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ITERATIVE ALGORITHMS FOR

GENERALIZED VARIATIONAL INEQUALITIES

Yonghong Yao1, Mihai Postolache2, Jen-Chih Yao3

A generalized variational inequality problem is considered. An algorithm for

finding the solutions of the generalized variational inequality is formally constructed.

Strong convergence analysis of the suggested algorithm is given.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let

C ⊂ H be a nonempty closed convex set. Let A : C → H and ψ : C → C be two nonlinear

operators. Recall that the generalized variational inequality (in short, GVI) is to find a

point x† ∈ C such that

〈Ax†, ψ(y)− ψ(x†)〉 ≥ 0, ∀y ∈ C. (1)

The solution set of (1) is denoted by GV I(A, ψ,C).

If ψ ≡ I, then GVI (1) reduces to the variational inequality of finding x† ∈ C such

that

〈Ax†, y − x†〉 ≥ 0, ∀y ∈ C. (2)

The solution set of (2) is denoted by V I(A,C).

Variational inequalities were introduced by Stampacchia [18] and provide a convenient

mathematical tool for researching a large variety of interesting problems arising in physics,

finance, economics, network analysis, elasticity, optimization, water resources, medical im-

ages and structural analysis ([4, 14, 15, 20, 21, 27, 28, 35, 36, 41]). There are several iterative

methods for solving VI (2). See, e.g., [2, 5, 7, 10, 19, 26, 31, 32, 37, 38]. The simplest one is

the natural extension of the projected gradient algorithm for solving optimization problems

by replacing the operator A with the gradient, so that we obtain a sequence {uk} generated
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the following manner: for given initial value u0,

uk+1 = projC[uk − νAuk], k ≥ 0,

where ν is some positive real number and projC, is the metric projection from H onto C.

Note that the above algorithm can acquire convergence under quite strict hypotheses.

In order to overcome this flaw, Korpelevich suggested in [11] an algorithm of the following

form: for given initial value u0,{
vk = projC[uk − νAuk],

uk+1 = projC[uk − νAvk], k ≥ 0.

Consequently, Korpelevich’s algorithm and its variant form have been presented and studied

in the literature, see for instance, [1, 3, 6, 8, 13, 16, 17, 22, 23, 25, 29, 33, 39, 40]. In this

article, we will study the following generalized variational inequalities of finding a point x̃

such that

x̃ ∈ GV I(A, ψ,C) ∩GV I(B, ψ,C). (3)

Motivated by the work of [5, 22, 42], in this paper, we introduce a new iterative

algorithm for solving (3). We prove the strong convergence of the presented algorithm

under some mild conditions.

2. Notation and Lemmas

Let C be a nonempty closed convex subset of a real Hilbert space H. An operator

S : C→ C is said to be L-Lipschitz if ‖Sx† − Sy†‖ ≤ L‖x† − y†‖, ∀x†, y† ∈ C, where L > 0

is a constant.

Definition 2.1. An operator A : C→ H is said to be

• Monotone if 〈Au−Av, u− v〉 ≥ 0, ∀u, v ∈ C.

• Strongly monotone if 〈Au−Av, u−v〉 ≥ δ‖u−v‖2, ∀u, v ∈ C, where δ > 0 is a constant.

• λ-inverse strongly monotone if 〈Au−Av, u−v〉 ≥ λ‖Au−Av‖2, ∀u, v ∈ C, where λ > 0

is a constant.

• λ-inverse strongly ψ-monotone if 〈Au − Av, ψ(u) − ψ(v)〉 ≥ λ‖Au − Av‖2, ∀u, v ∈ C,

where ψ : C→ C is a nonlinear operator and λ > 0 is a constant.

An operator R : H → 2H is said to be monotone on H iff 〈x − y, u − v〉 ≥ 0 for all

x, y ∈ H, u ∈ Rx, and v ∈ Ry. A monotone operator R on H is said to be maximal iff its

graph is not strictly contained in the graph of any other monotone operator on H.

For ∀x† ∈ H, there exists a unique nearest point in C, denoted by projC[x†] such that

‖x†−projC[x†]‖ ≤ ‖y−x†‖, for all y ∈ C. Now it is known that the operator projC : H→ C

is firmly nonexpansive, that is,

‖projC[x†]− projC[y†]‖2 ≤ 〈projC[x†]− projC[y†], x† − y†〉, ∀x†, y† ∈ H.

Consequently ([34, 35]),

〈x† − projC[x†], u† − projC[x†]〉 ≤ 0, ∀x† ∈ H, u† ∈ C. (4)

Recall that an operator S is said to be demiclosed if wn ⇀ ũ weakly and Swn → u

strongly, imply S(ũ) = u. Next, we collect several conclusions for our main results in the

next section.
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Lemma 2.1 ([24]). Suppose {$n} ⊂ [0,∞), {νn} ⊂ (0, 1) and {%n} are three real number

sequences satisfying

(i) $n+1 ≤ (1− νn)$n + %n,∀n ≥ 1;

(ii)
∑∞
n=1 νn =∞;

(iii) lim sup
n→∞

%n
νn
≤ 0 or

∑∞
n=1 |%n| <∞.

Then limn→∞$n = 0.

Lemma 2.2 ([12]). Let {wn} be a sequence of real numbers. Assume there exists at least a

subsequence {wnk
} of {wn} such that wnk

≤ wnk+1 for all k ≥ 0. For every n ≥ N0, define

an integer sequence {τ(n)} as

τ(n) = max{i ≤ n : wni
< wni+1}.

Then τ(n)→∞ as n→∞ and for all n ≥ N0, we have max{wτ(n), wn} ≤ wτ(n)+1.

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Let the operators

f, g : C→ H be L1-Lipschitzian and L2-Lipschitzian, respectively. Let ψ : C→ C be a weakly

continuous and δ-strongly monotone operator such that its range R(ψ) = C. Let ν > 0 and

µ > 0 be two constants satisfying max{L1ν, L2µ} < δ. Let A : C → H be a λ-inverse

strongly ψ-monotone operator with coefficient λ > 0. Let B : C→ H be a β-inverse strongly

ψ-monotone operator with coefficient β > 0. Denote the solution set of (3) by Ω, that is,

Ω = GV I(A, ψ,C)
⋂
GV I(B, ψ,C). In the sequel, we assume Ω 6= ∅. Now, we first consider

the following variational inequality (V I(f, ψ,C), in short) of finding x̃ such that

〈νf(x̃)− ψ(x̃), ψ(x†)− ψ(x̃)〉 ≤ 0, ∀x† ∈ Ω. (5)

The solution set of (5) is denoted by V I(νf, ψ,C).

Remark 3.1. V I(νf, ψ,C) has a unique solution provided that νL1 < δ, see [30].

In the sequel, we assume that Γ := V I(νf, ψ,C)∩V I(µg, ψ,C) 6= ∅. Next, we present

our algorithm for solving the problem (3).

Algorithm 3.1. For given initial guess x0 ∈ C arbitrarily, let the sequence {xn} be generated

iteratively by
ψ(un) = projC[λnνf(xn) + (1− λn)(ψ(xn)− ςnAxn)],

ψ(xn+1) = (1− σn)projC[λnµg(xn) + (1− λn)(ψ(un)− γnBun)]

+σnψ(xn), n ≥ 0,

(6)

where {λn} and {σn} are two real number sequences in [0, 1] and {ςn} and {γn} are two real

number sequences in (0,∞).

Theorem 3.1. If the following assumptions are satisfied:

(i) limn→∞ λn = 0 and
∑
n λn =∞;

(ii) 0 < lim infn→∞ σn ≤ lim supn→∞ σn < 1;

(iii) 0 < lim infn→∞ ςn ≤ lim supn→∞ ςn < 2λ;

(iv) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 2β;
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then the sequence {xn} generated by (6) converges strongly to x̃ ∈ Ω which solves variational

inequalities V I(f, ψ,C) and V I(g, ψ,C), that is, x̃ ∈ Γ.

Proof. By Remark 3.1, we know that Γ is a singleton denoted by x̃. By virtue of (4), we

obtain ψ(x̃) = projC[ψ(x̃)− ςnAx̃] and ψ(x̃) = projC[ψ(x̃)− γnBx̃] for all n ≥ 0. Since A is

λ-inverse strongly ψ-monotone, by Definition 2.1, we have

‖(ψ(x)− ςAx)− (ψ(x̃)− ςAx̃)‖2

= ‖ψ(x)− ψ(x̃)‖2 − 2ς〈Ax−Ax̃, ψ(x)− ψ(x̃)〉

+ ς2‖Ax−Ax̃‖2

≤ ‖ψ(x)− ψ(x̃)‖2 − 2ςλ‖Ax−Ax̃‖2 + ς2‖Ax−Ax̃‖2

≤ ‖ψ(x)− ψ(x̃)‖2 + ς(ς − 2λ)‖Ax−Ax̃‖2.

(7)

It follows that

‖(ψ(xn)− ςnAxn)− (ψ(x̃)− ςnAx̃)‖2 ≤ ‖ψ(xn)− ψ(x̃)‖2

+ ςn(ςn − 2λ)‖Axn −Ax̃‖2

≤ ‖ψ(xn)− ψ(x̃)‖2.

(8)

Similarly, we also obtain

‖(ψ(un)− γnBun)− (ψ(x̃)− γnBx̃)‖2 ≤ ‖ψ(un)− ψ(x̃)‖2

+ γn(γn − 2β)‖Bun −Bx̃‖2

≤ ‖ψ(un)− ψ(x̃)‖2.

(9)

According to the δ-strong monotonicity of ψ, we deduce

‖ψ(x)− ψ(y)‖ ≥ δ‖x− y‖, ∀x, y ∈ C. (10)

Set vn = projC[λnµg(xn) + (1− λn)(ψ(un)− γnBun)] for all n ≥ 0. From (6), (8) and (10),

we derive

‖ψ(un)− ψ(x̃)‖ = ‖projC[λnνf(xn) + (1− λn)(ψ(xn)− ςnAxn)]

− projC[ψ(x̃)− ςnAx̃]‖

≤ ‖(1− λn)((ψ(xn)− ςnAxn)− (ψ(x̃)− ςnAx̃))

+ λn(νf(xn)− ψ(x̃) + ςnAx̃)‖

≤ λn‖νf(xn)− νf(x̃)‖+ λn‖νf(x̃)− ψ(x̃) + ςnAx̃‖

+ (1− λn)‖(ψ(xn)− ςnAxn)− (ψ(x̃)− ςnAx̃)‖

≤ λnνL1‖xn − x̃‖+ λn‖νf(x̃)− ψ(x̃) + ςnAx̃‖

+ (1− λn)‖ψ(xn)− ψ(x̃)‖

≤ λnνL1/δ‖ψ(xn)− ψ(x̃)‖+ λn‖νf(x̃)− ψ(x̃) + ςnAx̃‖

+ (1− λn)‖ψ(xn)− ψ(x̃)‖

= [1− (1− νL1/δ)λn]‖ψ(xn)− ψ(x̃)‖

+ λn‖νf(x̃)− ψ(x̃) + ςnAx̃‖

≤ [1− (1− νL1/δ)λn]‖ψ(xn)− ψ(x̃)‖

+ λn(‖νf(x̃)− ψ(x̃)‖+ 2λ‖Ax̃‖)

(11)
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and

‖vn − ψ(x̃)‖ = ‖projC[λnµg(xn) + (1− λn)(ψ(un)− γnBun)]‖

≤ [1− (2− λn − νL1/δ − µL2/δ + νL1λn/δ)λn]‖ψ(xn)− ψ(x̃)‖

+ λn(‖νf(x̃)− ψ(x̃)‖+ 2λ‖Ax̃‖+ ‖µg(x̃)− ψ(x̃)‖+ 2β‖Bx̃‖).
(12)

By assumption (i), without loss of generality, we can assume that there exists a constant

τ > 0 such that τ < 2− λn − νL1/δ − µL2/δ + νL1λn/δ for all n ≥ 0. Hence, we get

‖vn − ψ(x̃)‖ ≤ λn(‖νf(x̃)− ψ(x̃)‖+ 2λ‖Ax̃‖+ ‖µg(x̃)− ψ(x̃)‖

+ 2β‖Bx̃‖) + (1− τλn)‖ψ(xn)− ψ(x̃)‖.
(13)

In terms of (8) and (11), we obtain

‖ψ(un)− ψ(x̃)‖2 ≤ ‖(1− λn)((ψ(xn)− ςnAxn)− (ψ(x̃)− ςnAx̃))

+ λn(νf(xn)− ψ(x̃) + ςnAx̃)‖2

≤ (1− λn)‖(ψ(xn)− ςnAxn)− (ψ(x̃)− ςnAx̃))‖2

+ λn‖νf(xn)− ψ(x̃) + ςnAx̃‖2

≤ (1− λn)[‖ψ(xn)− ψ(x̃)‖2 + ςn(ςn − 2λ)‖Axn −Ax̃‖2]

+ λn‖νf(xn)− ψ(x̃) + ςnAx̃‖2.

(14)

Similarly, from (9) and (12), we also have

‖vn − ψ(x̃)‖2 ≤ λn‖µg(xn)− ψ(x̃) + γnBx̃‖2 + (1− λn)[‖ψ(un)− ψ(x̃)‖2

+ γn(γn − 2β)‖Bun −Bx̃‖2].
(15)

Combining (6) with (15), we obtain

‖ψ(xn+1)− ψ(x̃)‖ ≤ σn‖ψ(xn)− ψ(x̃)‖+ (1− σn)‖vn − ψ(x̃)‖

≤ (1− σn)(1− τλn)‖ψ(xn)− ψ(x̃)‖

+ σn‖ψ(xn)− ψ(x̃)‖+ (1− σn)λn(‖νf(x̃)− ψ(x̃)‖

+ 2λ‖Ax̃‖+ ‖µg(x̃)− ψ(x̃)‖+ 2β‖Bx̃‖)

= [1− (1− σn)τλn]‖ψ(xn)− ψ(x̃)‖

+ (1− σn)τλn(‖νf(x̃)− ψ(x̃)‖+ 2λ‖Ax̃‖

+ ‖µg(x̃)− ψ(x̃)‖+ 2β‖Bx̃‖)/τ.

(16)

By mathematical induction,

‖ψ(xn)− ψ(x̃)‖ ≤ max{‖ψ(x0)− ψ(x̃)‖, (‖νf(x̃)− ψ(x̃)‖+ 2λ‖Ax̃‖

+ ‖µg(x̃)− ψ(x̃)‖+ 2β‖Bx̃‖)/τ}.

Consequently,

‖xn − x̃‖ ≤
1

δ
max{‖ψ(x0)− ψ(x̃)‖, (‖νf(x̃)− ψ(x̃)‖+ 2λ‖Ax̃‖

+ ‖µg(x̃)− ψ(x̃)‖+ 2β‖Bx̃‖)/τ}.

Thus, {xn}, {ψ(xn)}, {un}, {vn}, {Axn} and {Bun} are all bounded.

From (5), we get

ψ(xn+1)− ψ(xn) = (1− σn)(vn − ψ(xn)), n ≥ 0. (17)
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By computation, we deduce

‖ψ(xn+1)− ψ(x̃)‖2 = ‖ψ(xn)− ψ(x̃)‖2 + ‖ψ(xn+1)− ψ(xn)‖2

+ (1− σn)[‖vn − ψ(x̃)‖2 − ‖ψ(xn)− ψ(x̃)‖2

− ‖vn − ψ(xn)‖2].

(18)

Consequently,

‖ψ(xn+1)− ψ(x̃)‖2 − ‖ψ(xn)− ψ(x̃)‖2

= (1− σn)[‖vn − ψ(x̃)‖2 − ‖ψ(xn)− ψ(x̃)‖2

− ‖vn − ψ(xn)‖2] + (1− σn)2‖vn − ψ(xn)‖2

= (1− σn)[‖vn − ψ(x̃)‖2 − ‖ψ(xn)− ψ(x̃)‖2]

− σn(1− σn)‖vn − ψ(xn)‖2.

(19)

In light of (11), we get

‖ψ(un)− ψ(x̃)‖2 ≤ [1− (1− νL1/δ)λn]‖ψ(xn)− ψ(x̃)‖2

+ (1− νL1/δ)λn

(
‖νf(x̃)− ψ(x̃)‖+ 2λ‖Ax̃‖

(1− νL1/δ)

)2

.
(20)

Next, we consider two possible cases. Firstly, we assume there exists some integer m >

0 such that {‖ψ(xn) − ψ(x̃)‖} is decreasing for all n ≥ m. In this case, we know that

limn→∞ ‖ψ(xn)− ψ(x̃)‖ exists. From (12) and (19), we have

σn(1− σn)‖vn − ψ(xn)‖2 ≤ ‖ψ(xn)− ψ(x̃)‖2 − ‖ψ(xn+1)− ψ(x̃)‖2

+ (1− σn)[‖vn − ψ(x̃)‖2 − ‖ψ(xn)− ψ(x̃)‖2]

≤ ‖ψ(xn)− ψ(x̃)‖2 − ‖ψ(xn+1)− ψ(x̃)‖2

+
λn
τ2

(‖νf(x̃)− ψ(x̃)‖+ 2λ‖Ax̃‖+ ‖µg(x̃)− ψ(x̃)‖

+ 2β‖Bx̃‖)2

→ 0.

This together with assumptions (i) and (ii) implies that

lim
n→∞

‖vn − ψ(xn)‖ = 0. (21)

Moreover, from (17), we get

lim
n→∞

‖ψ(xn+1)− ψ(xn)‖ = 0. (22)

By (15), we have

‖ψ(xn+1)− ψ(x̃)‖2 ≤ σn‖ψ(xn)− ψ(x̃)‖2 + (1− σn)‖vn − ψ(x̃)‖2

≤ λn(‖νf(xn)− ψ(x̃) + ςnAx̃‖2 + ‖µg(xn)− ψ(x̃)

+ γnBx̃‖2) + ‖ψ(xn)− ψ(x̃)‖2

+ (1− σn)(1− λn)[ςn(ςn − 2λ)‖Axn −Ax̃‖2

+ γn(γn − 2β)‖Bun −Bx̃‖2].

(23)
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Hence,

(1− σn)(1− λn)[ςn(2λ− ςn)‖Axn −Ax̃‖2 + γn(2β − γn)‖Bun −Bx̃‖2]

≤ ‖ψ(xn)− ψ(x̃)‖2 − ‖ψ(xn+1)− ψ(x̃)‖2 + λn(‖νf(xn)− ψ(x̃) + ςnAx̃‖2

+ ‖µg(xn)− ψ(x̃) + γnBx̃‖2)

≤ (‖ψ(xn)− ψ(x̃)‖+ ‖ψ(xn+1)− ψ(x̃)‖)‖ψ(xn+1)− ψ(xn)‖

+ λn(‖νf(xn)− ψ(x̃) + ςnAx̃‖2 + ‖µg(xn)− ψ(x̃) + γnBx̃‖2)

→ 0 (by (i) and (22)).

This together with assumptions (i)− (iv) implies that

limn→∞ ‖Axn −Ax̃‖ = 0 and limn→∞ ‖Bun −Bx̃‖ = 0. (24)

Set yn = ψ(xn)− ςnAxn − (ψ(x̃)− ςnAx̃) for all n ≥ 0.

Applying (4), we get

‖ψ(un)− ψ(x̃)‖2 ≤ 〈λn(νf(xn)− ψ(x̃) + ςnAx̃) + (1− λn)yn, ψ(un)

− ψ(x̃)〉

=
1

2
{‖λn(νf(xn)− ψ(x̃) + ςnAx̃) + (1− λn)yn‖2

+ ‖ψ(un)− ψ(x̃)‖2 − ‖λn(νf(xn)− ψ(x̃) + ςnAx̃)

+ (1− λn)yn − ψ(un) + ψ(x̃)‖2}

≤ 1

2
{λn‖νf(xn)− ψ(x̃) + ςnAx̃‖2 + ‖ψ(un)− ψ(x̃)‖2

+ (1− λn)‖ψ(xn)− ψ(x̃)‖2 − ‖λn(νf(xn)− ψ(x̃)

+ ςnAx̃− yn) + ψ(xn)− ψ(un)− ςn(Axn −Ax̃)‖2}

=
1

2
{λn‖νf(xn)− ψ(x̃) + ςnAx̃‖2‖ψ(un)− ψ(x̃)‖2+

+ (1− λn)‖ψ(xn)− ψ(x̃)‖2 − ‖ψ(xn)− ψ(un)‖2

− λ2n‖νf(xn)− ψ(x̃) + ςnAx̃− yn‖2

− ς2n‖Axn −Ax̃‖+ 2ςnλn〈Axn −Ax̃, νf(xn)− ψ(x̃)

+ ςnAx̃− yn〉+ 2ςn〈ψ(xn)− ψ(un),Axn −Ax̃〉

− 2λn〈ψ(xn)− ψ(un), νf(xn)− ψ(x̃) + ςnAx̃− yn〉}.

(25)

It follows that

‖ψ(un)− ψ(x̃)‖2 ≤ λn‖νf(xn)− ψ(x̃) + ςnAx̃‖2 − ‖ψ(xn)− ψ(un)‖2

+ 2λn‖ψ(xn)− ψ(un)‖‖νf(xn)− ψ(x̃) + ςnAx̃− yn‖

+ 2ςnλn‖Axn −Ax̃‖‖νf(xn)− ψ(x̃) + ςnAx̃− yn‖

+ 2ςn‖ψ(xn)− ψ(un)‖‖Axn −Ax̃‖

+ (1− λn)‖ψ(xn)− ψ(x̃)‖2.

(26)
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In light of (15) and (26), we have

‖ψ(xn+1)− ψ(x̃)‖2 ≤ σn‖ψ(xn)− ψ(x̃)‖2 + (1− σn)‖vn − ψ(x̃)‖2

≤ σn‖ψ(xn)− ψ(x̃)‖2 + (1− σn)[‖ψ(un)− ψ(x̃)‖2

+ λn‖µg(xn)− ψ(x̃) + γnBx̃‖2].

It follows that

‖ψ(xn+1)− ψ(x̃)‖2 ≤ (1− σn)λn‖µg(xn)− ψ(x̃) + γnBx̃‖2

+ (1− σn)λn‖νf(xn)− ψ(x̃) + ςnAx̃‖2

+ (1− λn)(1− σn)‖ψ(xn)− ψ(x̃)‖2

+ σn‖ψ(xn)− ψ(x̃)‖2 − (1− σn)‖ψ(xn)− ψ(un)‖2

+ 2ςn(1− σn)λn‖Axn −Ax̃‖‖νf(xn)− ψ(x̃) + ςnAx̃− yn‖

+ 2ςn(1− σn)‖ψ(xn)− ψ(un)‖‖Axn −Ax̃‖

+ 2(1− σn)λn‖ψ(xn)− ψ(un)‖‖νf(xn)− ψ(x̃) + ςnAx̃− yn‖

≤ λn(‖νf(xn)− ψ(x̃) + ςnAx̃‖2 + ‖µg(xn)− ψ(x̃) + γnBx̃‖2)

+ 2ςnλn‖Axn −Ax̃‖‖νf(xn)− ψ(x̃) + ςnAx̃− yn‖

+ 2ςn‖ψ(xn)− ψ(un)‖‖Axn −Ax̃‖ − (1− σn)‖ψ(xn)− ψ(un)‖2

+ 2λn‖ψ(xn)− ψ(un)‖‖νf(xn)− ψ(x̃) + ςnAx̃− yn‖

+ ‖ψ(xn)− ψ(x̃)‖2.

Then,

(1− σn)‖ψ(xn)− ψ(un)‖2 ≤ (‖ψ(xn)− ψ(x̃)‖+ ‖ψ(xn+1)− ψ(x̃)‖)

× ‖ψ(xn+1)− ψ(xn)‖+ λn(‖νf(xn)− ψ(x̃) + ςnAx̃‖2

+ ‖µg(xn)− ψ(x̃) + γnBx̃‖2)

+ 2ςnλn‖Axn −Ax̃‖‖νf(xn)− ψ(x̃) + ςnAx̃− yn‖

+ 2ςn‖ψ(xn)− ψ(un)‖‖Axn −Ax̃‖

+ 2λn‖ψ(xn)− ψ(un)‖‖νf(xn)− ψ(x̃) + ςnAx̃− yn‖.

The above inequality together with (i), (iii), (22) and (24) implies that

lim
n→∞

‖ψ(xn)− ψ(un)‖ = 0. (27)

Next, we prove lim infn→∞〈νf(x̃)−ψ(x̃), ψ(x̃)−ψ(un)〉 ≥ 0. Let {ψ(uni
)} be a subsequence

of {ψ(un)} such that

lim inf
n→∞

〈νf(x̃)− ψ(x̃), ψ(x̃)− ψ(un)〉

= lim
i→∞
〈νf(x̃)− ψ(x̃), ψ(x̃)− ψ(uni

)〉.
(28)

Since {ψ(uni
)} is bounded, there exists a subsequence {ψ(unij

)} of {ψ(uni
)} which converges

weakly to some point ψ(z) ∈ C. Without loss of generality, we may assume that ψ(uni) ⇀
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ψ(z). Next, we need to prove z ∈ GV I(A, ψ,C). Set

Rv =

Av +NC(v), v ∈ C,

∅, v 6∈ C.

By [42], we know that R is maximal ψ-monotone. Let (v, w) ∈ G(R). Since w−Av ∈ NC(v)

and xn ∈ C, we have 〈ψ(v) − ψ(xn), w − Av〉 ≥ 0. Noting that ψ(un) = projC[λnνf(xn) +

(1− λn)(ψ(xn)− ςnAxn)], we get

〈ψ(v)− ψ(un), ψ(un)− [λnνf(xn) + (1− λn)(ψ(xn)− ςnAxn)]〉 ≥ 0.

It follows that

〈ψ(v)− ψ(un),
ψ(un)− ψ(xn)

ςn
+ Axn −

λn
ςn

(νf(xn)− ψ(xn) + ςnAxn)〉 ≥ 0.

Thus,

〈ψ(v)− ψ(xni
), w〉 ≥ 〈ψ(v)− ψ(xni

),Av〉

≥ 〈ψ(v)− ψ(xni
),Av〉 − 〈ψ(v)− ψ(uni

),Axni
〉

+
λni

ςni

〈ψ(v)− ψ(uni), νf(xni)− ψ(xni) + ςniAxni〉

− 〈ψ(v)− ψ(uni
),
ψ(uni

)− ψ(xni
)

ςni

〉

= 〈ψ(v)− ψ(xni
),Av −Axni

〉+ 〈ψ(v)− ψ(xni
),Axni

〉

+
λni

ςni

〈ψ(v)− ψ(uni
), νf(xni

)− ψ(xni
) + ςni

Axni
〉

− 〈ψ(v)− ψ(uni
),
ψ(uni)− ψ(xni)

ςni

〉

− 〈ψ(v)− ψ(uni),Axni〉

≥ λni

ςni

〈ψ(v)− ψ(uni
), νf(xni

)− ψ(xni
) + ςni

Axni
〉

− 〈ψ(v)− ψ(uni
),
ψ(uni)− ψ(xni)

ςni

〉

− 〈ψ(xni)− ψ(uni),Axni〉.

(29)

Since ‖ψ(xni) − ψ(uni)‖ → 0 and ψ(xni) ⇀ ψ(z), we deduce that 〈ψ(v) − ψ(z), w〉 ≥ 0

by taking i → ∞ in (29). Thus, z ∈ R−10 by the maximal ψ-monotonicity of R. Hence,

z ∈ GV I(A, ψ,C).

Note that ‖vni
− ψ(uni

)‖ → 0. By the similar argument, we can deduce that z ∈
GV I(B, ψ,C). Therefore, z ∈ Ω.

From (28), we obtain

lim inf
n→∞

〈νf(x̃)− ψ(x̃), ψ(x̃)− ψ(un)〉 = lim
i→∞
〈νf(x̃)− ψ(x̃), ψ(x̃)− ψ(uni)〉

= 〈νf(x̃)− ψ(x̃), ψ(x̃)− ψ(z)〉 ≥ 0.
(30)

Consequently,

lim inf
n→∞

〈µg(x̃)− ψ(x̃), ψ(x̃)− vn〉 ≥ lim
i→∞
〈µg(x̃)− ψ(x̃), ψ(x̃)− vni

〉

= 〈µg(x̃)− ψ(x̃), ψ(x̃)− ψ(z)〉 ≥ 0.
(31)
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Applying (4), we obtain

‖ψ(un)− ψ(x̃)‖2 = ‖projC[λnνf(xn) + (1− λn)(ψ(xn)− ςnAxn)]

− projC [ψ(x̃)− (1− λn)ςnAx̃]‖2

≤ 〈λn(νf(xn)− ψ(x̃)) + (1− λn)yn, ψ(un)− ψ(x̃)〉

≤ (1− λn)‖ψ(xn)− ςnAxn − (ψ(x̃)− ςnAx̃)‖‖ψ(un)− ψ(x̃)‖

+ λn〈νf(x̃)− ψ(x̃), ψ(un)− ψ(x̃)〉

+ λnν〈f(xn)− f(x̃), ψ(un)− ψ(x̃)〉

≤ λnL1ν‖xn − x̃‖‖ψ(un)− ψ(x̃)‖

+ λn〈νf(x̃)− ψ(x̃), ψ(un)− ψ(x̃)〉

+ (1− λn)‖ψ(xn)− ψ(x̃)‖‖ψ(un)− ψ(x̃)‖

≤ λn(νL1/δ)‖ψ(xn)− ψ(x̃)‖‖ψ(un)− ψ(x̃)‖

+ λn〈νf(x̃)− ψ(x̃), ψ(un)− ψ(x̃)〉

+ (1− λn)‖ψ(xn)− ψ(x̃)‖‖ψ(un)− ψ(x̃)‖

= [1− (1− L1ν/δ)λn]‖ψ(xn)− ψ(x̃)‖‖ψ(un)− ψ(x̃)‖

+ λn〈νf(x̃)− ψ(x̃), ψ(un)− ψ(x̃)〉

≤ 1− (1− L1ν/δ)λn
2

‖ψ(xn)− ψ(x̃)‖2

+ λn〈νf(x̃)− ψ(x̃), ψ(un)− ψ(x̃)〉

+
1

2
‖ψ(un)− ψ(x̃)‖2.

It follows that

‖ψ(un)− ψ(x̃)‖2 ≤ [1− (1− L1ν/δ)λn]‖ψ(xn)− ψ(x̃)‖2

+ 2λn〈νf(x̃)− ψ(x̃), ψ(un)− ψ(x̃)〉.

Set zn = ψ(un)− γnBun)− (x̃)− γnBx̃) for all n ≥ 0. By (4), we obtain

‖vn − ψ(x̃)‖2 = ‖projC[λnµg(xn) + (1− λn)(ψ(un)− γnBun)]

− projC [ψ(x̃)− (1− λn)γnBx̃]‖2

≤ 〈λn(µg(xn)− ψ(x̃)) + (1− λn)zn, vn − ψ(x̃)〉

≤ (1− λn)‖ψ(un)− γnBun)− (ψ(x̃)− γnBx̃)‖‖vn − ψ(x̃)‖

+ λnµ〈g(xn)− g(x̃), vn − ψ(x̃)〉

+ λn〈µg(x̃)− ψ(x̃), vn − ψ(x̃)〉

≤ (1− λn)‖ψ(un)− ψ(x̃)‖‖vn − ψ(x̃)‖

+ λn〈µg(x̃)− ψ(x̃), vn − ψ(x̃)〉

+ λnL2µ‖xn − x̃‖‖vn − ψ(x̃)‖.
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This together with (10) implies that

‖vn − ψ(x̃)‖2 ≤ λn(µL2/δ)‖ψ(xn)− ψ(x̃)‖‖vn − ψ(x̃)‖

+ λn〈µg(x̃)− ψ(x̃), vn − ψ(x̃)〉

+ (1− λn)‖ψ(un)− ψ(x̃)‖‖vn − ψ(x̃)‖

≤ λn(µL2/δ)

2
‖ψ(xn)− ψ(x̃)‖2 +

1− λn
2
‖ψ(un)− ψ(x̃)‖2

+
1

2
‖vn − ψ(x̃)‖2 + λn〈µg(x̃)− ψ(x̃), vn − ψ(x̃)〉.

It follows that

‖vn − ψ(x̃)‖2 ≤ λn(µL2/δ)‖ψ(xn)− ψ(x̃)‖2 + (1− λn)‖ψ(un)− ψ(x̃)‖2

+ 2λn〈µg(x̃)− ψ(x̃), vn − ψ(x̃)〉

≤ [1− (1− µL2/δ + (1− λn)(1− L1ν/δ))λn]‖ψ(xn)− ψ(x̃)‖2

+ 2(1− λn)λn〈νf(x̃)− ψ(x̃), ψ(un)− ψ(x̃)〉

+ 2λn〈µg(x̃)− ψ(x̃), vn − ψ(x̃)〉.

Therefore,

‖ψ(xn+1)− ψ(x̃)‖2 ≤ σn‖ψ(xn)− ψ(x̃)‖2 + (1− σn)‖vn − ψ(x̃)‖2

≤ [1− (1− σn)(1− µL2/δ + (1− λn)

× (1− L1ν/δ))λn]‖ψ(xn)− ψ(x̃)‖2

+ 2(1− σn)(1− λn)λn〈νf(x̃)− ψ(x̃), ψ(un)− ψ(x̃)〉

+ 2(1− σn)λn〈µg(x̃)− ψ(x̃), vn − ψ(x̃)〉.

(32)

By (30), (31), (32) and Lemma 2.1, we conclude that ψ(xn)→ ψ(x̃) and xn → x̃.

Secondly, assume there exists an integer n0 such that ‖ψ(xn0
)−ψ(x̃)‖ ≤ ‖ψ(xn0+1)−

ψ(x̃)‖. Set ωn = {‖ψ(xn) − ψ(x̃)‖}. Hence, we get ωn0
≤ ωn0+1. For n ≥ n0, let {τn} be

a sequence defined by τ(n) = max{l ∈ N|n0 ≤ l ≤ n, ωl ≤ ωl+1}. We can check easily that

τ(n) is a non-decreasing sequence satisfying limn→∞ τ(n) = ∞ and ωτ(n) ≤ ωτ(n)+1 for all

n ≥ n0.

By the similar argument as that of (30), (31) and (32), we can prove that

lim inf
n→∞

〈νf(x̃)− ψ(x̃), ψ(uτ(n))− ψ(x̃)〉 ≥ 0 and

lim inf
n→∞

〈µg(x̃)− ψ(x̃), ψ(x̃)− vτ(n)〉 ≥ 0,
(33)

and

ω2
τ(n)+1 ≤ [1− (1− στ(n))(1− µL2/δ + (1− λτ(n))(1− L1ν/δ))λτ(n)]ω

2
τ(n)

+ 2(1− στ(n))(1− λτ(n))λτ(n)〈νf(x̃)− ψ(x̃), ψ(uτ(n))− ψ(x̃)〉

+ 2(1− στ(n))λτ(n)〈µg(x̃)− ψ(x̃), vτ(n) − ψ(x̃)〉.

(34)

Note that ωτ(n) ≤ ωτ(n)+1. We deduce from (34) that

ω2
τ(n) ≤ (1− λτ(n))%n〈νf(x̃)− ψ(x̃), ψ(uτ(n))− ψ(x̃)〉

+ %n〈µg(x̃)− ψ(x̃), vτ(n) − ψ(x̃)〉,
(35)
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where %n =
2(1− λτ(n))

1− στ(n))(1− µL2/δ + (1− λτ(n))(1− L1ν/δ)
. In terms of (33) and (35), we

derive lim supn→∞ ωτ(n) ≤ 0, and so

lim
n→∞

ωτ(n) = 0. (36)

From (33) and (34), we also obtain lim supn→∞ ωτ(n)+1 ≤ lim supn→∞ ωτ(n). This together

with (36) implies that limn→∞ ωτ(n)+1 = 0. According to Lemma 2.2 to get 0 ≤ ωn ≤
max{ωτ(n), ωτ(n)+1}. Therefore, ωn → 0. That is, xn → x̃. This completes the proof. �

Algorithm 3.2. For given initial guess x0 ∈ C arbitrarily, let the sequence {xn} be generated

iteratively byun = projC[λnνf(xn) + (1− λn)(xn − ςnAxn)], n ≥ 0,

xn+1 = σnxn + (1− σn)projC[λnµg(xn) + (1− λn)(un − γnBun)],
(37)

where A,B : C → H are λ-inverse strongly monotone and β-inverse strongly monotone,

respectively, {λn} and {σn} are two real number sequences in [0, 1] and {ςn} and {γn} are

two real number sequences in (0,∞).

Corollary 3.1. If the following assumptions are satisfied:

(i) limn→∞ λn = 0 and
∑
n λn =∞;

(ii) 0 < lim infn→∞ σn ≤ lim supn→∞ σn < 1;

(iii) 0 < lim infn→∞ ςn ≤ lim supn→∞ ςn < 2λ;

(iv) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 2β;

then the sequence {xn} generated by (37) converges strongly to x̃ ∈ V I(f,C) ∩ V I(g,C).

4. Conclusions

In this paper, we investigated a generalized variational inequality problem. We suggest

a projected type algorithm for finding the common solutions of two variational inequalities.

We prove the strong convergence of the algorithm under the mild conditions. Noting that

in our suggested iterative sequence, the involved operators A and B require some form of

strong monotonicity. A natural question arises, i.e., how to weaken these assumptions?
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