

RANDOM VARIABLES ASSOCIATED TO A SYSTEM OF n POINTS IN THE SPACE M_2

Radu F. Constantin¹

In această lucrare se consideră acoperirea convexă I_n a unui sistem de n puncte aleatoare, independente și repartizate uniform în domeniul convex $D \subset M_2$ cu frontieră netedă și se determină valorile medii ale variabilelor aleatoare X_n, Y_n, Z_n , care reprezintă numărul de laturi, lungimea și respectiv aria înfășurătoarei I_n . Lucrarea reprezintă o extindere a rezultatelor obținute în spațiul euclidian E_2 de către A. Renyi și R. Sulanke în [7], privind acoperirea convexă a n puncte aleatoare situate într-un domeniu convex.

The goal of this paper is to determine the mean values of the random variables X_n, Y_n, Z_n , which represent the number of sides, the length and the area of the convex envelope I_n of a system of n random, independent and uniformly distributed points in a convex domain $D \subset M_2$ with smooth boundary. In this paper we present an extension of the results obtained in the Euclidian space E_2 by A. Renyi and R. Sulanke in [7], concerning the convex envelope of n random points in a convex domain.

Keywords: convex envelope, indicatrix, Minkowski space, random variables.

MSC2000: 53C65, 60G50.

1. Introduction

Throughout this paper we suppose that it is known the differential geometry of the Minkowski space M_2 ([1],[2],[3]). The Minkowski norm is defined relative to a smooth, convex, closed, central-symmetric relative to the origin O of the space M_2 and without fixed points curve. The Minkowski frames will be affine frames in relation to which the area of the indicatrix is π .

We parametrize the indicatrix U by equation [1] $t = t(\varphi)$, $0 \leq \varphi \leq 2\pi$, where φ is the double of the area of the sector (O, t_0, t) and t_0 corresponds to a fixed point on U .

The curve $T : x = -n(\varphi)$, where $n(\varphi) = \frac{dt}{d\varphi}$ is the isoperimetric of the space M_2 .

¹Professor, University POLITEHNICA of Bucharest, Faculty of Applied Sciences, Department of Mathematics, Spl. Independenței 313, Bucharest, Postal Code 060042, ROMANIA, e-mail: raduconstantin44@yahoo.com

The interpretation of the parameter φ implies that $[t, n] = 1$, where by $[x, y]$ we denote the determinant constituted of the vectors $x, y \in M_2$ reported to a Minkowski base.

The Minkowski curvature of the curve T is denoted by $\lambda(\varphi)$ and satisfies the relation

$$\frac{dn}{d\varphi} = -\lambda^{-1}(\varphi)t, \text{ where } \lambda(\varphi) > 0.$$

2. Measures for sets of systems of n points in the space M_2

Let $\{P_1, \dots, P_n\} \subset M_2$ be a system of points. We denote by (x_i, y_i) , $i = \overline{1, n}$ the coordinates of the points P_i , $i = \overline{1, n}$ relative to a fixed Minkowski frame in M_2 .

The elementary measure of the set of systems of n points is

$$dP_1 \dots dP_n = |dx_1 \wedge dy_1 \wedge \dots dx_n \wedge dy_n| \quad (1)$$

Let $Q \subset M_2$ be a set of systems of n points to which it corresponds a set Q^* in the space of parameters $(x_1, y_1, \dots, x_n, y_n)$.

The measure of the set Q is

$$\mu(Q) = \int_{Q^*} dP_1 \dots dP_n \quad (2)$$

If $Q_0 \subset Q$ is a subset of systems of n points $\{P_1, \dots, P_n\}$ with a certain property and to which it corresponds the set Q_0^* in the space of parameters, then the probability of the subset Q_0 is

$$P(Q_0) = \frac{\int_{Q_0^*} dP_1 \dots dP_n}{\int_{Q^*} dP_1 \dots dP_n} \quad (3)$$

Let $V = V(P_1, \dots, P_n)$ be a random variable associated to the subset of systems of points $Q_0 \subset Q$. Then the mean value for V is

$$E(V) = \frac{\int_{Q_0^*} V(P_1, \dots, P_n) dP_1 \dots dP_n}{\int_{Q^*} dP_1 \dots dP_n} \quad (4)$$

3. Systems of n random points in a convex domain $K \subset M_2$ with smooth boundary

Let $\{P_1, \dots, P_n\}$ be a system of n random, independent and uniformly distributed points in the convex domain $K \subset M_2$ with smooth boundary denoted by ∂K with the equation

$$x = -H(\varphi)n + H'(\varphi)t.$$

The function H is positive, periodic of period 2π and of class \mathcal{C}^2 and it is called support function for the curve ∂K .

We denote by L , respectively S , the Minkowski length of the boundary ∂K , respectively the area of the domain K .

Let I_n be the convex envelope of the system of points $\{P_1, \dots, P_n\}$ in K and let ∂K be the boundary of I_n .

We associate to the system of points $\{P_1, \dots, P_n\}$ the random variables X_n, Y_n, Z_n representing the number of sides, the Minkowski length and respectively the area of the convex envelope I_n .

We denote

$$\varepsilon_{ij} = \begin{cases} 1, & \overline{P_i P_j} \in \partial I_n, i \neq j \\ 0, & \text{in rest} \end{cases}$$

for all $i, j = \overline{1, n}$.

Hence the random variables X_n, Y_n, Z_n have the forms

$$X_n = \sum_{1 \leq i < j \leq n} \varepsilon_{ij}, \quad Y_n = \sum_{1 \leq i < j \leq n} Y_{ij}, \quad Z_n = \sum_{1 \leq i < j \leq n} Z_{ij},$$

where $Y_{ij} = \|\overline{P_i P_j}\| \varepsilon_{ij}$, $Z_{ij} = \Delta_{ij} \varepsilon_{ij}$ and Δ_{ij} is the Minkowski area of the triangle $\mathcal{O}P_i P_j$.

We suppose that the origin of the space M_2 is in the interior of the domain K . Therefore, we have

$$\mathcal{O}P_i = -Hn + \rho_i t, \quad \mathcal{O}P_j = -Hn + \rho_j t, \quad \rho_i, \rho_j \in \mathbb{R},$$

$$\Delta_{ij} = \frac{1}{2} |[\mathcal{O}P_i, \mathcal{O}P_j]| = \frac{1}{2} H \|\overline{P_i P_j}\|,$$

where $H = H(P_i, P_j)$ is the support function of the straight line determined by the points P_i and P_j and $\| \cdot \|$ is the Minkowski norm.

4. The computation of the mean values $E(X_n), E(Y_n), E(Z_n)$

Each random variable X_n, Y_n, Z_n is a sum of C_n^2 random variables. We have

$$\begin{aligned} E(X_n) &= C_n^2 E(\varepsilon_{ij}) \\ E(Y_n) &= C_n^2 E(Y_{ij}) \\ E(Z_n) &= C_n^2 E(Z_{ij}) \end{aligned}$$

where $i < j$, $i, j = \overline{1, n}$.

Since the random points $\{P_1, \dots, P_n\}$ are uniformly distributed and independent, the mean values $E(\varepsilon_{ij}), E(Y_{ij}), E(Z_{ij})$ are independent of $i, j = \overline{1, n}$ and they depend only on n .

Let g be a straight line determined by the points P_i and P_j , $i \neq j$, situated in K . The straight line g separates the convex domain K in two subsets K_1 and K_2 such that $K_1 \cup K_2 = K$.

We suppose that the Minkowski area for K_1 denoted by s_k satisfies the condition $s_k \leq \frac{S}{2}$. The remaining points of the system are $\{P_3, \dots, P_n\}$ and they are placed on one side or on the other side of the straight line g in K , that means in K_1 or in K_2 .

Using formula (4), we have

$$E(\varepsilon_{ij}) = \frac{\int_{K \times K} \left(\int_{K_1^{n-2}} dP_3 \dots dP_n + \int_{K_2^{n-2}} dP_3 \dots dP_n \right) dP_1 dP_2}{\int_{K^n} dP_1 \dots dP_n}$$

or

$$E(\varepsilon_{ij}) = \frac{\int_{K \times K} [s_k^{n-2} + (S - s_k)^{n-2}] dP_1 dP_2}{S^n},$$

and we obtain

$$E(X_n) = \frac{C_n^2}{S^2} \int_{K \times K} \left(1 - \frac{s_k}{S}\right)^{n-2} dP_1 dP_2 + \frac{C_n^2}{S^2} \int_{K \times K} \left(\frac{s_k}{S}\right)^{n-2} dP_1 dP_2.$$

Since $\frac{s_k}{S} \leq \frac{1}{2}$, it results that

$$\frac{C_n^2}{S^2} \int_{K \times K} \left(\frac{s_k}{S}\right)^{n-2} dP_1 dP_2 \leq \frac{C_n^2}{2^{n-2}}$$

and

$$\lim_{n \rightarrow \infty} \frac{C_n^2}{2^{n-2}} = 0.$$

Using Landau symbol, we have

$$E(X_n) = \frac{C_n^2}{S^2} \int_{K \times K} \left(1 - \frac{s_k}{S}\right)^{n-2} dP_1 dP_2 + O(1) \quad (5)$$

Similarly we obtain

$$E(Y_{ij}) = \frac{\int_{K \times K} [(s_k^{n-2} + (S - s_k)^{n-2}) \|P_1 P_2\|] dP_1 dP_2}{S^n} \quad (6)$$

$$E(Z_{ij}) = \frac{1}{2} \cdot \frac{\int_{K \times K} [(s_k^{n-2} + (S - s_k)^{n-2}) H(P_1, P_2) \|P_1 P_2\|] dP_1 dP_2}{S^n} \quad (7)$$

for all $i < j$, $i, j = \overline{1, n}$, and from this we get that

$$E(Y_n) = \frac{C_n^2}{S^2} \int_{K \times K} \left(1 - \frac{s_k}{S}\right)^{n-2} \|P_1 P_2\| dP_1 dP_2 + O(1) \quad (8)$$

$$E(Z_n) = \frac{C_n^2}{2S^2} \int_{K \times K} \left(1 - \frac{s_k}{S}\right)^{n-2} H(P_1, P_2) \|P_1 P_2\| dP_1 dP_2 + O(1) \quad (9)$$

We compute the elementary measure of the set of pairs of points P_1, P_2 in M_2 .

We denote $OP_1 = x = -Hn + \rho_1 t$ and $OP_2 = y = -Hn + \rho_2 t$.

Let (x_1, x_2) be the coordinates of the point P_1 in the frame $\{O, t, n\}$ and let (y_1, y_2) be the coordinates of the point P_2 . It results that

$$dx_1 = d\rho_1 + \lambda^{-1} H d\varphi, \quad dx_2 = -dH + \rho_1 d\varphi$$

and

$$dy_1 = d\rho_2 + \lambda^{-1} H d\varphi, \quad dy_2 = -dH + \rho_2 d\varphi.$$

Therefore, we have

$$dP_1 dP_2 = |dx_1 \wedge dx_2 \wedge dy_1 \wedge dy_2| = |\rho_1 - \rho_2| |d\rho_1 \wedge d\rho_2 \wedge dH \wedge d\varphi| \quad (10)$$

Let g be the straight line determined by the points P_1, P_2 and we denote by $\|g \cap K\|$ the Minkowski length of the chord determined by the straight line g in K .

If we suppose that the terminal points of the chord correspond to $\rho = 0$, respectively to $\rho = \|g \cap K\|$, then for a fixed position of the straight line g , we have

$$\begin{aligned} \int_{g \cap K \neq \emptyset} |\rho_1 - \rho_2| d\rho_1 d\rho_2 &= \int_0^{\|g \cap K\|} \left[\int_0^{\rho_1} (\rho_1 - \rho_2) d\rho_2 + \int_{\rho_1}^{\|g \cap K\|} (\rho_2 - \rho_1) d\rho_2 \right] d\rho_1 = \\ &= \frac{\|g \cap K\|^3}{3} \end{aligned} \quad (11)$$

Since $\|P_1 P_2\| = |\rho_1 - \rho_2| \|t\| = |\rho_1 - \rho_2|$, it results that $\|P_1 P_2\| dP_1 dP_2 = |\rho_1 - \rho_2|^2 d\rho_1 d\rho_2 dH d\varphi$.

Similar to (10), we obtain

$$\int_{g \cap K \neq \emptyset} |\rho_1 - \rho_2|^2 d\rho_1 d\rho_2 = \frac{1}{6} \|g \cap K\|^4 \quad (12)$$

Using relations (10), (11) and (12), we obtain for the mean values from (5), (8) and (9) the following forms:

$$E(X_n) = \frac{C_n^2}{3S^2} \int_0^{2\pi} \left(\int_0^{H(\varphi)} \left(1 - \frac{s_k}{S} \right)^{n-2} \|g \cap K\|^3 dH \right) d\varphi + O(1) \quad (13)$$

$$E(Y_n) = \frac{C_n^2}{6S^2} \int_0^{2\pi} \left(\int_0^{H(\varphi)} \left(1 - \frac{s_k}{S} \right)^{n-2} \|g \cap K\|^4 dH \right) d\varphi + O(1) \quad (14)$$

$$E(Z_n) = \frac{C_n^2}{12S^2} \int_0^{2\pi} \left(\int_0^{H(\varphi)} \left(1 - \frac{s_k}{S} \right)^{n-2} \|g \cap K\|^4 H dH \right) d\varphi + O(1) \quad (15)$$

where the Minkowski parameters (H, φ) correspond to all intersection positions of the straight line g with the boundary ∂K of the domain K .

If $0 < \varepsilon < \frac{s_k}{S} < 1$, then $C_n^2 \left(1 - \frac{s_k}{S} \right)^2 < C_n^2 (1 - \varepsilon)^2 \rightarrow 0$ when $n \rightarrow \infty$.

5. Conclusions

The computation of the integrals from the relations (13)-(15) is made for those pairs (H, φ) for which the quotient $\frac{s_k}{S}$ can be very small. This is possible when the straight line g gets near the tangent points of the curve ∂K with the anti-osculating circle associated to ∂K in each point. In these cases, the straight line g cuts both the curve ∂K and the anti-osculating circle associated to the curve ∂K in each point, fact that allows afterwards to compute the integrals from relations (13)-(15).

REFERENCES

- [1] *O. Biberstein*, Elements de géométrie différentielle Minkowskienne, Thèse de Docteur, Université de Montreal, 1957.
- [2] *H. Busemann*, The Foundations of Minkowskian Geometry, Com. Math. Helv., **24**, fasc.2, (1950) 156-186.
- [3] *G.D. Chakerian*, Integral Geometry in the Minkowski Plane, Duke Math. J., (1960) 375-383.
- [4] *R.F. Constantin*, Isoperimetric inequalities in Minkowski space M_2 , Scientific Bulletin, vol. 70, nr. 2, Univ. Politehnica Bucharest, 2008.
- [5] *B.Doubravine, S. Novikov and A. Fomenko*, Géométrie contemporaine, Editions Mir, Moscou, 1982.
- [6] *Gh. Gheorghiev and V. Oproiu*, Differentiable Manifolds, Ed. Academiei, Romania, 1976.
- [7] *A. Renyi and R. Sulanke*, Konvex Hüle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheorie, 2, 75-84, 1963, 3, 138-147,1964.