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AUTOMATIC DIACRITIC RESTORATION
FOR A TTS-BASED E-MAIL READER APPLICATION

Citalin UNGUREAN', Dragos BURILEANU?, Vladimir POPESCU?,
Cristian NEGRESCU*, Aurelian DERVIS®

Sinteza automatd a vorbirii reprezintd o tehnologie importantd pentru
aplicatiile care au ca suport retelele de date. Astfel de aplicatii, cum ar fi cele de
citire a mesajelor de tip e-mail sau SMS, trebuie sa rezolve numeroase probleme,
una dintre acestea fiind necesitatea refacerii diacriticelor in textul original.
Lucrarea propune un algoritm eficient de pozitionare automatd a diacriticelor
pentru un sistem de sinteza pornind de la text in limba romdnd, utilizat intr-o
aplicatie de citire a postei electronice. Algoritmul utilizeaza metode statistice axate
pe n-grame, se bazeaza pe cunostinte lingvistice limitate §i necesita un corpus de
antrenare de dimensiuni medii.

Speech synthesis technology is becoming more important for network-based
applications. However, an e-mail or SMS reader application based on TTS (text-to-
speech) technology, for example, needs to face many difficulties, one of them being
the requirement for restoring missing diacritics to text, as a common problem for
many languages that use the Latin alphabet. The paper proposes an efficient
automatic diacritic restoration algorithm for a TTS system in Romanian used in an
e-mail reader application. The algorithm is essentially based on a statistical
strategy that uses n-gram similarity measures, relies on limited linguistic knowledge
and needs a medium-sized training corpus.

Keywords: Text-to-speech synthesis, diacritic restoration, n-grams
1. Introduction

While telephone speech recognition is already the largest market for
speech technology, it must be noticed that there is a broad range of services and
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products that already integrate synthesized speech into their communication
facilities. On the other hand, in many network-based applications one cannot
predict the message that needs to be spoken, and the system must generate
sentences from arbitrary text (database records, e-mail messages, etc.). This task
can be accomplished only by text-to-speech synthesis systems, which must
provide at least very good intelligibility for the resulting speech to be helpful and
accepted by the user [1].

Besides this requirement (necessary to deal with the reduced telephone
bandwidth and other channel degradation factors), an e-mail or SMS reader
application based on TTS technology needs to meet another important constraint,
namely handling the missing diacritics problem.

Usually, the majority of users still disregard the diacritics (marks above, through,
or below letters), even if the terminal (or the operating system) allows this
operation, or the diacritics are simply stripped by a computational process that
uses 7-bit forms [2], [3], [4]. This is the case for Romanian, but also for many
languages that use the Latin alphabet (such as French, Spanish, German, Dutch,
Hungarian, Polish, Swedish, etc.) and supplement the basic set by making use of
letters with diacritics (or accent marks) to indicate additional sounds (or stress).
On the other hand, synthesizing a text generated without diacritics usually leads to
a poor intelligibility; sometimes, syntactic or semantic ambiguities make certain
sentences entirely incomprehensible. Unfortunately, the automatic restoration of
diacritics in textual media where they are missing is a very difficult problem, as
there are not obvious linguistic rules to accomplish this task.

Our team has a long experience in concatenative TTS synthesis. A desktop
(PC-based) TTS system in Romanian language and also an embedded version are
available for several years [1], [5]. The newest version of this system was used to
develop an e-mail reader platform, involving common telephony interface, POP3
(Post Office Protocol) standard communication and off-the-shelf hardware. The
application permits to listen to messages from an e-mail account by accessing the
platform from a legacy POTS (Plain Old Telephony System) terminal — voice
only capable; this platform is at present fully functional [3].

The main purpose of this paper is to describe one of the natural language
processing modules of the TTS system used in this application. More specifically,
we propose an efficient and accurate automatic diacritic restoration algorithm for
the Romanian language. The algorithm is essentially based on a statistical strategy
that uses n-gram similarity measures, relies on limited linguistic knowledge and
needs a medium-sized training corpus. The paper is structured as follows. Section
2 briefly discusses the automatic diacritic reconstruction problem as well as the
available approaches, and then describes the philosophy of the proposed
algorithm. Experiments and results are presented in Section 3. Section 4
concludes the paper with final remarks.
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2. Automatic diacritic restoration
2.1. Preliminaries

The automatic restoration of diacritic signs is of premium importance in
many applications that need to process electronically stored texts, from Web
information retrieval and indexing to TTS synthesis of SMS or e-mail messages.
Hence, several methods and algorithms have been proposed in this respect; some
of them are pure statistical methods and do not rely on any linguistic knowledge,
others use language models and various levels of linguistic processing. For
example, in [2] Németh et al. describe an algorithm for Hungarian that uses a
vocabulary based on a large training corpus and simply chooses for a given word
written without diacritics its most probable version with diacritics. Also from the
first category, a diacritic restoration algorithm that uses a machine learning
technique operating at letter level and applied to Czech, Hungarian, Polish, and
Romanian (for which the performance obtained is about 98.30 %) is discussed in
[6] by Mihalcea and Nastase; De Paw at al. present in [7] a similar approach, but
with slightly poorer performance.

On the opposite side, Tufis and Chitu propose in [4] a more complex
algorithm for diacritic insertion in Romanian texts based on POS (part-of-speech)
tagging, which yields at word level an overall accuracy of 97.4 %. A similar work
based on Hidden Markov Models and learning at word level is described by
Simard in [8] for French. Finally, we mention the contribution of Yarowsky,
which discusses in [9] and [10] several methods for restoring accents in Spanish
and French; best results were obtained by using hierarchies of decision lists,
classifications being based on a large set of morphological contextual features.

The main objective for our team was to develop an accurate automatic
diacritic restoration algorithm, thus well suited for a high-quality TTS synthesis
task. Accordingly, the first and simplest approach consisted in randomly inserting
diacritics in words that might contain such signs, using a dictionary. Thus, an
accuracy around 88 % was obtained. The second method, which yielded better
results, relied on unigrams for replacing the ambiguous words in test corpora. This
method, although context-independent, resulted in an accuracy of only 95 %.
These results confirmed that, in ambiguous cases, one word version is usually
dominant. Clearly, further increasing the accuracy asks for more refined
approaches. Such a method, proposed in this paper, aims at choosing the most
likely version of ambiguous words, also inspecting their context of occurrence.

The first novel aspect introduced by our method consists of a sequential
filtering process that relies on the likelihood of word tokens and on their context
of occurrence. Each filtering criterion brings a further gain, keeping at the same
time the ambiguous words, according to a certain filtering level considered. In the
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experiments reported in this paper, three such filtering stages were used (at word
unigram level, at word bigram level, and at suffix trigram level), but the number
of these filters can be augmented. The main advantage of such an approach
resides clearly in that each filtering stage can only improve or keep unaltered the
results for the preceding filter.

A second novelty is represented by the fact that a minimal filtering is
performed, i.e., the main decision criterion is the existence of word-level or suffix-
level n-grams, in a training corpus. As for the performance criterion that drives
the decision process, we chose to follow the reduction of diacritic insertion errors.
This is particularly motivated by the needs of speech synthesis of text without
diacritics. Yet, another feature of our diacritic restoration algorithm consists of
using word suffix-level n-grams; this is particularly motivated for
morphologically rich languages (Romanian is such a language), as [9] points out.
Moreover, in the Romanian language the greatest number of ambiguous words
(concerning the presence of diacritics) is yielded precisely by characters contained
in word suffixes.

2.2. Algorithm description

The Romanian language makes use of three diacritic marks, i.e. a breve, a
circumflex accent, and a cedilla, leading to five letters with diacritics: @, @ / 7
(used as the same sound, but in different circumstances), s and ¢, that lead to four
ambiguity classes: a / a / d,i/1i,s /g and ¢/ ¢ Some diacritics indicate only a
different noun form (e.g., casd — a house, and its pair casa — the house); in other
situations their presence leads to a completely distinct meaning (e.g., fata — the
girl, but fata — the face). We must note that the percentage of words written with
diacritics in a Romanian text is substantial: between 25 % and 40 % of the total
number of words [4]. In French, for example, only about 15 % of the words from
an arbitrary text carry accents [8]. However, other languages, such as Dutch,
Czech, and Slovak, make use of a much larger number of diacritics compared to
Romanian [6].

After studying large corpora texts from various domains, we established
that Romanian words can be classified into the following five categories:

® Words without diacritics;

@ Words always written with diacritics (cdteva — some, stiintific — scientific);

® Ambiguous words with a single possible diacritic (doud — two and its pair
(a) doua — the second);

@ Ambiguous words where a number of diacritics are always present (camasa
/ camasa — a shirt / the shirt);

® Ambiguous words where any diacritic can be present or not — multiple
diacritic patterns (pand / pana / pana — a feather / the feather / until).
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This word categorization guided our diacritic restoration algorithm, which
includes a training stage and a test stage. The training side of the algorithm
encompasses the following steps:

1. Manually building a dictionary of the most used Romanian words,
containing also as many inflected forms as possible; this dictionary is
denoted by D;.

2. From D1 build a structure D2 that contains, for each word in D1, a mapping
rule connecting the word form with all its diacritics removed, to all the
possible versions (with diacritics) for that word.

3. Using text corpora containing correctly spelled words with diacritics, build a
set U of word unigrams, a set B of word bigrams, and a set T of trigrams, the
latter at a word suffix level; this step is performed automatically.

It is important to note that we do not take the word “suffix” in its strict
morphological sense; here, “suffix” means rather a number of terminal characters
for each word. This number has been chosen between 2 and 4, based on empirical
insights provided in the test stage (so that the character-level diacritic insertion
error rate is minimized).

Concerning the test side of the algorithm, it includes mainly three
cascaded filtering processes, where the output of each stage represents the input of
the subsequent stage (the input to the overall algorithm consists of texts where the
diacritics have been stripped off):

1. Using the word dictionary D), correct the unambiguous words that always
contain diacritics (that is, words of type @ above); then, using the structure
D,, correct the words that should always occur without diacritics.

2. For each pair of consecutive words in the test text, that contain at least one
ambiguous word, form the set of alternative versions that contain these
words; then, if at least one member of this set is found in the list of bigrams
B, discard the alternative pairs in the set, that are not in B; else, leave
unaltered the set concerned.

3. For the input text that contains the alternatives output at step 2, split it into
word triples and extract the suffixes; we thus obtain sets of alternative word
and suffix triples; if at least one member of the suffix triples set is in the list
of trigrams 7, then discard all the members in that set, that are not in 7 (and,
by consequence, discard the corresponding word triples as well); else, leave
the suffix (and word) triples unchanged.

4. Using the set of word unigrams (U), keep only the words that occur with the
highest probability in the training set, out of all the possible ambiguous
words in the text output at step 3.

A few remarks are worth mentioning concerning this algorithm. First, in
bigram and trigram-based filtering processes, the probabilities of those n-grams were
not used; this is due to the fact that we did not impose any preference on word
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contexts (since this should be performed, in our view, at morphological or syntactic
levels, driven by a grammar specific to the language in focus). However, in the
unigram filtering process, occurrence probabilities were used, in order for this stage
to be effective in further eliminating ambiguous words; thus, ambiguous word
situations that could not be handled by contextual representations (word bigrams and
word suffix trigrams) are ruled out at a word level, relying on occurrence
frequencies. Bigram or trigram probabilities could be used as well, but these would
request bigger training corpora, so that reliable statistics could be derived; yet, one of
the advantages of our method is that it relies on a relatively small amount of training
data (as shown in Section 3).

It should also be emphasized that the diacritic restoration algorithm
described in this paper has been developed in an incremental manner, handling
first the words always written with diacritics (or without diacritics), then gradually
adding contextual information (such as word bigrams and word suffix trigrams),
and finally filtering non-disambiguated words using their frequencies in a training
corpus. Each processing level added a word error rate reduction; however,
according to empirical studies of our team, the most successful series of filtering
steps were those finished by unigram-based handling of ambiguous words. This
fact is theoretically provable as well, since each filtering stage, except for the
unigram-based one, relies on word (or word pairs or suffix triples) occurrences,
not taking into account occurrence scores. Hence, for a given test text, each
filtering stage (again, except for the unigram-based one) returns one or more
possible words (or word pairs, or suffix triples), which include the correct words.
Each filtering stage refines (i.e., reduces) this set, but it is only the unigram-based
filtering process that returns only one element in each set of alternatives, namely
the most frequent, discarding the rest. This is why in the experiments reported in
Section 3 only results obtained using the unigram-based filtering as the last stage
of the algorithm will be shown.

3. Experiments
3.1. Evaluation Context

The algorithm described in Section 2 has been trained on a corpus of
literary Romanian language texts containing over 10 million word tokens'. These
texts helped also to automatically add new words in D; dictionary (which was first
manually built, as noticed in Section 2.2); this dictionary contains at present
around 330,000 words (including approximately 6,000 proper nouns). Then,

! These data were taken from the following publically available on-line sources:
http://www liternet.ro, http://www.romanialibera.ro, http://www.romanialiterara.ro, and
http://ro.wikisource.org.
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word-level bigrams and word suffix-level trigrams were extracted from the
training texts and stored as separate lists in text files.

The test corpus (manually corrected) contains journal and literature texts,
along with Ph.D theses in several domains and other documents available in
electronic form in the Romanian language, and has the following characteristics:
(i) number of word tokens: 1,200,000 words, (ii) the percentage of words without
diacritics: 57.41 %, (iii) the percentage of words always written with diacritics:
16.33 %, (iv) the percentage of ambiguous words (i.e., with multiple diacritic
patterns): 26.26 %.

3.2. Performance measures

Using these data, precision (defined as the ratio between the number of
correctly inserted diacritics and the total number of diacritics inserted by the
algorithm), recall (defined as the ratio between the number of correctly inserted
diacritics and the total number of diacritics in the manually-corrected test
database) and F-measure (defined as the harmonic mean of precision and recall)
were computed, at a character level. In Table 1 we show these measures, detailed
for each of the four ambiguity classes; measurements are shown for three versions
of the algorithm: (i) a baseline method that relies only on the mapping rules in D,
and does not use any training data, (ii) a method that uses bigrams extracted from
the training corpus, along with word unigram statistics trained on that corpus, (iii)
the complete algorithm, that consists on a cascaded bigram and trigram-based
filtering, along with the word unigram statistics. In this table we have also shown
weighted average F-measures, for each ambiguity class; the weights are computed
at a character level as well. From these results we can deduce that an overall F-
measure of 99.34 % is achieved.

From Table 1 it can also be observed that bigram filtering brings a
substantial performance improvement at character level, for all ambiguous classes.
Furthermore, word suffix trigrams increase the performance mainly for the a / a /
d class which raises most of the problems in Romanian; this improvement comes
mainly from the tokens that include diacritics in their suffixes. At the same time, it
is important to notice that word suffix trigrams do not alter the high results
achieved for the other three ambiguous classes.

It is worth mentioning that we performed experiments in using word prefix-
level trigrams as well, but this method did not bring any performance improvements;
this can be explained by the nature of inflection patterns in Romanian, where prefixes
are rather independent of the context where words occur.
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Table 1
Diacritic restoration algorithm performance measures
An::tl);gglty Precision (%) Recall (%) F-measure (%) F_mpé\;izarge(% )
Baseline
alala |78.03/92.69/99.50| 99.65/35.27/61.86 |87.53/51.10/76.29 77.11
i/l 98.63/99.67 99.96 / 89.54 99.30/94.34 98.71
s/s 94.83/97.89 99.48 / 81.48 97.10/ 88.93 95.25
t/t 95.30/91.25 98.82/71.63 97.03 /80.25 94.57
Bigrams and unigrams
alala |97.82/91.58/99.24| 96.49/94.66/99.57 |97.15/93.10/99.40 96.19
ili 99.97/99.57 99.94 /99.82 99.95/99.69 99.93
s/s 99.93/99.49 99.85/99.76 99.89/99.63 99.83
t/t 99.86 /98.07 99.66 /99.22 99.76 / 98.64 99.60
Bigrams, trigrams and unigrams
alala |98.22/93.30/99.26| 97.22/95.62/99.55 |97.72/94.45/99.41 96.93
ili 99.98 /99.56 99.94 /99.82 99.96 /99.7 99.93
s/s 99.93/99.51 99.85/99.77 99.89/99.64 99.84
t/t 99.87/98.2 98.69/99.27 99.78 /98.74 99.63

To sum up, the weakest character and also word level performances were
obtained for the ambiguous class a / a / d, in agreement with results reported in
[6] and [4]. Although several frequent error situations have been significantly
reduced, there remains a set of ambiguous words that the algorithm cannot handle
correctly. Results regarding these aspects are shown in Table 2 (in number of
words).

We can see that the highest number of erroneous diacritic assignments is
yielded by the ambiguous pair ca / ca (as / that), which occurs with a high
frequency in the test data. Other situations that are difficult to handle correctly
consist in ambiguous pairs containing feminine nouns and some verbs.

Moreover, there are a number of limitations that cannot be, a priori,
mitigated by the algorithm; these include:

e proper nouns or very infrequent words, not present in the D; dictionary; a
practical solution to this would be to simply add, when needed, such words
to D and, consequently, to the mapping rules in D>;

o discourse context-dependent word forms, where the sentence level context
does not suffice to disambiguate the appropriate word; such an example in
Romanian is A4m vazut o fata frumoasa (1 saw a beautiful girl), versus Am
vazut o fata frumoasa (I saw a beautiful face), where other utterances are
needed in order to handle the ambiguity ¢/ ¢ in fata / fata (girl / face).
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Table 2
Word-level filtering performances examples
. Bigrams Bigrams, trigrams
Word Baseline ) .
and unigrams and unigrams
calca 4.890 2478
(as / that) 19,718
fata | fata
(a girl / a face) 2,199 912 495
sau / sdu
(or / his) 2,548 441 350
sa/sd
(her / to) 30,064 395 341
lua / lua
(was taking /took) 547 330 272
usa / usa
(the door / a door) 1009 362 267
banca / bancad
(the bank /a bank) 507 248 243

Concerning word-level recognition scores, we indicate that an average
accuracy of 97.87 % was obtained on the same test data.

4. Conclusions

This paper described a complete and accurate algorithm for automatic
restoration of missing diacritics from texts in Romanian. The performance
obtained by the proposed algorithm can be summarized as follows: an overall F-
measure of 99.34 % at character level, and an average accuracy of 97.87 % at
word level. These results are better than those reported in literature so far (as it
was discussed in Section 2.1), including those communicated for Romanian
language, in [6], [7], and [4]. Compared, for example, with the contribution of
Mihalcea and Nastase (they reported in [6] an overall F-measure of about 98.30
%), we can make two comments. First, their test corpus comprises only about
50,000 words, which means about 25 times less than our test database. Secondly,
we consider that their approach based on looking at the surrounding letters is not
appropriate for Romanian, where a large number of ambiguities (especially those
of articulated versus non-articulated feminine nouns) could be solved only at word
level.

The described algorithm is used at present in a TTS-based e-mail reader
application. In fact, the algorithm is part of the pre-processing stage of the TTS
system, and runs just after input text segmentation, punctuation marks detection,
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and substitution of upper case letters into lower case letters. We mention that
punctuation marks, numerals, and abbreviations are ignored by the diacritic
restoration algorithm and are processed (or normalized) by subsequent modules of
the text analysis stage [5].

In the near future we plan to take into account further contextual effects on
diacritic patterns, namely by using discourse-related information in order to
disambiguate words that are still difficult to handle by the current version of the
algorithm.
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