(zF)x(zF)x(zF)x(z)x(z ′′+′′+′+′++=          (7.2b) 

The second derivatives are replaced using the first derivative of the ODE (1.1) [4]. 
 The integrals (4.5) and (4.15) have will include six terms  

R6L5R4L3R2L1 JJJJJJ)Int(A φ′′+φ′′+φ′+φ′+φ+φ=φ           (7.3) 
R6L5R4L3R2L1 FGFGFGFGFGFG)FInt(B ′′+′′+′+′++=   (7.4) 

The final form of the integral equation will include four more terms as 
compared to (5.1), but leads also to a nonlinear one-dimensional equation whose 
appropriate root gives the target value φR 

( )
( ) 0WIntFGFGFGFGFGFG

JJJJJJ

R6L5R4L3R2L1

R6L5R4L3R2L1RL
=+′′+′′+′+′+++

+φ′′+φ′′+φ′+φ′+φ+φ+φ−φ
     (7.5) 

The residual results by replacing (7.2a) into the ODE (1.1). 
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 The procedure for obtaining CF8 and CF10 is described in [4]. It is useful 
to mention that the final equation will include four more terms for CF8 and eight 
more terms for CF10, as compared to (7.5).  
  

8. ODEs integrated with four different Concordant Functions 
 
 The following examples will be solved using all the four CFs mentioned 
above. The comparison of the results leads to some useful conclusions. 

Example 3. The ODE                   2x5x32)(cos34
dx
d

−−−φ+φ=φ′=
φ        (8.1) 

will be integrated between xStart = 0 and xTarget = 1, the initial condition being 
1.0Start =φ .  

 This time the integration procedure is extended to a larger domain and has 
also another goal: finding the appropriate number of elements NE so that the RMS 
of the residual is around 10-9. The results obtained are given in Table 3. 
 Because for the ODE (8.1) no exact solution is known by the author, the 
Table 3 includes besides the general information represented by NE, only the 
results of the computation. Some values included in Table 3 deserve to be 
analyzed: 
 

                             Table 3 
Concordant Function NE Element length Target value (x=1) RMS 

CF4 900 0.00111 –0.759194888 4170064 5.82×10-9 
CF6 70 0.01428 –0.759194888 2709806 7.25×10-9 
CF8 32 0.03125 –0.759194888 8472719 2.96×10-9 

CF10 17 0.0588 –0.759194888 4170064 1.57×10-9 
 

1. The number of elements necessary for obtaining RMS ≈ 10-9 with the 
four CFs is totally different. The CF4 needs 53 times more elements as compared 
to CF10. 
 2. The Target value for all the four CFs is practically the same if the 
condition RMS ≈ 10-9 is fulfilled.  

3. The possibility to integrate the same ODE with different CFs gives to 
the user a powerful tool to know how accurate the computed Target value is. In 
fact from Table 3 it results that the Target values coincide – for all the four CFs – 
with 9 decimal digits, so that  

φTarget = –0.759194888    (8.2) 
can be considered as accurate. 
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Fig.3      Fig.4 

 
 The variation of the function-solution along x is represented in Fig.3, 
while that of the RMS is given in Fig.4. While the graphs of RMS represented in 
Figs.1 and 2 vary monotonously, the graph given in Fig.4 shows a curious 
behavior, for which the author has no reliable explanation. In fact the two local 
variations of the RMS near x≈ 0.24 and x ≈ 0.97 do not represent a tendency 
towards any instability, but on the contrary, is a local improvement of the result 
because in both cases the value of the RMS is smaller. Nevertheless the variation of 
the function-solution (Fig.3) is smooth, the perturbations shown in Fig.4 having 
no relevant influence. Anyway the graph given in Fig.4 shows that one may 
obtain interesting information (that have to be better understood) concerning the 
computation progress by following the variation of the RMS. 

Example 4. The ODE              234 x5x32)cos(34 −−−φφ+φ=φ′     (8.3) 
will be integrated between xStart = 0 and xTarget = 1, the initial condition 
being 2Start =φ . 
 The same procedure as in Example 3 will be used: finding the appropriate 
number of elements NE so that the RMS of the residual is around 10-8. The results 
of this approach are given in Table 4. 

                             Table 4 
Concordant Function NE Elem.length Target value (x=1) RMS 

CF4 800 0.00125 5.84485405 7378286 1.73×10-8 
CF6 30 0.03333 5.84485405 8499404 2.81×10-8 
CF8 8 0.125 5.84485405 7301115 4.44×10-8 

CF10 5 0.2 5.84485405 9367726 1.43×10-8 
 
 Here the results are similar to those obtained in Example 3, namely the 
Target values coincide for all four CFs with the following 9 decimal digits 

φTarget = 5.84485405    (8.4) 
This result can also be considered as accurate. 
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Fig.5      Fig.6 

  
 The variations of the function-solution y and of the residual are given in 
Figs.5 and 6, respectively. This time the RMS represented on a logarithmic scale 
has a monotonous variation. 
Remark. The Target values in Examples 3 and 4 coincide with 9 decimal digits. 
These results have been obtained from four different solutions of the same ODE 
solving four different non-linear equations, on four different integration sub-
domains and they coincide with 9 digits. It is difficult to accept that this is a pure 
coincidence. On the contrary, is more rational to consider that the results (8.2) and 
(8.4) are reliable. 
 

9. ODE with variable coefficients 
 
 Let consider now the ODE with variable coefficients 

)x(W)(F)x(B)x(A
dx
d)x(D +φ+φ=
φ   (9.1) 

where A(x), B(x), D(x) are given by three functions of x. From the derivative 
[ ] )x(

dx
)x(dD

dx
)x(d)x(D

dx
)x()x(Dd

φ+
φ

=
φ   (9.2) 

it results using (9.1) 
[ ] )x(W)(F)x(B)x()x(A)x(

dx
)x(dD

dx
)x()x(Dd

+φ+φ=φ−
φ ,    or 

[ ] )x(W)(F)x(B)x()x(
dx

)x()x(Dd
+φ+φα=

φ       (9.3) 

where     
dx

)x(dD)x(A)x( +=α        (9.4) 

 From (9.3) it results, similar to (2.1), the integral equation 
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[ ]

∫∫∫

∫

+φ+φα=φ−φ=

=φ=−=φ==φ=
φ

=

=

R

L

R

L

R

L
LLRR

Rx

Lx

R

L

dx)x(Wdx)(F)x(Bdx)x()x(DD

)Lx()Lx(D)Rx()Rx(D)x()x(Ddx
dx

)x()x(Dd

 (9.5) 

The integrals ∫ φα=αφ
R

L

dx)x()x()Int(  and ∫ φ=
R

L

dx)(F)x(B)IntBF( can be performed 

using the Concordant Functions y(x) (4.1) and z(x) (4.9), following the procedure 
developed in §4. Similarly to (4.2) it results 

    ( )∫∫ φ′+φ′+φ+φα=α≈αφ
R

L
R4L3R2L1

R

L

dx)x(y)x(y)x(y)x(y)x(dx)x(y)x()Int( ,  or 

R4L3R2L1 JJJJInt φ′+φ′+φ+φ=φα       (9.6) 
where the integrals Ji(i=1,2,3,4) result from the products 

∫∫∫∫ α=α=α=α=
R

L
44

R

L
33

R

L
22

R

L
11 dx)x(y)x(J;dx)x(y)x(J;dx)x(y)x(J;dx)x(y)x(J (9.7) 

 Following a similar procedure for IntBF it results, using z(x) (4.9) 

( )∫∫ ′+′++=≈
R

L
R4L3R2L1

R

L

dxF)x(zF)x(zF)x(zF)x(z)x(Bdx)x(z)x(BBFInt ,   or 

R4L3R2L1 FGFGFGFGBFInt ′+′++=    (9.8) 
where the integrals Gi(i=1,2,3,4) result from the products 

∫∫∫∫ ====
R

L
44

R

L
33

R

L
22

R

L
11 dx)x(z)x(BG;dx)x(z)x(BG;dx)x(z)x(BG;dx)x(z)x(BG     

 Thus the basic relation remains similar to (5.1), except the first and second 
terms, which have to be modified according to (9.5) 

( ) ( ) 0WIntFJFJFJFJJJJJDD R4L3R2L1R4L3R2L1RRLL =+′+′+++φ′+φ′+φ+φ+φ−φ  
(9.9) 

Obviously, (5.1) results from (9.9) for DL= DR=1. 
 

10. Some conclusions and further developments 
 
 The purpose of this paper is to present a short but comprehensive approach 
concerning the numerical integration of nonlinear first order ODEs. The special 
strategy developed here transfer the integration problem to the simpler approach 
of solving a trivial non-linear algebraic equation. In order to facilitate the 
exposure some simplifications – that can be easily discarded – have been adopted: 
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 1. All the relations have been established in Cartesian coordinates. In this 
case it is necessary to compute for each element the inverse of the square matrix 
that multiply the vector [ ]C (3.3), which can be time consuming for higher degree 
CFs. More than that, when the degree of the polynomial increases beyond 10 or 
12, some numerical difficulties may occur for the small length elements. All these 
problems are implicitly discarded if one uses a natural (dimensionless) axes 
system whose abscissas vary between ηL=0 and ηR=1 [4]. 
 2. The computation “strategy” used here is rudimentary and requires an 
improvement. The computation was developed by dividing the entire domain in 
equal steps, or the use of steps with different lengths becomes necessary when the 
solution begins to change rapidly [10]. 
 3. No details have been given concerning the establishing of the particular 
form of the non-linear algebraic such as (5.2), starting from the general equation 
(5.1). This is in fact a routine problem that can be solved using a very simple 
program implemented in MAPLE, which performs symbolic operations. An 
appropriate connection between MATLAB and MAPLE can eliminate any 
intervention of the user. 

 The methodology developed here creates a frame for solving the more 
difficult problem of the numerical integration of explicit ODEs. When the 
derivative φ′ can not be isolated and moved on the left side of the equal sign as in 
(1.1), the ODE is considered as implicit. Such an ODE may be difficult to be 
integrated by other numerical methods, such as Euler or Runge-Kutta5, because 
the starting value )0x(S =φ′=φ′ can not be obtained directly. The implicit ODEs 
can be integrated by AEM following a special and more sophisticated 
methodology that will be developed elsewhere. 
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