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ROCKAFELLAR’S PROXIMAL POINT ALGORITHM FOR A
FINITE FAMILY OF MONOTONE OPERATORS

Mohammad Eslamian !

In this paper, we consider Rockafellar’s prozimal point algorithm with
viscosity method for a finite family of monotone operators. We obtain the strong
convergence of the proposed algorithm to a common zero point for a finite family
of monotone operators in Hilbert spaces. The results obtained in this paper extend
and improve some recent known results.
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1. Introduction

Let H be a Hilbert space and let T be a set-valued mapping with domain
D(T)={x € H:Tx# 0} and range R(T) ={ye H: 3Jx e D(T),st. yeTx}.
Then the mapping T is said to be monotone if

<371 — X2,Y1 — y2> >0, Vr; € D(T), Yy; € T(:Ui), 1=1,2.
A monotone operator T is said to be maximal monotone if the graph G(T) of T,
G(T)=A(r,u) e Hx H:ueT(x)},

is not properly contained in the graph of any other monotone mapping. It is known
that 7" is maximal iff R(I+rT') = H for every r > 0, where R(I+rT) = |J{z+rT=:
2z € H,Tz # ()}. Monotone operators have proven to be a key class of objects in
modern Optimization and Analysis; see, e.g., the books [1-7] and the references
therein. Let us consider the zero point problem for a monotone operator 1" on a real
Hilbert space H, that is, finding a point z € H, such that 0 € T'z. This problem is
closely related to many kinds of important problems, such as minimization problems,
saddle point problems, equilibrium problems and others. In order to approximate
the solution to this problem, various types of iterative schemes have been proposed.
One of the most important methods is Rockafellar proximal point algorithm [8],
which generates a sequence {x,} according to the relation:

Tpy1 = Jg; (Tn, + €n), (1.1)

where JI' = (I + rT)~! for all » > 0 is the resolvent of T" and {e,} is a sequence
of errors. Rockafellar’s proved the weak convergence of the algorithm (1.1). Guler’s
example however shows that in an infinite dimensional Hilbert space, Rochafellar’s
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algorithm has only weak convergence. To obtain the strong convergence, several
authors proposed modifications of Rochafellar’s proximal point algorithm (see for
instance [9-18]).

In 2002, Xu [14] investigated a modified version of the initial proximal point
algorithm studied by Rockafellar as follows:

Tp+1 = tpo + (1 - tn)Jrj;JUn + én, (12)

where 1z is the starting point of proximal point algorithm and {e,} is the error
sequence. For {e,} summable, it was proved that {x,} is strongly convergent if
rp — 00 and {t,} C (0,1) with lim, oo t, = 0, > 7 ;t, = co. Algorithm (1.2)
was further studied by Boikanyo and Morosanu [17] (see also [18]). Very recently,
Tian and Song [19] generalized the result of Xu [14]. In fact, they show that strong
convergence of (1.2) is preserved under the assumption that liminf,, . r, > 0.
On the other hand, Moudafi [20] introduced the viscosity approximation method
for finding fixed point of a nonexpansive mapping (see [21] for further developments
in both Hilbert and Banach spaces). In this paper we prove strong convergence of
Rockafellar’s proximal point algorithm to a common zero point for a finite family of
monotone operators via viscosity method. Our result generalize some result of Tian
and Song [19], Boikanyo and Morosanu [17] and many others.

2. Preliminaries

Let H be a real Hilbert space with inner product (.,.) and induced norm |.||.
We write 2, — z to indicate that the sequence {z,} converge weakly to x, and
x, — x to indicate that the sequence {x,} converges strongly to z. Let C be a
closed and convex subset of H. For every point x € H, there exists a unique nearest
point in C, denoted by Pox. This point satisfies

le - Pox|| < lle -yl VyeC.

The operator P¢ is called the metric projection or the nearest point mapping of H
onto C. The metric projection Pc is characterized by the fact that Po(z) € C' and

(y — Po(z),x — Po(x)) <0, Vo e H,yeC.

It is well known that Pg is a nonexpansive mapping. It is also known that H satisfies
Opial’s condition, i.e., for any sequence {x,} with z,, — z, the inequality

liminf ||z, — z| < liminf ||z, — y||
n—-ao0 n—aoo
holds for every y € H with y # x.
Lemma 2.1. ([20]) There holds the following inequality in a Hilbert space H :
|z +yl* < ll2]® + 2(y, +y),  Va,y € H.

Lemma 2.2. Let H be a real Hilbert space. Then for x; € H,a; € [0,1],i =
1727 T 7k with E?:l a; = 1, we have

larz1 + agws + - -+ + apap|® < ar||w|® + a2l + - + agllex)?

Proof. We prove this by mathematical induction. If k& = 2, then we have
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llarz1 + asws||* = (a121 + agz2, a1 + asws)
= af||lz1[]” + a3l|z2[]* + 2a1a2 Re(x1, 22)
= af||lz1|® + a3l|lz2ll® + aras (|21 |* + [Jz2]* — [|21 — z2]?)
= at||z1|® + azl|z2|]® — araz]|z1 — z2?

<ay||lz1||? + asgllzz]*.

Hence the conclusion is holds. Suppose that the inequality holds for k =n — 1. Let
an # 1 be chosen in such a way that Y ;" ;a; = 1. It follows from the induction
hypotheses that

larzy + agws + - + apan |2 =||(1 — a,) WOFREE A=A 4 g g, |12

<(1 - ay) | BEteetpErt sy |2

<arle1]l? + azllwal® + - + an—ll@n-1]? + anllza .

+ aonnH2

0

Lemma 2.3. ([14]) Assume that {a,} is a sequence of nonnegative real numbers
such that
An+4+1 < (1 - ’Yn)an + 771671 + /Bn; n > 07
where {vn}, {Bn} and {6,} satisfy the conditions:
(1) Tn - [07 1]) Z?LOZI Tn = OO,
(ii) Hmsup,,_,oo 6n <0 0r > 07 |7m0n| < o0,
(iii) B, >0 for alln > 0 with Y > Bn < 00.

Then lim,__, a, = 0.

Lemma 2.4. ([22]) Let {t,} be a sequence of real numbers such that there exists a
subsequence {n;} of {n} such that t,, < tn,4+1 for alli € N. Then there exists a non-
decreasing sequence {s(n)} C N such that s(n) — oo and the following properties
are satisfied by all (sufficiently large ) numbers n € N:

ts(n) < ts(n)—l—la ln < ts(n)-‘,—l'

In fact
s(n) = max{k <n:tp < tgi1}.

We now recall some properties of monotone operators.
Remark 1: It is well known that for A > 0,

(i) T is monotone if and only if the resolvent Ji of T is single valued and firmly
nonexpansive, (see [8]).

(ii) T is maximal monotone if and only if J:{ of T is single valued and firmly
nonexpansive and its domain is all of H (see [8, 24]).

(iii)

0€T(z*) < z*c Fiz(J)),

where sz(JAT) denotes the fixed point set of J/\T. Since the fixed point set of
nonexpansive operators is closed convex, the projection onto the solution set
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Z =T7Y0)={x € D(T) : 0 € Tz} is well defined whenever Z # (. For more
details, see [23, 24].

Lemma 2.5. [1|(The Resolvent Identity) For X\, u > 0, there holds the identity:

Jia —JT()\ (1—X)J/\:c) z e H.

Lemma 2.6. ([19]) For each X > 0, there holds the inequality:
1Tz = Iyl < o =yl = Iz = J{2) = (y = JXo)|?, @,y € R(I+AT).
3. Main Result

Now, we state our main result.

Theorem 3.1. Let T;, (i = 1,2,...,m) be a finite family of monotone operators of a
Hilbert space H with Z = (", T, ({0}) # 0. Assume that K is a nonempty closed
convex subset of H such that (2 D(T;) ¢ K C (%4 R(I +rT;) for all v > 0.
Assume that f is a k-contraction of K into itself. Let {x,} be a sequence generated
by zo € K and

Tn+l1 = an,Of(xn) + an,lt]rTnlxn + ap 2<] o In +...+tap mJ Ty + ep, n > 07

where Y " g an; = 1. If {an;}, {en} and {rn} C (0,00) satisfy the following condi-
tions:
(i) limp—so0 @no =0 and Y 2 ano = 00,
(ii) liminf,, o7y > 0 and {r,} C (0,00),
(iii) e, € K satisfies Y .~ |len|| < oo,
(iv) {an:} C (b,1) C (0,1),i=1,...,m
then the sequence {x,} converges strongly to z € Z, where z = Py f(z).

Proof. First we show that {x,} is bounded. In fact, let z € Z = N, T, 1({0}).
Noting that each resolvent JZ;f is nonexpansive, we have

|2Znt1 — 2| = lanof(zn) + an1diizn + an2J 22y 4+ . + apmdima, + e, — 2|
<anol|f(zn) — Jhg, — Jhz|| + o+ anml| JIma, — JEmz|| + [len |
<anol f(zn) =z + .+ anmlzn — 2] + len]]
<anollf(zn) = f(2)]| + an,on(Z) —zl[ + (L —ano)llzn — 2| + llen|

Sanoklzn — 2l + anol f(2) = 2l + (1 = ano)llzn — 2] + [lenl]
<= (1 =k))lzn (2) = 2]l + llenl|
<max{||zn — 2], 21 £ (2) = 2]} + [leal]

IN

<max{||lzo — 2], T2 1/ (2) — 2[1} + iy lleill-

This implies that {z,} is bounded and we also obtain that {f(z,)} is bounded.
Next we show that for 1 <4 < m and for all r > 0, lim,, s ||z, — J 72, | = 0. By
using Lemma 2.2 and Lemma 2.6, for some appropriate constant L > 0, we have
that
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[2n1 — 21> =llanof(€n) + ani Il @ + an 2 J 220 + o+ anm e, + en — 2|2
§||an,0f(xn +a/n lJ xn+an2<] xn“‘ +anmJ xn_z||2+L”€n||
Sanollf(@n

<anpll f(zy —z||2+an1||xn—z||2—an1||:vn Jgja:nHQ—l—...

Tn

)
)
)
)

+anml2n — 2l = annllTn — i n|* + Lilen||

— 2|+ ana | S5 e — T 2P + o+ an | n — T 2]+ L en

<anollf(wn) = 21 + (1 = ano)llzn — 21> = 2Ly angllon — Jliwnl* + Lileal.

Hence for i = 1,2, ..., m, we have
anllzn — Jiiwn|? < (1= ano)llan — 2l = l|lznt1 — 2] + anoll f(zn) — 2[1* + Llen]|
<z = 2l = 2041 = 201 + anoll f(zn) — 2[|* + Llenl.
(3.1)
Now, we show that there exists a unique z € Z such that z = P f(z). Indeed, since
Z =, T; *({0}) is closed and convex, we have the projection Py is well defined.

Now, let Q = Pz, we show that Q(f) is a contraction of K into itself. In fact, since
() is nonexpansive,

1Q()(z) = QUNWII < IIf(x) = FW)Il < Kz =yl

Hence there exists a unique element z € Z such that z = Pz f(z).
In order to prove that z,, — z as n — 0o, we consider two possible cases.
Casel. Suppose that {||,,—z||} is a monotone sequence. In other words, for ngy
large enough, {||xy,, — z||}n>n, is either nondecreasing or non-increasing. Since ||z, —
z|| is bounded we have ||z, —z|| is convergent. Since lim,,— o0 a0 = lim,— o [len|| =
0 and {f(zy)} is bounded, from (3.1) we obtain that limy, o0 @y l|2n —J L zp||? = 0.
By condition (iv), we have

bl — qu;fl’n”z < anillzn — Jg:fl’nHz?

which implies that lim, 0 ||zn — J iz, || = 0. Using the resolvent identity (Lemma
2.5), for each r > 0 we have

|lzn — JrTzl‘n” <|lzn — JTZ{ETLH + ||JTZ$n - JTzl‘n”

<l — Tl + 1T (v + (1= )T o) — |
< — JTZ{ETLH + || - T+ (1- *)Jgf‘rn — |
§||:Un—JTanH+|1 |H an—an — 0, n — oo.

Next we show that there exists a unique z € Z such that lim sup, oo (f(2) — 2z, zp —
z) < 0, where z = Pz f(z). To show this inequality, we choose a subsequence {x,, }
of {z,,} such that

E)n (f(2) = z,xn, — z) = limsup(f(2) — z,z, — 2).

Since {xy,} is bounded, there exists a subsequence {fnlj} of {zp,} which converges
weakly to w. Without loss of generality, we can assume that x,, = w. We show
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that w € Z. Indeed,

|z, — TP wll < Nan, = I @l + 1 20, — I ]

< me - J?Z‘THZH + me - w”?
which implies that

limsup |2, — J w|| < limsup ||z, — w]|.
1—00 1—>00

By the Opial property of Hilbert space H we obtain w = Jw, i = 1,2, ...,m. Hence
w € Z. Therefore, it follows that

limsup(f(2) = 2.2 = 2) = lim (f() = 2,00, = 2) = (/() = 2,0 = 2) <0,

71— 00

Finally, we show that z,, — Pz f(z). In fact, for some appropriate constant M > 0,
using Lemma 2.1 and 2.2 we have
|Tnt1 — z||2 < ||an71JZ;1xn + an,gJTTfa:n + ...+ an,mJg;mzL‘n +e,—(1— CLTL,O)Z||2
+ 2an,0(f(%n) — 2, Tp41 — 2)
< HamlJgja:n—i—an,ng:fxn—i—...+an7mJ7¥:men—(1—an 0)z HQ—i—MHenH—&—Qan,g(f(xn)—z,a:n+1—z>

Gan,1 a
< (1= an o (T T = 2l T T — 2P)

+ Mllenll + 2an,0(f(zn) — 2, Tn41 — Z>
(1= an0)(@n1l|Tn — 2|2+ ..+ @nml| T — 2||2) + M||en]| +2an.0(f (2n) — 2, Tny1 — 2)
(1- an,O) |’$n—ZH2+MH€n”"‘2an,0<f(xn)_f(z)7 Tpy1—2)+200,0(f(2) =2, Tny1—2)
(1=an,0)? [l — 2> +Mllen]| +2an,0k |20 — 2| | 2n+1 — 2| 42050 f (2) = 2, 2011 = 2)
< (1=a5,0)[[on—2 >+ M [len || +-anob{ 20—z >+ znt1—2]*} +2a5,0(f(2) =2, Tnt1—2).

ININ A

This implies that

(1- an,O)Q + anok

2a5.0
41 —2]* < 1 a, ok (|n— ||2+ﬁ<f(z)_zvxn+1_z>+M”€nH
mn, n,
1 —2an0+ anok 9 2 9 20,0
— ) ) _ ’ _ 2 — — M
e o P P e )5 a2 M e
2(1 — k)an,() 2 2(1 — k)an’() an’gN 1

< 1_ no T Rydn - M n
<( 1~ anok Nzn—2["+ 1= anok {2(1—k:) 1_k(f(z) 2, Tpp1—2) +M|en|

< (1 =) ll2n = 211* + 020 + Bn,
2(1—k)an
where N = sup{||z,, — 2||> : n >0}, n, = STTEZI{O’ Brn = M||e,|| and

an,0N 1
21—k T1-

op = k(f(z)—z,xn+1—z>.

It is easy to see that 1, — 0,> ">, 7, = oo and limsup,,__,. 0, <0and ) 7, 53, <
oo. Hence, by Lemma 2.3, the sequence {z,,} converges strongly to z = Py f(z).



Proximal point algorithm for monotone operators 49

Case2. Assume that {||z, — z||} is not a monotone sequence. Then, we can

define an integer sequence {s(n)} for all n > ny (for some ng large enough) by
s(n) = max{k € Nik <n: ok — 2] < ke — 2[).
Clearly, s(n) is a nondecreasing sequence such that s(n) — oo as n — oo and for
all n > ny,
Hxs(n) - Z” < Hl‘s(n)-H - Z”
From (3.1) we obtain that lim,, e [|74(,) — Jg;i(n)xs(n) || = 0. Following an argument
similar to that in Case (1) we have
||$s(n)+l - Z”Q < (1 - ns(n))||$s(n) - Z||2 + ns(n)és(n)
where 75,y — 0, Yoy Ns(n) = o0 and limsup,,__,,, d5(,) < 0. Hence, by Lemma
2.3, we obtain limy, 0 [|74(,) — 2|l = 0 and limy, o0 [|Z5(n)41 — 2[| = 0. Now, from
Lemma 2.4 we have
0 < llen — 2| < max{{|zsm) — 2|, [l2n = 2[1} < [#sm)+1 — 21-

Therefore {x,} converges strongly to z = Pz f(z). This complete the proof. O

Theorem 3.2. Let T;, (i = 1,2,...,m) be a finite family of mazximal monotone op-
erators of a Hilbert space H with Z = (-, T, *({0}) # 0. Assume that f is a
k-contraction of H into itself. Let {x,} be a sequence generated by xo € H and

T T T,
Tpi1 = Anof(Tn) + an1Jy Ty + an2 . 2Ty + o G S 0+ g, n >0,

where Y an; = 1. If {an:}, {en} and {ry,} C (0,00) satisfy the following condi-
tions:
(1) lim,, anp 0 = 0, Zqoqoz() Qn,0 = OO,

(i) liminf, o r, >0 and {r,} C (0,00),

(iii) e, € H satisfies - |len|l < oo,

(iv) {an;} C (b,1) C (0,1),i=1,...,m,
then the sequence {x,} converges strongly to z € Z , where z = Pz f(z).
Proof. Since T; are maximal monotone, then T; are monotone and satisfy the condi-

tion -, D(T;) C K C ("%, R(I + rT;) for all r > 0. Putting K = H, the desired
result is holds. 0

If we put f(z) =wand Ty =Ty = .... = T);, = T in Theorem 3.1, we obtain
the following Corollary:

Corollary 3.1. ([19]) Let T' be a monotone operator of a Hilbert space H with
Z =T~ Y{0}) # 0. Assume that K is a nonempty closed convex subset of H such
that D(T) C K C R(I+7T) for allT > 0 and for a given point uw € K and an initial
value xg € K, {z,} is defined by the approximate rule

Tpt1 = tpu+ (1 — tn)Jg;xn + ep,.
If {t,} € (0,1) and {r,} C (0,00) satisfy

(ii) liminf, oo mn >0,
(iii) ey, € H satisfies > .- |len]| < oo,
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then the sequence {x,} converges strongly to Pzu, where Py is the metric projection
from H onto Z.

1]
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