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ACCURATE ELEMENT METHOD NUMERICAL
INTEGRATION OF A NONLINEAR FIRST ORDER
ORDINARY DIFFERENTIAL EQUATION BY SOLVING AN
EQUIVALENT NONLINEAR ALGEBRAIC EQUATION

Maty Blumenfeld'

O metodologie pentru integrarea numerica a ecuatiilor diferentiale
ordinare (ODE) neliniare a fost prezentatad in [4], dar ea este greoaie si se bazeazd
pe un calcul iterativ. Aceiasi problemd se rezolva aici pe altd cale in care nu mai se
recurge la iteratii, ci se transformad integrarea unei ODE neliniare intr-o banald
rezolvare a unei ecuatii algebrice neliniare. Se considera ODE neliniard cu
coeficienti constanti A, B

¢'=A¢+B¢" + W(x)
Pentru determinarea valorii functiei ot la capatul T al domeniului de
integrare trebuie rezolvata ecuatia neliniara
2n—1 n n—1
Ky(or "+ Ky (91 )" + K5 (00) ™ + Ky op +K5=0
in care coeficientii Ki(i=1,2,3,4,5) se obtin direct pe parcursul procesului
de calcul. Precizia calculului poate fi evaluatd direct prin determinarea reziduului,

fara a se efectua alte operatii ajutatoare. Se prezintd deasemenea metodologia de
rezolvare a ODE cu coeficienti variabili.

A methodology for the numerical integration of first order non-linear
Ordinary Differential Equations (ODE) has been already developed by the Accurate
Element Method (AEM) in [4], but it is cumbersome and based on an iterative
procedure. Here the same problem is solved without any iteration, by a more
natural approach that transforms the problem of a nonlinear ODE in a trivial
nonlinear algebraic equation. For example considering the ODE with constant
coefficients A, B

¢'=A¢+B¢" + W(x)

the value & of the function at the target abscissa { can be obtained by

solving the polynomial non-linear equation
2n-1 -1
Ky(or "+ Ky (91 )" +K;5(00) ™ + Ky op +K5=0

where the coefficients Ki(i=1,2,3,4,5) can be obtained directly during the
computation procedure. The accuracy of the computation can be evaluated without
any modification of the integration mesh or any further work using a powerful tool

developed by AEM, namely the residual. The methodology for solving ODEs with
variable coefficients is also described.

! Professor Emeritus, Strength of Materials Department, University POLITEHNICA of Bucharest,
Romania



16 Maty Blumenfeld

1. ODE to be integrated

Let be the following first order Ordinary Differential Equation (ODE)
o' =Ad+BF(dp)+ W(x) (1.1)
In order to simplify the exposure, the coefficients A and B will be initially

considered as constants®. Besides?,d) and the free term W(x), the ODE (1.1)
X

includes also a non-linear term F[(¢(x)] that can be any function of ¢ such as
F(¢)=0" (1.2)
or F(§) =cos(9), F() =46 cos}/9) , F(¢) =dsin(¢) +¢” In(9) ...

The ODE will be integrated numerically between a starting point xs and a
target point xr by dividing the domain in sub-domains (elements). The initial
(start) condition is

O(x =xg) = ds (1.3)
The ends of each element will be noted x=L (Left) and x=R (Right), so that the
left end condition becomes

d(x=L)=¢r (1.4)
2. The integral equation

The “classical” numerical integration methods accepted today, such as
Euler, Heun, Runge-Kutta, avoid carefully any integration procedure. On the
contrary the Accurate Element Method (AEM) starts by the integration of the
ODE (1.1) that leads to an integral equation

Ry R R R
j—¢dx=AI¢(x)dx+Bj F(¢)dx+jW(x)dx (2.1)
dx
L L L L
The first and the last integrals can be performed straightforward

j 49 4y ol =or oL (2.2a) ; (IntW):IW(x)dx (2.2b)
L L
(Int W) being usually a trivial integral. On the contrary the two remaining
integrals cannot be performed directly because both ¢(x) and F¢) are unknown

(Int$) = j o(x)dx 23) (IntF) = j Fo)dx  (2.4)
L L

The Accurate Element Method performs numerically these integrals
replacing ¢(x) and F(¢) by Concordant Functions (CF) [2,3,4,5,6,7]. A

% The case of ODEs with variable coefficients is analyzed in §10
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methodology for the integration of nonlinear ODEs based on CFs was already
established [4], but the approach developed there lead to cumbersome procedures.
A small formal modification of the methodology transforms the quite complicated
problem of the integration of a nonlinear ODE into a trivial problem of solving a
one dimensional nonlinear algebraic or transcendental equation.

3. Concordant Function f(x)

A Concordant Function (CF) is a polynomial of high or very high degree
whose coefficients are obtained rigorously using the information furnished by the
governing ODE (1.1) itself. Though the procedure for finding the coefficients was
extensively described in [4], it will be shortly presented here in order to introduce
a small modification of the approach.

The CF analyzed below is a third degree polynomial noted as f(x), which
will be written in the following matrix form

£(x) =C) +Cax +C3x2 + Cyx® = [X,][C]T 3.1)

where [X,]=h x x> x| (32 ; [cllo o ¢ o]t 63
The first derivative of (3.1) is

£'(x) = Cy +2C3x +3C x> (3.4)

Let be Q(x) the function that has to be replaced by the Concordant
Function f(x). Because (3.1) includes four constants that have to be obtained, it is
referred as CF4. These constants are obtained by the Accurate Element Method
using the following four conditions obtained by equating the end values of f(x)
and Q(x) and their derivatives at the two ends L and R

Condition 1: f(L)=Cy+CoL+C31% +C4L° =Q(x =L)=Q. (3.5a)
Condition 2: f(R)=C; +C,R +C3R? +C4R* =Q(x =R) =Qg (3.5b)
Condition 3: f/(L)=Cs +2C;L+3C4 1> =Q'(x =L) = Q| (3.5¢)
Condition 4: f'(R)=C, +2C;R +3C,R%? =Q'(x =R) =Q} (3.5d)
Based on the four conditions (3.5,a,b,c,d) it results the system of equations

1 L 2 g o] [t 0 0 0

1 R R? R?|Cy| |Qr]| |O 1 0 0

= =] . |QL+| . |Qr +| . |QL+|  |Q] 3.6
0 1 2L 32 llcsl Q| ol o "R 1t oR (3.6)
0 1 2R 3R*||C4) [Qr] [0 0 0 1
The four end values Q;,Qg,Q,Qr have been separated by multiplying

them with an appropriate vector. Suppose — in order to simplify the exposure— that
L=0 and R=1, in which case the inverse of the square matrix [4x4] is
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1 VS N 1000 0
2 R? 1111 0 0 1 0
1 R R R _ _ (3.7)
0 1 2L 312 0100 -3 3 -2 -1
0 1 2R 3R? 0123 2 -2 1 1
If (3.6) is multiplied by (3.7) it results the vector of the unknown coefficients
c] 1 0 0 0
. |Cy| |0 0 1 0
Cl= = + + L+ i 3.8
[ ] o 7] -3 QL 3 Qr s QL 1 Qr (3.8)
C,l |2 -2 1 1

From (3.1) it results now CF4 as a sum of four 31 degree polynomials
£ =[x,][c]"=
=(1-3x2+2x%)Qp +3x? =2x) Qg +(x —2x% +x>) Q] +(—x? +x7) QR
If L#0 or R#1 the same procedure will lead to the general relation
£()=f(x)QL +F(x)Qr +F3(x) QL +f4(x) Qr (3.10)
where f](x),f,(x),f3(x),f4(x) are four known polynomials.

(3.9)

4. Integration of Int ¢ (2.3) and Int F (2.4)
4.1 Integration of the term A(Int ¢)

In order to perform the integral (2.3), the function that has to be replaced
here is ¢(x) instead of Q(X), while the Concordant Function will be noted as y(X)
instead of f(x). Consequently, (3.10) becomes

y(x) =¥1(X) ¢, +V2(X)dr +Y3(X) 0L +¥4(X) dR (4.1)
If (4.1) is replaced in (2.3) it results
R R R
Int = { d(x)dx {y(x)dx = {(wm TR+ T8 +FaCORE
= Iyl(I)L + Iy2¢R + Iy3¢,L + Iy4(|),R

R R R R
where I, = jyl(x)dx s 1y = jyz(x)dx ; 1y3 = jys(x)dx S lyy = jm(x)dx (4.3)

L L L L

These integrals are performed using the known polynomials y;(x), ¥,(x), y3(x),
y4(x) . For instance if L=0 and R=1/ — as it was considered in (3.7) — it results
Iyi=172 5 I1p=1/2 ; Is=l/12 ; Ilu=-1/12 (4.4)
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The product A(Int ¢) results finally as

A(Intd) =J1op +120r +J30L +T49R (4.5)
where Ji=Aly 5 Jy=Aly, 5 J3=Alyz 5 J4=Aly (4.6)
Besides J; (i=1,2,3,4) the relation (4.5) includes also
1. The Left end value of the function ¢ that is Known as initial condition (1.3).
2. The Right end value ¢r, which represents the unknown that has to be found.
3. The Left end value of the derivative ¢; can be evaluated using the ODE (1.1)
itself

O =Adp +BF_ + W 4.7)

where W= W(x=L) and — if F is given by (1.2) — Fp = (¢p)".
4. The Right end value of the derivative ¢ is unknown, but using also ODE (1.1)
it can be expressed as function of ¢r. Because Wr= W(x=R ) and Fg = (¢r)"

R =A¢g +BFy + Wg = Adg +B(og )" + Wy (4.8)

4.2 Integration of Int F (2.4)

The integral (2.4) can be performed replacing in (3.10) Q by F while the
Concordant Function will be noted as z(x) instead of f(X). It is necessary to
specify that the Concordant Function used for the integration of (2.4) can still be
CF4 (third degree polynomial) used above or a higher degree polynomial as those
that will be established in §7. At this stage the exposure is simplified if as z(x)
will be used the same CF4, so that the replacing function (3.10) becomes

2(x) =71 (X) FL +Zp(x) Fr +Z3(x) F +Z4(x) Fg (4.9)
The integral (2.4) is given by
R R R
IntF = jF[q)(x)]dx ~ jz(x)dx = j (Z (X)L +7Z5(x) Fr +Z3(X) Ff, +Z4(x) F )dx =
L L L
=1k +1,F + Iz3FI: +1,4FR
(4.10)
R R R R
where 1y = [Z/(x)dx; Ip = [Z(x)dx ;s Ly = [Z3(0dx; Ly = [Z4(0dx  (4.11)
L L L L
Remark. If the Concordant Function is still CF4 these integrals are in fact (4.4)
Li=12 5 1,=172 ; 15=1/12 ; Is,=—1/12 (4.12)
The term B(Int F) results finally as
B(Il’ltF)=G1FL +G2FR +G3F£ +G4F]’{ (413)

where GIZBIZI 5 G2 :BIZZ 5 G3 ZBIZ3 5 G4 ZBIZ4 (414)
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All the terms from (4.13) depending on F(¢) have to be thoroughly
analyzed. If F(¢)=¢" (1.2) it results

1. The value of the function F at the Left end F,_ =(¢; )" is known.

2. The value of the function F at the Right end

Fr =(0g )" (4.15)

is unknown because it depends on the unknown value ¢y, .

3. The Left end derivative F requires a special analysis. In fact F is a
function of ¢, while the integral /nt F' (2.4) depends on x, so that

dF(¢) — dF(d))@:nd)n—l@ (4 16)
dx do dx dx '
The Left end it results as
' E — E @ — n—1 ,r
() (5] (5] -nterat @17)

F is known because ¢; is (1.4) and ¢y is given by (4.7).
4. The unknown right end derivative F; can be expressed as function of ¢g, if
¢R is replaced by (4.8)

F =n(pr )" 0k =nA(pr )" +nBlog " +n(pr )" W (4.18)
5. The integral equation

Because all the integrals included in (2.1) have received a specific form, it
results replacing (2.2a), (2.2b), (4.5) and (4.13)
o — R +(T10p + 20 + 1301 +Tadk )+ (GF + GoFg +G3F +GyFg )+IntW =0(5.1)
If (4.8), (4.15), (4.18) are used it results a nonlinear equation whose
unknown is the target value ¢r. This equation transforms in fact the integration
of the nonlinear ODE (1.1), in another more simple problem, namely to find
the appropriate root of a nonlinear one dimension equation.
If F is given by (1.2) it results the non-linear equation
Ky (0r "+ Ko (0p )" +K3(9r )" + Ky g + K5 =0 (5.2)
whose coefficients K;(i=1,2,3,4,5) can be evaluated straightforward
Kl :nBG4 5 K2 ZBJ4 +G2 +nAG4 5 K3 :nG4WR 5 K4 =J2 +AJ4 -1
K5 = ¢L +J1¢L +J3¢,L + GIFL +G3F]: +J4WR +IntW

If n=2 the equation (5.2) becomes K;(¢g ]’ + K, (o ) + (K5 +K4)og +Ks =0(5.3)
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6. Verification of the solution
6.1 Residual evaluation

The root of (5.1) or — as a particular case — (5.2) is represented by the
target value ¢ . Thus Fg = (g ) is also known, so that the right end derivative ¢y

can be obtained form (4.8). The replacing function (4.1) that result can be
considered as a quasi-analytic solution [6] of the ODE (1.1). The best way to
verify its accuracy to replace (4.1) in the ODE (1.1). Because (4.1) is not an exact

solution it will result a residual function different from zero given by
Res(x):Ay—?+BF(y)+W(x) (6.1)

X

A simple way to appreciate numerically the accuracy of the solution is to
divide the integration interval in NP points having the abscissas x; (i=1,2..NP)
where the residual is computed. This allows getting a synthetic result as the mean

square root value
i=NP
Rys =5 3 [Ress)f 62)

The problem of the accuracy of the numerical results obtained by ODEs
numerical integration is analyzed thoroughly in [Fox], from which we quote: “A
good method for solving any differential equation will not only produce an
accurate result but also give at least a reasonable indication of the accuracy
achieved. With one unrefined application of the any step-by-step method there is
no possibility of assessing the accuracy, and at least some further work is
needed”.

The residual reflected by (6.2) presents many particularities as compared
to other methods used for the appreciation of the accuracy achieved:

1. The residual is evaluated using the information already found. It makes
possible assessing the accuracy without any “further work™.

2. The value of Rys (5.2) obtained for a given element does not depend on
the previous history of the computation. Consequently, evaluating the truncation
and/or round-up errors is useless for AEM.

3. The residual reflects the closeness between y(x) and the exact solution’.
The value of Rys (5.2) represents a tool that allows following the evolution of the
computation at each step. For instance a sudden increase of Rys can indicate that
the solution is moving off from the exact solution. In such case the results are no
more reliable and some decision” has to be taken to improve them.

4. The residual reflects the evolution of a complex relation, not of a
particular parameter. The Rys evaluation is based on the ODE, which includes

3 If such a solution exists
* Modifying the dimensions of the elements or/and using a higher degree polynomial as CF
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besides ¢ at least the derivative ¢, . Therefore the value of Rys indicates the

evolution of the whole integration procedure and can not be used a direct
appreciation of the accuracy of the Target value ¢r.
Example 1. The ODE

? =¢' =4¢+3¢> —16—70x + 6x° +40x> —75x* +36x° —12x° (6.3)
X
will be integrated imposing as initial condition Dgpare =2 (6.4)

Here the nonlinear term is (1.2), where n=2. Because as replacing
functions y(x) and z(x) will be used CF4 (which is a poor replacing function that
can give only lowery results, similar to those obtained by the fourth order Runge-
Kutta method) the integration domain will be quite small, being limited at
Xrina=0.1. With the purpose to follow the behavior of CF4 when the integration
interval is modified, several integrations will be performed, each time the entire
domain being covered by a single element. There were considered 10 different
intervals, starting form Xraree=0.01 and increasing step 0.01 until the Xpina=0.1 is
reached.

Remark. The exact solution of (6.3) is Pexact =2+ 4x —3x2 +2x° (6.5)

The results of the computations are summarized in Table 1. Because the
exact target value can be obtained (in this particular case) from (6.5), the true
errors have been given in the fourth column. The variations of the absolute value
of the true errors and of the Ry [calculated with (6.2)] are represented in Fig.1.

Table 1
Computations using a single element
XTarget Target value ¢g True Residual
Computed Exact error (Rwms)
(@) (2 3) 4 )

0.01 | 2.039698012094537 | 2.039702 | -1.95x10° | 2.39x10*
0.02 | 2.078784243263860 | 2.078816 | -1.52x107 | 3.28x1077
0.03 | 2.117247609102766 | 2.117354 | -5.02x107 | 1.59x10°°
0.04 | 2.155078795607963 | 2.155328 | -1.15x10* | 4.91x10°
0.05 | 2.192271629931732 | 2.192750 | -2.18x10™* | 1.17x10°
0.06 | 2.228820795332329 | 2.229632 | -3.63x10™* | 2.44x10°°
0.07 | 2.264712455934159 | 2.265986 | -5.62x10™ | 4.63x10°
0.08 | 2.299924713646576 | 2.301824 | -8.25x10™* | 7.96x107
0.09 | 2.334441517690581 | 2.337158 | -1.16x10° | 1.24x10™
0.10 | 2.368254112961083 | 2.372000 | -1.58x10~ | 1.84x10™
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It results from Table 1 and from Fig.l that the Rys values are more
optimistic than the true errors. It is useful to observe that both curves have a
similar trend. This fact is important because the values of the Rys are available to
the user at any phase of the computation, so that Rys can be a tool to follow the
evolution of the computation. It seems that residuals like Rys ~ (10 ... 107)
show that the corresponding target value is far from accurate. Obviously these
values — resulted from a small number of tests — are disputable.

Example 2. The same ODE (6.3) will be integrated on a larger domain between
Xstar=0 and Xrarge=0.5, using each time a different number of elements between
NE=20 and NE=200. The results (together with the true errors) are given in Table

2 and Fig.2.
Table 2

Exact Target Value = 3.5

NE Target value dg True error | Residual (Rys)
@)) 2 3 4

20 | 3.498298373701107 | -4.86x10™ 4.90x10°
40 | 3.499893369734073 | -3.04x107 450%10°
60 | 3.499978932029412 | -6.02x10° 2.82x107
80 | 3.499993333507704 | -1.90x10° | 4.13x107"°
100 | 3.499997269341086 | -7.80x1077 1.05x107"°
120 | 3.499998683076844 | -3.76x107 | 3.97x10™"
140 | 3.499999289156937 | -2.03x107 1.92x10™"
160 | 3.499999583312941 | -1.19x107 1.08x10™"
180 | 3.499999739848328 | -7.43x10° |  6.59x10™"
200 | 3.499999829339440 | -4.87x10° |  4.25x10™"

The descending trends of both Rys and true errors are to be expected,
because as NE increases the length of each element decreases leading therefore to
a better result. From this example it results that a Rys ~ (10" ... 10™%) may
indicate a very good value of the target value, which can be considered as
accurate.
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The results reflected in Fig.2 especially for higher NEs seem to be
reassuring, but they can be delusive. In fact the exact solution (6.5) has the same
degree as CF4. If the exact solution is a higher degree polynomial or non-
polynomial, the results could be inaccurate. Obviously, if the residuals indicate
that the solution is inaccurate, one can resort to a trivial solution, namely to
increase the number of elements. But the Accurate Element Method furnishes a
better alternative: the use of higher order CFs.

7. Higher degree polynomials used as Concordant Functions

Higher degree polynomials — up to CF16 (15" degree polynomial) — have
been used in [4] in order to improve the accuracy. Here the spectrum will be
limited to CF6 (5" degree polynomial), CF8 (7" degree polynomial) and CF10
(9th degree polynomial).

The Concordant Function referred as CF6 is a fifth degree polynomial
given by

f(x)=C +Cox +C3x2 + Cgx° + Csx* + Cex? (7.1)
From the six conditions necessary to obtain the unknown coefficients, four are
those represented by (3.5a), (3.5b), (3.5¢), (3.5d) using obviously (7.1) instead of
(3.1). The two more necessary conditions are obtained using the second derivative
of (7.1)
Condition 5: f"(L) = 2C3 + 6C4L +12C5L2 +20C4 L2 = Q).
Condition 6: f"(R) = 2C3 +6C4R +12CsR? +20C¢R> = Qf

The procedure that follows is similar to that described in §3, §4.1 and §4.2
including some obvious modifications due to the increase of the polynomial
degree. The replacing functions (4.1) and (4.9) become

Y(X) =¥1(X) ¢ + Y2 (X) R +¥3(X) O +Y4(X) R +¥5(X)OL +V6(X) R (7.2a)

z(x) =721 (X)FL +Zy () Fg +Z3(x) | +Z4(X) Fg +Z5(x) F{ +Z¢(x) Fg (7.2b)

The second derivatives are replaced using the first derivative of the ODE (1.1) [4].
The integrals (4.5) and (4.15) have will include six terms

A(Intd) =J10p + 1R +J30L +T4dR +Js0L +J60R (7.3)

B(Int F) = GlFL + GZFR + G3FI: + G4Ff’{ + GsFﬂ + G6Ff”{ (74)

The final form of the integral equation will include four more terms as
compared to (5.1), but leads also to a nonlinear one-dimensional equation whose
appropriate root gives the target value ¢r

oL~ Or +(I10L +To0R +I301 +Jadk +I50L + 60k )+
+(G{F. +G,Fg + G3F + G4Fk + GsF +GgFg )+Int W =0
The residual results by replacing (7.2a) into the ODE (1.1).

(7.5)
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The procedure for obtaining CF8 and CF10 is described in [4]. It is useful
to mention that the final equation will include four more terms for CF8 and eight
more terms for CF10, as compared to (7.5).

8. ODEs integrated with four different Concordant Functions

The following examples will be solved using all the four CFs mentioned
above. The comparison of the results leads to some useful conclusions.
Example 3. The ODE %:cl)’:4(|)+3cos(<|))—2—3x—5x2 (8.1)
X
will be integrated between Xsir = 0 and Xrarger = 1, the initial condition being

<|)Stan =0.1.

This time the integration procedure is extended to a larger domain and has
also another goal: finding the appropriate number of elements NE so that the Rys
of the residual is around 10”°. The results obtained are given in Table 3.

Because for the ODE (8.1) no exact solution is known by the author, the
Table 3 includes besides the general information represented by NE, only the
results of the computation. Some values included in Table 3 deserve to be
analyzed:

Table 3
Concordant Function | NE | Element length Target value (x=1) Ryms
CF4 900 0.00111 —0.759194888 4170064 | 5.82x10”
CF6 70 0.01428 -0.759194888 2709806 | 7.25x10”
CF8 32 0.03125 —0.759194888 8472719 | 2.96x10”
CF10 17 0.0588 —0.759194888 4170064 | 1.57x10”

1. The number of elements necessary for obtaining Rys = 10 with the
four CFs is totally different. The CF4 needs 53 times more elements as compared
to CF10.

2. The Target value for all the four CFs is practically the same if the
condition Rys~ 107 is fulfilled.

3. The possibility to integrate the same ODE with different CFs gives to
the user a powerful tool to know how accurate the computed Target value is. In
fact from Table 3 it results that the Target values coincide — for all the four CFs —
with 9 decimal digits, so that

drarget = —0.759194888 (8.2)
can be considered as accurate.
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The variation of the function-solution along x is represented in Fig.3,
while that of the Rys is given in Fig.4. While the graphs of Rys represented in
Figs.1 and 2 vary monotonously, the graph given in Fig.4 shows a curious
behavior, for which the author has no reliable explanation. In fact the two local
variations of the Rygs near x=~ 0.24 and x = 0.97 do not represent a tendency
towards any instability, but on the contrary, is a local improvement of the result
because in both cases the value of the Rys 1s smaller. Nevertheless the variation of
the function-solution (Fig.3) is smooth, the perturbations shown in Fig.4 having
no relevant influence. Anyway the graph given in Fig.4 shows that one may
obtain interesting information (that have to be better understood) concerning the
computation progress by following the variation of the Rys.

Example 4. The ODE o'=40+3 4o cos@fp)-2-3x-5x*  (8.3)
will be integrated between Xsut = 0 and Xragee = 1, the initial condition
being (I)Start =2.

The same procedure as in Example 3 will be used: finding the appropriate

number of elements NE so that the Rys of the residual is around 107°. The results
of this approach are given in Table 4.

Table 4
Concordant Function | NE | Elem.length | Target value (x=1) Rus
CF4 800 0.00125 5.84485405 7378286 | 1.73x10™
CF6 30 0.03333 5.84485405 8499404 | 2.81x10™
CF8 8 0.125 5.84485405 7301115 | 4.44x10™
CF10 5 0.2 5.84485405 9367726 | 1.43x10™

Here the results are similar to those obtained in Example 3, namely the
Target values coincide for all four CF's with the following 9 decimal digits
OTarget = 5.84485405 (8.4)
This result can also be considered as accurate.
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The variations of the function-solution y and of the residual are given in
Figs.5 and 6, respectively. This time the Rys represented on a logarithmic scale
has a monotonous variation.
Remark. The Target values in Examples 3 and 4 coincide with 9 decimal digits.
These results have been obtained from four different solutions of the same ODE
solving four different non-linear equations, on four different integration sub-
domains and they coincide with 9 digits. It is difficult to accept that this is a pure
coincidence. On the contrary, is more rational to consider that the results (8.2) and
(8.4) are reliable.

9. ODE with variable coefficients

Let consider now the ODE with variable coefficients
D(x) ¢ =A(x)d+BEx)F($) + W(x) 9.1)
where A(x), B(x), D(x) are given by three functions of x. From the derivative

d[D(zid)(x)] D(x )dd)(X) dD(X) 4DE) 45y (9.2)

it results using (9.1)
D)) dD(x)
dx

o(x) = A(X)d(x) + B(x)F(¢) + W(x), or

d[D(Z) 6] _ a(x)d(x) + B(x) F(¢) + W(x) 9.3)
X

where a(x)=AX)+———

dD(x)
. 9.4)

From (9.3) it results, similar to (2.1), the integral equation
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x=R

=D(x)§(x) =D(x=R)¢p(x=R)-D(x=L)¢(x=L)
L Xt (9.5)
R R R

=Dgér ~Drop = [a(x)p(x)dx+ [ BEOF@)dx+ [ W(x)dx
L L L

Td D)),

R R
The integrals (Intad) = ja(x)q)(x) dx and (IntBF)= j B(x)F(¢)dx can be performed
L L

using the Concordant Functions y(x) (4.1) and z(x) (4.9), following the procedure
developed in §4. Similarly to (4.2) it results

R R
(Inta) ~ [a(x)y()dx = [a()(F1(00L + T2 () ér +T3()L +Fa(x)dk )dx, or
L L

Into¢=J1¢p +J20r +J3¢L +T40R 9.6)
where the integrals Ji(i=1,2,3,4) result from the products
R

R
I = [a(Fi (0 dx:I; = [a(092(0dx: 03 = [a()F3(0dx:04 = [a(0ya () dx (9.7)

" Following a simi]far procedure for InIiBF it results, using z(x) (4.9)
Int BF ~ ?B(x)z(x)dx = TB(X)(Zl (X)FL +Zo(X) Fg +Z3(X) F[, +Z4(x)Fg )dx, or
) IitBF=G1FL +G,Fr +G3F +GyFx (9.8)
where the integrals Gi(i=1,2,3,4) result from the products
Gy = TB(X)Zl(x)dx ; Gy = -R[B(X)Zz(x)dx ; Gy = IJ{.B(x)@(x)dx ; Gy = 1}B(x)iél(x)dx
L L L L

Thus the basic relation remains similar to (5.1), except the first and second

terms, which have to be modified according to (9.5)
[DLor —Dror + (100 +To0r +J301 +J40R )+ (JFp +ToFg +J3F +J4Fg )+ Int W =0
9.9)

Obviously, (5.1) results from (9.9) for D = Dg=1.
10. Some conclusions and further developments

The purpose of this paper is to present a short but comprehensive approach
concerning the numerical integration of nonlinear first order ODEs. The special
strategy developed here transfer the integration problem to the simpler approach
of solving a trivial non-linear algebraic equation. In order to facilitate the
exposure some simplifications — that can be easily discarded — have been adopted:
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1. All the relations have been established in Cartesian coordinates. In this
case it is necessary to compute for each element the inverse of the square matrix
that multiply the vector [E] (3.3), which can be time consuming for higher degree

CFs. More than that, when the degree of the polynomial increases beyond 10 or
12, some numerical difficulties may occur for the small length elements. All these
problems are implicitly discarded if one uses a natural (dimensionless) axes
system whose abscissas vary between 1.=0 and ng=1 [4].

2. The computation “strategy” used here is rudimentary and requires an
improvement. The computation was developed by dividing the entire domain in
equal steps, or the use of steps with different lengths becomes necessary when the
solution begins to change rapidly [10].

3. No details have been given concerning the establishing of the particular
form of the non-linear algebraic such as (5.2), starting from the general equation
(5.1). This is in fact a routine problem that can be solved using a very simple
program implemented in MAPLE, which performs symbolic operations. An
appropriate connection between MATLAB and MAPLE can eliminate any
intervention of the user.

The methodology developed here creates a frame for solving the more
difficult problem of the numerical integration of explicit ODEs. When the
derivative ¢' can not be isolated and moved on the left side of the equal sign as in

(1.1), the ODE is considered as implicit. Such an ODE may be difficult to be
integrated by other numerical methods, such as Euler or Runge-Kutta’, because
the starting value ¢g =¢'(x = 0) can not be obtained directly. The implicit ODEs

can be integrated by AEM following a special and more sophisticated
methodology that will be developed elsewhere.
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