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FUZZY APPROXIMATE OF DERIVATIONS
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Using the fized point method, we prove the Hyers-Ulam stability of fuzzy
derivations on fuzzy Banach algebras associated with the Cauchy-Jensen func-
tional equation and the Cauchy-Jensen functional inequality.

Keywords: fuzzy Banach algebra, fixed point, Hyers-Ulam stability, fuzzy deriva-
tion, Cauchy-Jensen functional equation, Cauchy-Jensen functional inequality.

MSC2010: 46540, 47H10, 39B52, 47B47, 17B40, 39B72.

1. Introduction and preliminaries

The theory of fuzzy space has much progressed as developing the theory of
randomness. Some mathematicians have defined fuzzy norms on a vector space from
various points of view [2, 15, 23, 25, 28, 45]. Following Cheng and Mordeson [8],
Bag and Samanta [2] Saadati and Vaezpour [40] gave an idea of fuzzy norm in such
a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [24]
and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 28, 29, 40] to inves-
tigate a fuzzy version of the Hyers-Ulam stability for the Cauchy-Jensen functional
equation in the fuzzy normed algebra setting.

Definition 1.1. [2, 28, 29, 30, 40] Let X be a real vector space. A function N :
X xR — [0,1] is called a fuzzy norm on X if for all z,y € X and all s,t € R,

(N1) N(z,t) =0 for t <0;

(N2) x = 0 if and only if N(z,t) =1 for all t > 0;

(N3) N(cz,t) = N(=x, |C|) if ¢ # 0;

(Ng) N(z +y,s+t) > min{N(z,s), N(y,t)};

(N5) N(z,-) is a non-decreasing function of R and limy_,o, N(z,t) = 1;
(Ng) for = # 0, N(z,-) is continuous on R.

The pair (X, N) is called a fuzzy normed vector space.

Definition 1.2. [2, 28, 29, 30, 40] (1) Let (X, N) be a fuzzy normed vector space.
A sequence {z,} in X is said to be convergent or converges if there exists an x € X
such that lim,, o N(z, —x,t) = 1 for all ¢ > 0. In this case, x is called the limit of
the sequence {x,} and we denote it by N-lim, o =, = =.
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(2) Let (X, N) be a fuzzy normed vector space. A sequence {x,} in X is called
Cauchy if for each € > 0 and each ¢ > 0 there exists an ng € N such that for all
n > ng and all p > 0, we have N(2,4p — xp,t) > 1 —¢€.

It is well-known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X — Y between fuzzy normed vector spaces X
and Y is continuous at a point z¢ € X if for each sequence {x,} converging to xg
in X, the sequence {f(z,)} converges to f(xp). If f: X — Y is continuous at each
xz € X, then f: X — Y is said to be continuous on X (see [3]).

Definition 1.3. [34] Let X be an algebra and (X, N) a fuzzy normed space.
(1) The fuzzy normed space (X, N) is called a fuzzy normed algebra if

N(zy,st) > N(x,s) - N(y,t)

for all z,y € X and all positive real numbers s and t.
(2) A complete fuzzy normed algebra is called a fuzzy Banach algebra.
Example 1.1. [34] Let (X, || -|) be a normed algebra. Let
¢
t>0,xeX
N(z.t) =< ttlal ’
(z,7) {o t<0,z¢X.

Then N(z,t) is a fuzzy norm on X and (X, N(z,t)) is a fuzzy normed algebra.

Definition 1.4. Let (X, N) be a fuzzy normed algebra. Then an R-linear mapping
D: (X,N)— (X,N) is called a fuzzy derivation if D(zy) = D(x)y + xD(y) for all
x,y € X.

The stability problem of functional equations was originated from a question
of Ulam [43] concerning the stability of group homomorphisms. Hyers [19] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
Theorem was generalized by Aoki [1] for additive mappings and by Th.M. Rassias
[38] for linear mappings by considering an unbounded Cauchy difference. The paper
of Th.M. Rassias [38] has provided a lot of influence in the development of what
we call the Hyers-Ulam stability or the Hyers-Ulam-Rassias stability of functional
equations. A generalization of the Th.M. Rassias theorem was obtained by Gavruta
[16] by replacing the unbounded Cauchy difference by a general control function in
the spirit of Th.M. Rassias’ approach.

The functional equation f(z + y) + f(z —y) = 2f(z) + 2f(y) is called a
quadratic functional equation. The Hyers-Ulam stability of the quadratic functional
equation was proved by Skof [42] for mappings f : X — Y, where X is a normed
space and Y is a Banach space. Cholewa [10] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. Czerwik [11]
proved the Hyers-Ulam stability of the quadratic functional equation. The stability
problems of several functional equations have been extensively investigated by a
number of authors and there are many interesting results concerning this problem
(see ]9, 12, 20, 22, 41]).

Gilanyi [17] showed that if f satisfies the functional inequality

12f(2) +2f(y) = fz =yl < [If(z +y) (1)
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then f satisfies the Jordan-von Neumann functional equation

2f(x) +2f(y) = f(z +y) + f(z —y).

See also [39]. Fechner [14] and Gildnyi [18] proved the Hyers-Ulam stability of the
functional inequality (1.1). Park, Cho and Han [35] investigated the Cauchy-Jensen
additive functional inequality

1) + () + £22)] < H2f( )H )

and proved the Hyers-Ulam stability of the functional inequality (1.2) in Banach
spaces.

Let X be a set. A function d : X x X — [0,00] is called a generalized metric
on X if d satisfies

(1) d(z,y) = 0 if and only if x = y;

(2) d(z,y) = d(y,x) for all z,y € X;

(3) d(z,2) < d(z,y) +d(y, z) for all z,y,z € X.

We recall a fundamental result in fixed point theory.

Theorem 1.1. [4, 13] Let (X,d) be a complete generalized metric space and let
J : X — X be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each given element x € X, either

d(J"z, J" ) = oo

for all nonnegative integers n or there exists a positive integer ng such that
(1) d(J"x, J""tr) < oo, Yn > no;
(2) the sequence {J"x} converges to a fized point y* of J;
(3) y* is the unique fized point of J in the set Y = {y € X | d(J™x,y) < co};
(4) d(y,y*) < fd(% Jy) for ally €Y.

In 1996, G. Isac and Th.M. Rassias [21] were the first to provide applications
of stability theory of functional equations for the proof of new fixed point theorems
with applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors (see
[5, 6, 7, 27, 31, 32, 37, 44, 46]).

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam
stability of fuzzy derivations associated with the Cauchy-Jensen functional equation
in fuzzy Banach algebras by using the fixed point method. In Section 3, we prove
the Hyers-Ulam stability of fuzzy derivations associated with the Cauchy-Jensen
functional inequality in fuzzy Banach algebras by using the fixed point method.

Throughout this paper, assume that (X, N) is a fuzzy Banach algebra.

2. Hyers-Ulam stability of fuzzy derivations associated with the Cauchy-
Jensen functional equation in fuzzy Banach algebras

Using the fixed point method, we prove the Hyers-Ulam stability of fuzzy
derivations associated with the Cauchy-Jensen functional equation in fuzzy Banach
algebras.
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Theorem 2.1. Let ¢ : X3 — [0,00) be a function such that there exists an L < %

with
L
(p(ﬂ?, Y, Z) S 5@(2‘/1:’ 2y7 22)
forallx,y,z€ X. Let f: X — X be a mapping satisfying
T+ TY t
N (2f (T ) < f) =) -2 0t) 2 o
t
N (f(zy) — f(@)y —xf(y),t) > W (4)

forallx,y,z € X, allt >0 and all r € R. Then D(z) := N-lim,_,o 2" f (2%) exists
for each x € X and defines a fuzzy derivation D : X — X such that
(1—-L)t

N (1) = D@2 T o0 9

forallz € X and allt > 0.

Proof. Letting r =1 and y =z =0 in (2.1), we get

N(2f(3) - 1@1) 2 st ©)
forall x € X.

Consider the set
S:={g: X - X}

and introduce the generalized metric on S

d(g,h) =inf{p € Ry : N(g(x) — h(x), ut) , Vo e X,Vt > 0},

>_ -
T t+ ¢ (2,0,0)

where, as usual, inf ¢ = +oo. It is easy to show that (.5, d) is complete (see the proof
of [26, Lemma 2.1]).
Now we consider the linear mapping J : S — S such that

Jg(z) :==2g (f)

2
for all x € X.
Let g,h € S be given such that d(g,h) = €. Then
t
N —h )y > —————

for all x € X and all ¢ > 0. Hence

T x x x\ L
N Ug(o) - o). L) = N (20 ()~ 20 (5) 2et) = (o (5) -0 (5) )
¢ Lt ¢
> 2 > 2 =
T 4 0(%,0,0) T B4+ Lo(2,0,00 t+¢(2,0,0)
for all x € X and all t > 0. So d(g, h) = € implies that d(Jg, Jh) < Le. This means
that

d(Jg, Jh) < Ld(g, h)
for all g,h € S.



Fuzzy approximate of derivations 37

On the other hand, (2.4) implies that d(f, Jf) < 1.
By Theorem 1.6, there exists a mapping D : X — X satisfying the following:
(1) D is a fixed point of J, i.e.,

x

o(5) - 4oto

for all x € X. The mapping D is a unique fixed point of J in the set
M={geS:d(f,g) <o}

This implies that D is a unique mapping satisfying (2.5) such that there exists a
p € (0, 00) satisfying

N - D > —M
for all z € X;
(2) d(J™f,D) — 0 as n — oo. This implies the equality

N- lim 2°f (2%) — D(x)

n—o0

for all z € X;

(3) d(f, D) < 1=d(f,Jf), which implies the inequality

1
d(f,D) < ——.

This implies that the inequality (2.3) holds.

By (2.1),

+ry rz z Y Z ¢
N ( 2+ (m + ) =obrf (o) =2 () = 2 s (o) ,2’%) >
( I\ T I3 g 5 Ttte(E % F)

for all x,y,z € X, all t > 0 and all r € R. So

t
rr+ry rz k x k Y ka1 z oF
N<2’“+1f< +>—27“f(>—2 f( )—2+rf<—)t >
k k k k k)7 — k

2k

for all z,y,z € X, all t > 0 and all » € R. Since limy_,, % = 1 for all
ok + ok (z,y,2)

x,y,z € X,allt >0 and all r € R,

N (zp <””' ‘; i rz) —rD(x) — rD(y) — 2rD(2), t) —1

for all x,y,2z € X, all t > 0 and all r € R. Thus 2D (% +rz) —rD(z) —rD(y) —
2rD(z) = 0. So the mapping D : X — X is additive and R-linear.
By (2.2),

V(87 () =21 () =20 (30) ) 2 g
for all z,y € X and all £ > 0. So

N(4kf(%) —Qkf (%) -y—ZL‘-Qkf (%),t) > t+§k§(x,y,0)
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_t
for all z,y € X and all £ > 0. Since limg_, — L =1 for all z,y € X and

47]€+§7:<P(m7y70)
all t >0,

N (D(zy) — D(x)y — xD(y),t) =1

for all z,y € X and all t > 0. Thus D(zy) — D(z)y — zD(y) = 0. So the mapping
D : X — X is a fuzzy derivation, as desired. O

Theorem 2.2. Let ¢ : X3 — [0,00) be a function such that there evists an L < 1
with
Ty z
I <2L <7a 5 7)
p(z,y,2) <2Le (5,55

for all z,y,z € X. Let f : X — X be a mapping satisfying (2.1) and (2.2). Then
D(z) := N-limg_, oo Q%f (2’“;1:) exists for each x € X and defines a fuzzy derivation
D : X — X such that

(1—-L)t
(1 - L)t+ Ly(z,0,0)

N (f(z) = D(x),t) =

forallx € X and all t > 0.

Proof. Let (S,d) be the generalized metric space defined in the proof of Theorem
2.1.
Consider the linear mapping J : S — S such that
1
To(a) = 3o (20)

for all x € X.
It follows from (2.4) that

1 1 t !
N (f(“") 3/ (o), 2t> = 14 p(2,0.0) © 4 2Lp(2.0,0)

for all z € X and all ¢ > 0. So d(f,Jf) < L.

The rest of the proof is similar to the proof of Theorem 2.1. O
Theorem 2.3. Let ¢ : X® — [0,00) be a function such that there exists an L < i
with

L
(P(m, Y, Z) S 5()0(2‘,1"7 2y7 22)
forall x,y,z € X. Let f : X — X be a mapping satisfying (2.2) and
T+ TY r r t
N @) = L) - b > — Y (8

forallx,y,z € X, allt >0 and all r € R. Then D(z) := N-lim,,_,o 2" f (2%) exists
for each x € X and defines a fuzzy derivation D : X — X such that

(2—2L)t
(2—-2L)t+ Ly (z,z,x)

N (f(z) = D(x),t)

forallx € X and all t > 0.

Y
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Proof. Letting r =1 and y = z = x in (2.6), we get
t
N (f (2z) —2f(z),t) > W
for all z € X.
Consider the set
S:={9: X - X}
and introduce the generalized metric on S:

d(g,h) = inf{p € Ry : N(g(z) — h(z), ut) >

> VYzeX,Vt>o0}
t+ ¢ (z,z, )

where, as usual, inf ¢ = +oo. It is easy to show that (S, d) is complete (see the proof
of [26, Lemma 2.1]).
Now we consider the linear mapping J : S — S such that
T
Jg(x) :=2g (5)

for all z € X.
It follows from (2.7) that

R Je——

v

hence

N <f(w> —2f (%) §t> = t+so(tx,x,x)

for all z € X and all t > 0. So d(f, Jf) < %.
The rest of the proof is similar to the proof of Theorem 2.1. O

Theorem 2.4. Let ¢ : X3 — [0,00) be a function such that there evists an L < 1
with
Ty z
yd <2L <77 a 7)

p(2,y,2) <2Le (5,55
for all z,y,z € X. Let f : X — X be a mapping satisfying (2.2) and (2.6). Then
D(z) := N-limg 00 Q%f (2’“3;) exists for each x € X and defines a fuzzy derivation
D: X — X such that
(2 —2L)t
N - D t) >

forallx € X and all t > 0.

Proof. Let (S,d) be the generalized metric space defined in the proof of Theorem
2.3.
Consider the linear mapping J : S — S such that

1
To(a) := 50 (22)
for all z € X.
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It follows from (2.7) that
1 1 t
N T it [ A—
<f(”””) ! x)’2>—t+w<x,x,x>

for all z € X and all ¢ > 0. So d(f, Jf) < 1.
The rest of the proof is similar to the proof of Theorem 2.1. ]

3. Hyers-Ulam stability of fuzzy derivations associated with the Cauchy-
Jensen functional inequality in fuzzy Banach algebras

We need the following lemma to prove the main results.

Lemma 3.1. [33, 36] Let (X,N') and (Y,N) be fuzzy normed vector spaces. Let
f:X =Y be a mapping such that

N(f @)+ [() +2/(),) > <2f (Hy ) 2‘;)

for all x,y,z € X and all t > 0. Then f is Cauchy additive, i.e., f(z +y) =
f(z) + f(y) for allz,y € X,

Using the fixed point method, we prove the Hyers-Ulam stability of fuzzy
derivations associated with the Cauchy-Jensen functional inequality in fuzzy Banach
algebras.

Theorem 3.1. Let ¢ : X3 — [0,00) be a function such that there exists an L < 1
with

o(z,y,2) < gw(%, 2y, 2z)
forallx,y,z € X. Let f: X — X be an odd mapping satisfying
. rT + 1Y 2t
N f@)+ i)+ S = wind v (27 () 2 }0)
t
N (f(zy) = f(@)y —zf(y),1) "+ o (2.9.0) 11)

forallx,y,z € X, allt >0 and allr € R. Then D(z) := N-lim,,_,o, 2" f (2%) exists
for each x € X and defines a fuzzy derivation D : X — X such that

v

(2—2L)t
N () = D)) 2 g (12)
forallxz € X and allt > 0.
Proof. Letting r =1 and y =z = —z in (3.1), we get
N (2f(z) = f(22),t) > W (13)

forall z € X and all r € R.
Consider the set
S:={9: X = X}
and introduce the generalized metric on S

d(g,h):inf{uE]R+:N(g(a:) h(zx), pt) > , VxEX,Vt>O},

T t+ o(z,x,—1)
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where, as usual, inf ¢ = +o0. It is easy to show that (S,d) is complete (see [26,
Lemma 2.1]).
Now we consider the linear mapping J : S — S such that

Jg(x) =29 (g)

for all x € X.
It follows from (3.4) that

N (1@ =21 (3) 1) = M
t
t+ %gp(w, x,—x)

hence
L t

V(02 (5)51) > e

for all z € X and all t > 0. So d(f, Jf) < %.
By Theorem 1.6, there exists a mapping D : X — X satisfying the following:
(1) D is a fixed point of J, i.e.,

D @) = %D(a;) (14)

for all x € X. The mapping D is a unique fixed point of J in the set
M ={ge€S:d(f g) <oo}.

This implies that D is a unique mapping satisfying (3.5) such that there exists a
p € (0,00) satisfying

N - D tHy> ——HM———

(F(e) = Dla)ot) 2 -

for all z € X;
(2) d(J™f,D) — 0 as n — oo. This implies the equality

N- lim 2°f (2%) — D()

n—o0

for all z € X. Since f: X — X is odd, the above equality implies that, D : X — X
is an odd mapping.
(3) d(f,D) < {2d(f, Jf), which implies the inequality

d(f, D) <

2 —2L°
This implies that the inequality (3.3) holds.
By (3.1),

N (s )+ () + 7 (o)) )

2TL+1 t
> min {N <2n+1f <rx2:—_&-:y + ;i) '3 t) > T Y =z
t+ ¢ (5, 35 7)
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forall z,y,z € X, allt >0, all r € R and all n € N. So

N (0 (o) 78 () + 4 (1) )

t

. y1pfrrtry rz\ 2t 5
>mm{N(2n f( it +2n>’3 L L (g 2)
on T nP\T, Y, 2

t

forall z,y,z € X, allt > 0, allr € R and all n € N. Since lim,_, % =1
s+ 5w P(T,,2)

for all x,y,z € X and all t > 0,

N (rD(z) + rD(y) + D(2rz),t) > N (2D <m ; Wy rz> : 2;) (15)
for all z,y,z € X, allt > 0 and all » € R. Let » = 1 in (3.6). By Lemma 3.1, the
mapping D : X — X is Cauchy additive. Letting y = z and z = —z in (3.6), we get
2rD(z) —2D(rz) = 0 for all z € X and all » € R. So the mapping D : X — X is
R-linear.

The rest of the proof is similar to the proof of Theorem 2.1. O

Theorem 3.2. Let ¢ : X3 — [0,00) be a function such that there evists an L < 1
with

ry f)

22’2

forallx,y,z € X. Let f : X — X be an odd mapping satisfying (3.1) and (3.2) Then

D(z) := N-limy Q%f (2"x) exists for each x € X and defines a fuzzy derivation
D : X — X such that

o(z,y,2) < 2Ly (

(2 - 2L)t

N (f(z) — D(x),t) > (2 —2L)t + p(z, z, —7)

forallxz € X and allt > 0.

Proof. Let (S,d) be the generalized metric space defined in the proof of Theorem
3.2.
It follows from (3.4) that

1 1 L
N (@)= 570.5) > o

\V)

for all z € X and all ¢ > 0. So d(f,Jf) < 1.
The rest of the proof is similar to the proofs of Theorems 2.1 and 3.2. O
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