U.P.B. Sci. Bull., Series C, Vol. 74, Iss. 2, 2012 ISSN 1454-234x

IMPROVING VERIFICATION METHODOLOGIES IN
DIGITAL CIRCUITS MODELING

Tulian NITA', Adrian RAPAN?

Evolutia tehnologica aduce noi avantaje prin imbundtdtirea metodelor de
verificare pentru proiectarea circuitelor digitale. Ca un prim pas, standardul
industrial Accellera Universal Verification Methodology (UVM) 1.0 a fost lansat de
curand, pentru a reduce limitarile existente in MDV (metric-driven verification) si
pentru a ajuta inginerii in accelerarea procesului de verificare functionald. In acest
articol sunt prezentate cele mai importante metodologii de verificare, sunt subliniate
provocadrile existente si sunt trasate principalele directii ce trebuie urmate pentru
obtinerea unor implementdari hardware mai bune. Folosindu-ne de aceste metode,
am propus o noud arhitectura pentru predictor, care, in comparatie cu metoda
clasicd, aduce imbundtdtirea procesului de depanare, creste rata de detectie a
erorilor si acoperda mai multe scenarii. Rezultatele au fost validate prin verificarea
comparativd intre cele doua metode pe un bloc functional UART scris in Verilog.

Significant new advancements are announced day by day to help boost the
verification productivity for system on chip design teams. As a first fresh step, the
emerging Accellera Universal Verification Methodology (UVM) 1.0 industry
standard is here to expand the limits of metric-driven verification (MDV) and help
engineers to achieve faster and more comprehensive verification closure and fast
tapeout. This article presents some of the key elements of the verification
methodologies and flag the market needs for better silicon realization on the context
of growing electronics innovation. On top of recent methodology releases, we
propose a new predictor architecture that, compared to classical approach, brings
debug process improvements, increased bug rate detection, meaningful functional
coverage. This approach targets all points of interest in digital design verification.
As a practical example we have compared a legacy verification environment of an
opencore UART IP Core (16550) written in SystemVerilog VMM.

Keywords: ASIC verification, UVM, OVM, TLM
1. Introduction

As design complexity is growing day by day, the verification
methodologies are continuously updated and the verification flows become
fractured and, in some cases, inefficient. Though each technology is presented
with a faster bug detection rate than previous, the fact is that engineers leveraging

! Assist., Depart. of Applied Electronics and Information Engineering, University POLITEHNICA
of Bucharest, Romania, e-mail: iulian.florin@gmail.com
? Lead Verification Engineer, Cadence Design Systems, Edinburgh, UK

80 Iulian Nitd, Adrian Rapan

experience on top of abstraction capabilities of each of the methodology is making
the true difference for Silicon realization.

Massive functional capacity, performance and strict power management,
are embedded in recent SoC realizations. The verification challenges on such
complexity scale are growing, and traditional verification methodologies are
losing field as verification costs must be met, and the time to market must be
reached. Another burning point on today’s electronic innovation is the exploding
software content, and what is needed is a methodology that allows both easier
software development and faster silicon realization. In the past, it was possible to
have a early silicon sample for software development.

ITRS (International Technology Roadmap for Semiconductors) provided
several projections for the future. On a recent report, we can clearly observe
(Figure 1) the increasing HW-SW design gap.

Such methodology that enables a wunified software and hardware
development has as a starting point the specification analysis of the whole system
for each of the three directions: design, verification, software development.

In such a unified development environment, the verification role has
increased, from developing classical test benches, to complete architecture of
transaction-level models that enable architecture testing, performance metrics,
software development, and accurate and efficient design verification. We can now
start seeing, how the transaction-level verification improves the productivity gain,
and silicon realization flow.

log Additional SW required for HW
LoC SW/Chip 2x/10 months
Gates/Chip

Gates/Da
| HW Including SW Design Gap ‘ -
LoC/Day

» Technology Capabilities
2x%/36 months

T | b HW design productivity
LHW Design GaPJ r = | Filling with IP and memory
T 7

HW design productivity
- Productivity
2x/36 months
I
Ll

- m ~ .
b 5 T Time
~N ~N ~N

Fig. 1. HW — SW Design Gap: ITRS report [1]

1981
1985

=
]
2]

993
1997
2005
2009

On top of all methodology progress that is driving the industry to
efficiency improvements, we must also take in consideration the experience

Improving verification methodologies in digital circuits modeling 81

capabilities and the guidelines that are followed when building such a complex
verification environment. The user guide of each methodology is the main point
of interest when an engineer starts it’s project work, but the examples are simple
and must not be followed in complex verification environments architecture. We
propose some practical enhancements: an improved predictor architecture that
compared to classical approach brings improvements to key elements of the
verification process: debug, bug rate detection, and functional coverage.

2. Challenges

Within a motivating economy, and selective consumer, semiconductors
companies must satisfy the demands of increasing application capabilities,
energetically efficiency, and more important, a quality bug free silicon.

As shorter project schedules appear, and rising complexity is beside, the
engineering challenge becomes without limits if certain methodology is not
followed, and improved by the personal experience and abstraction capabilities.

On top of this global complexity challenge, there is also a lack of
interoperability of different tools used, and reuse factor from different projects.

The challenge in the current context is resumed to the fact that designs are
developed from the perspective of user applications demand, with certain
functional characteristics, meaning that this is a significant change from the era
when semiconductors releases drove the design progress.

3. Verification principles

Functional verification of a design is practically resumed to comparing the
designer’s intention with regards to a certain functional behavior, in order to
determine equivalence between the two thinking paths. Verification is the form of
checking that the design is suitable for production. The verification engineer’s
effort is driven by the specification, resulting in a verification plan. The
simulations will exercise the design, having certain random or directed scenarios.
Today’s tools & methodologies assure us the needed automation in terms of
pseudo-random stimuli generation, coverage collection, and verification
environment architecture. Coverage collection helps us to identify the areas that
need more attention, or holes that must be filled with particular test cases.

4. Moving to a new level of abstraction

UVM, (Universal Verification Methodology) is a standard released in May
2010 by Accellera with the purpose of unifying verification interoperability,
targeting productivity increase. The background of this standard in based on the
several solutions that appeared along time to address the growing verification

82 Iulian Nitd, Adrian Rapan

challenge. Can be mentioned: Cadence eRM (e Reuse Methodology),
SystemVerilog VMM (Verification Methodology Manual), OVM (Open
Verification Methodology). Each one had its own good parts, but this separation
leaded to a strong divergence in the verification world. The release of UVM 1.0
EA showed the true industry collaboration can lead to remarkable technology
improvements in the verification ecosystem.

Currently, one of the most targeted standardization trends is the use of
transaction-level models for architecture building, design and verification.
Transaction-level modeling enables interoperability between virtual prototyping,
integration in RTL design flow, testbench acceleration by TBA(Transaction Based
Acceleration), and reuse in verification environment. As shown in Figure 2
today’s design flow involves design at several levels of abstraction.

Transaction-level modeling is the one of the principles that has driven the
release of OVM (Open Verification Methodology) followed by unifying UVM
(Universal Verification Methodology), enabling the full support for verification
environment creation to be applied to TLM, RTL, and RTL acceleration
refinement (a technology that enables simulation acceleration using complex
hardware (Cadence’s Incisive Palladium XP) for real time stimulus driving for
computation speedup). On such machines, UVM is supported, and this brings an
massive acceleration of logic simulation just by wusing transactions as
communication granularity between components running on the workstation.

Intent Traditional Now
R
e o Intent
T Intent entered
System Level twice, manually Verification
/
Intent /’ 2t
Synthesis
Verification A

\

Synthesis \

N\

* Too many bugs

* Verifying Arch at RTL - too late

* Not good fit for SW development
* High cost to retarget

* Low power design - cumbersome

Fig. 2. RTL flow vs. TLM based flow [1]

Improving verification methodologies in digital circuits modeling 83

Add UVM reuse, constrained random stimulus, functional coverage &
checking, and you have a system level productivity improvement

Functional ‘ vPlan
spacification | | |
PDF DOC |

I I.Er‘i=iL ‘ —
!l L e . coverage LINVM
. " .

— Measure Chacks
. and > -— Assertions s
Analyze - Reuse

UM

Incisive simulation Palladium XP Multiple Users

Fig. 3. Metric-driven verification flow [2]

5. Verification environment improvements

Though each technology is presented with increased capabilities than
previous, the fact is that engineers leveraging experience on top of abstraction
capabilities of each of the methodology is making the true difference for Silicon
realization and faster bug detection rate.

When building a verification environment, the engineer has in mind
typical verification environment architecture, influenced by the simple examples
from methodology user guide. The skeleton of a VE was roughly the same from
project to project when the complexity was at acceptable levels, but we must take
also in consideration how fast a VE finds the first bug in blocks with complex
functionality.

The classical (Figure 4) approach was that the predictor or the reference
model at a higher level of abstraction is fed by the transactions decoded on the
inputs, and in an infinite loop the predictor detects the functional state and issues
appropriate response emulation and selects certain verification actions. With this
approach there is no link between the possible functional states, the selection
having always the same starting point (“Detect state“Figure4)

This classical approach downside has been proven to be a poor first bug
detection convergence and the effort during debug (which is approximate 60%
from the development time of a verification environment) was significant.

84 Iulian Nita, Adrian Rapan

Coverage collection is also deficient in terms of transition coverage between
functional states.

The proposed predictor architecture (Figure 5) comes to overcome the
downside of the classical approach.

This predictor architecture approach has a starting point the maximization
of functionality segmentation, and task splitting. Every action of the predictor
must be clear separated, and each functional state must be correlated with other.
The architecture is similar to building a finite state machine. Each state has its
own trigger event. When a specific state is reached actions (emulation, checking)
are issued and then a jump to another state is made. This approach comes very
good when used in TLM development, where we have a transaction modified
several times considering previous actions of each particular state.

Improvements may be added to this architecture, as we do not propose a
golden ticket to fast bug rate detection. The approach may vary from project to
project, but keeping the base idea of partitioning and linking complex
functionality in order to touch each aspect of a complex block, will definitely hit
all mentioned improvements.

4

\/ Valid
/ transition 'r‘
, State n

Fig. 4. Classical predictor architecture Fig. 5. Improved predictor architecture

Action => Computing & Matching
PASS / FAIL

For our experiments we used Specman [6], which is an EDA tool. It
provides advanced automated Functional verification of hardware designs and an
environment for working with, compiling and debugging testbench environments
written in the e [7]. (e is a hardware verification language (HVL) which is tailored
to implementing highly flexible and reusable verification testbenches). Specman
also offers automated testbench generation to boost productivity in the context of
block, chip and system verification (figure 6). Using “e” language flexibility with
regards to events, temporal expressions, aspect orient programming, and much
more, the implementation was robust and flexible.

Improving verification methodologies in digital circuits modeling 85

As a practical example we have compared a legacy verification

environment of an opencore UART IP Core (16550) written in SystemVerilog
VMM. The legacy solution was based on the classical architecture building
approach. We have as a comparison base the schedule and the project plan and
estimates at that point. We implemented a second verification environment using
UVM and proposed predictor architecture.

1.

The comparison resulted in:
Debug improvements were massive: separating functionalities allowed us to
out the RTL to work as the developing of the environment was progressing.
Once a state corresponding to a particular functionality we intent to verify is
coded, this enables us to create stimulus to hit that area and debug any
problems if any detected.
Having the granularity as distinct states meaning replicating certain actions
of the predictor, made the identification of root cause of test failing to be
fast and accurate.
Bug detection rate was improved: we have hit the first bug after 3 hours,
comparing with the 15 hours of the legacy verification environment as from
the plan and bug reporting database.
Functional coverage was written for each state and also for transitions
between states: we had the proof that our verification environment has hit
all our intentions from the plan.

il —" —

3]
Load Folosd Feetore Modules | Teon | Coversge Suo Scurce Corfiz | Throsds

Intorruet

f5631 uB TFRCER; Tr‘ansa:‘t output data = 0x03.

us'_-u WB_TRACER? 1 AL 'Mf" balt S L address 2
fl : r a perforning uwrike operakion on 33 2.

[3‘65] UE_TRACER: Trensoction output data = DxC0.

799 Enab | ing LlMlqﬂ.s thwough the IER register ..

D:r ite operation on address 1.

]r i pu.rﬁrnllu read oporation on address 2.

nout daka - OWCL.
TR value = 11000001

wwe Dub orror at bine 15487
Checked at line 306 in Gub_driver
In wh_driver_u-00.hond le_interrupt_torl) funit? sys.uark_ems . ub_driver) @

IHI_D didnt*t desssert ltzelf aftec handling interrupt
Will continue execution {(chock effeck is ERROR_CONTIHUE X
t Receiver Line Status Interrupt was briggered
[15555] WB_ IRACER: Troced a pocket_perForning read operation on oddress 5.

[15555] UB TRACER: Inpuk daka = OxT0,
[155689] ¢ Break Interrupt indicakor is set

Fig. 6. Snapshop from Specman (error detection)

86 Tulian Nita, Adrian Rapan

The advance of technology in semiconductors industry pushes very often a
lot of structural changes to legacy modules. If such module was verified using a
predictor built following proposed guidelines, the changes needed to align the
verification environment to specific requirements can be very fast estimated and
implemented.

6. Conclusions

Transaction-level modelling enables architecture concept testing and
refining, early software development, good starting point for RTL development,
full reuse of the TLM in verification environment. This approach is needed to
enable the modern technology system design and verification complexity.

Custom verification environment components may lead to significant
improvements on debug time and improved bug rate detection as the proposed
predictor architecture had on the example comparison.

The predictor (reference model of the device under test) is the most
important component of the verification environment. Most of the debug time is
spent around this area and if a specific architecture or guidelines come to improve
this time, it should definitely be taken in consideration during development. Our
proposed architecture offers improved debug time, a robust structure that is easy
to maintain for future changes.

REFERENCES

[1] TLM-Driven Design and Verification Methodology, Cadence Design Systems
http://www.cadence.com/misc_pages/publications/tlm/index.aspx

[2] Comprehensive UVM/OVM Acceleration — White Paper —Cadence Design Systems:
http://www.cadence.com/rl/Resources/white_papers/UVM_OVM_Accell WP.pdf

[3] Kasuya, A., Tesfaye, T., “Verification Methodologies in a TLM-to-RTL Design Flow”,
JEDA Technol. Inc., Los Altos; Design Automation Conference, 2007. DAC '07. 44th
ACM/IEEE http://ieecexplore.ieee.org/xpl/freecabs_all.jsp?arnumber=4261171

[4] Bruce, A. Nightingale, A. Romdhane, N. Hashmi, M.M.K. Beavis, S. Lennard, C.,
“Maintaining Consistency Between SystemC and RTL System Designs”, 2006 DAC

[5] Doug Smith and David Long,“Stick a fork in It: Applications for SystemVerilog Dynamic
Processes”, SNUG2010

[6] Specman Tutorial, http://www.asic-world.com/specman/tutorial.html

[7] Specman verification, http://www.specman-verification.com/

