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FEED-FORWARD CONTROL OF A PRE-CRACKED 
CANTILEVER BEAM 

Sudhir KAUL1 

This paper develops two feed-forward control algorithms in order to mitigate 
crack propagation in a cantilever beam with a pre-existing crack. The main 
objective of the control algorithms is to minimize or reduce transverse deflection at 
the crack location so as to contain the damage resulting from the pre-existing crack 
and, thereby, reduce the rate of crack propagation. A point-load sinusoidal 
excitation, from a known disturbance, is used as the input load acting on the beam. 
Two control algorithms are used – the first control algorithm computes a control 
force to eliminate transverse displacement at the crack location resulting from the 
excitation force, and the second control algorithm minimizes the mean square 
transverse displacement over a section of the beam that contains the crack. Both the 
control algorithms are non-causal and assume that the excitation input is completely 
known a priori. Simulation results for a cantilever beam are presented and 
discussed in detail. It is observed that the rate of crack propagation can be 
significantly reduced by implementing the proposed feed-forward control 
algorithms, increasing the useful life of the damaged beam. Also, it is found that the 
transverse displacement over a significant length of the beam can be substantially 
reduced when the beam response is dominated by a specific mode. 
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1. Introduction 

Active control of structures is an established area of research that 
encompasses aspects of structural dynamics, theory of vibrations and active 
control, and has been thoroughly studied over the last four decades. Housner et al. 
[1] presented an extensive survey of existing literature in structural control, listing 
theoretical and experimental advances made in multiple aspects of the subject 
matter with a summary of possible future research areas of structural control. 
Alkhatib and Golnaraghi [2] presented an updated review on the status of research 
in active structural control with a brief listing of associated issues. Meirovitch [3] 
and Soong [4] presented a theoretical framework of the subject, compiled 
extensive bibliographies and listed issues associated with structural control such 
as spillover, time delay, modeling errors and controller and sensor locations. 
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Feed-forward control has been found to be preferable in some applications for 
disturbance rejection [2, 5, 6], where the disturbance is limited to a single 
frequency or a limited number of multiple frequencies. The feed-forward 
algorithms implemented in this paper assume a known excitation (or disturbance) 
frequency and use the a priori information to mitigate damage in a pre-cracked 
beam, which can be relevant to disturbance rejection applications [5]. 

The dynamics of cracked structures has been studied theoretically and 
experimentally by researchers in order to understand the influence of crack growth 
on dynamic properties of damaged structures. The core motivation of this research 
has been to develop an understanding of the dynamics of cracked structures in 
order to predict or detect structural damage by monitoring dynamic properties, 
like natural frequencies, damping ratios and mode shapes of the cracked structure 
or by analyzing frequency response of the damaged structure. Dimarogonas [7] 
presented a comprehensive literature review in the study of cracked structures. 
Analytical, numerical and experimental results available till mid-1990s were 
summarized and the areas of study that still need further investigation were listed. 
Salawu [8] reviewed the methods that have been used by researchers to assess 
structural damage by tracking the natural frequency of a cracked structure. Some 
limitations of using natural frequency as the only diagnostic parameter for 
detecting structural damage were also listed. Shih and Wu [9] studied the 
relationship between crack propagation of a straight, edge-crack in a rectangular 
plate and the transverse vibration input. It was concluded that the vibrating 
frequency has a significant influence on the rate of crack growth. Chasalevris and 
Papadopoulos [10] used the wavelet transform in order to identify cracks on a 
beam with two transverse cracks. The identification technique yielded crack 
depth, crack location as well as crack orientation. Lee and Shin [11] proposed a 
damage identification method by using a frequency response function-based 
technique. The technique was demonstrated on beam structures with positive 
results. Lee [12] proposed an alternative method for identification of cracks in a 
simply supported beam by using the boundary element method instead of the 
more commonly used method of using a rotational spring to model the crack. 
Chondros et al. [13] used the continuous cracked beam theory to model single-
edge and double-edge cracks in beams. The model showed strong correlation with 
experimental results. 

This paper proposes the use of feed-forward control algorithms in order to 
mitigate crack propagation, thereby demonstrating active structural control of a 
damaged structure by using a cantilever beam as a specimen. The methodology 
presented in this work combines aspects of fracture mechanics, structural 
dynamics and active control, which integrates the advances made in three distinct 
but interrelated areas of research. Though the model and the control algorithms 
discussed in this paper have been developed specifically for a cantilever beam, a 
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similar approach may be adopted for any other structure with known dynamics 
and an already identified damage. 

This paper has been divided into four sections. Section 2 develops the 
model of the cantilever beam with a transverse crack. Section 3 discusses the 
development of control algorithms in order to limit or eliminate transverse 
deflection at the crack location. Section 4 presents the simulation results and 
Section 5 draws overall conclusions. 

2. Modeling 

This section presents the governing equation of motion (EOM) for the 
cantilever beam with a single transverse crack. The forced response of the cracked 
beam is developed in terms of the first three natural modes of the beam. 

Using the Euler-Bernoulli model of a beam, the governing EOM for a 
beam with a constant area of cross-section, A, and a time varying force acting on 
the beam can be expressed as follows: 

( ) ( ) ( ) ( )
2 4

1 22 4, 1 , ,sA y x t EI Cos t y x t f x t
t x

ρ α α ω∂ ∂
+ + + =⎡ ⎤⎣ ⎦∂ ∂

          (1) 

In Eq. (1), E is the modulus of elasticity of the beam material, ρ is the density of 
the beam material and I is the area moment of inertia of the cross-section. y(x,t) is 
the transverse displacement of the beam and fs (x, t) is the time varying force per 
unit length acting as the excitation load on the beam. Further, α1 and α2 are 
constants used to model the transverse crack as completely open or an opening 
and closing crack, called as a breathing crack in the literature [14], with the 
breathing frequency being equal to the excitation frequency, ω. This paper 
assumes an open crack with α1 = 1 and α2 = 0. The homogeneous or free vibration 
solution is determined by ignoring the forcing function. The homogeneous form 
of Eq. (1) can be written as follows: 

( ) ( )
2 4

2
2 4, , 0y x t c y x t

t x
∂ ∂

+ =
∂ ∂

                                 (2) 

In Eq. (2), 2 EIc
Aρ

= . The homogeneous solution can be obtained by using 

separation of variables and substituting ( ) ( ) ( ),y x t X x T t=  in Eq. (2). This yields 
two ordinary differential equations (ODE) which can be solved for X(x) and T(t) 
separately. The two equations can be expressed as: 
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In Eq. (3), β is a constant and is defined as follows: 
2 2

4
2

A
c EI
ω ρ ωβ = =                                                (4) 

In Eq. (4), ω is a constant that couples the two differential equations in Eq. (3). 
The solution of the ODE in Eq. (3) can be expressed as: 

( )
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β β β β
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= +
             (5) 

In Eq. (5), C, D, E, F are constants that can be determined from the substitution of 
the boundary conditions and A, B are constants that can be determined from the 
substitution of the initial conditions. 
 The most commonly used model for a cracked beam consists of a torsional 
spring at the crack location that represents the crack [15, 16, 17], with the stiffness 
of the spring depending on the geometry of the crack and the overall beam 
parameters. The computation of the spring stiffness is based on the use of 
Castigliano’s theorem and is shown in Appendix A for an open single-sided edge-
crack in a cantilever beam, as shown in Fig. 1. This formulation allows for the 
solution in Eq. (5) to be re-written as: 
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Fig. 1. Pre-cracked Cantilever Beam 

 
In Eq. (6), c1, …, c8 are constants determined by incorporation of boundary 
conditions as well as compatibility conditions associated with the torsional spring 
modeled at the crack location. The compatibility conditions ensure that the 
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displacement, the bending moment and the shear force are identical on the two 
sides of the crack. Additionally, the angular displacement between the two 
segments of the beam is coupled with the flexibility of the torsional spring used to 
represent the crack. The boundary conditions and the compatibility conditions are 
as follows: 

( ) ( )
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In Eq. (7), l is the length of the beam, l1 indicates the location of the crack, as well 
as the modeled spring, and θ is the non-dimensional compliance of the torsional 
spring used to model the crack, as derived in the Appendix A. The first two 
conditions in Eq. (7) are the boundary conditions associated with the two ends of 
the cantilever beam and the next four conditions represent the compatibility 
conditions between the two ends of the beam with the crack in between. 
 Substitution of all the boundary conditions and compatibility conditions in 
the solution from Eq. (6) yields the governing frequency equation of the cantilever 
beam with a single transverse crack as: 

( )det 0Δ =                                                        (8) 
Eq. (8) is the frequency equation and yields multiple solutions, nβ , for n = 1, 2, 
…, yielding the corresponding natural frequencies, ωn, using Eq. (4). Eq. (8) 
represents the determinant of Δ, which is a function of crack location, l1, and 
compliance of the torsional spring, θ, which in turn is a function of the crack size, 
a, and is defined as follows: 
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In Eq. (9), S, C, Sh and Ch are used to represent the sine, cosine, sine-hyperbolic 
and cosine-hyperbolic functions respectively with their arguments written as 
subscripts. 

Substituting the solution of Eq. (8) and the conditions from Eq. (7) in Eq. 
(6) yields c3 = -c1 and c4 = -c2, and arbitrarily substituting c1 = 1, yields the 
remaining constants in the form of a matrix solution as: 
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In Eq. (10), subscript ‘n’ has been added to the constants since the constants vary 
with the corresponding value of nβ , as determined from Eq. (8). The right hand 
side of Eq. (10) is a function of nlβ , the dimensionless compliance of the 
torsional spring used to model the crack and the crack location with the function, 
F, defined as follows: 

( )
1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1

0

, ,

n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n n

l l l l

l l l l l l

n l l l l l l

l l l l l l

l l l n l l n l l n

S C Sh Ch

S Sh C S Ch Sh

F l l S Sh C S Ch Sh

C Ch S C Sh Ch

C Ch S l C C l S Sh l Ch

β β β β

β β β β β β

β β β β β β

β β β β β β

β β β β β β β

β θ

θ β θ β θ β

−

− − − − −

− − − −

− − − − −

− + − + + −

=

1 1 1n n nl l n lCh l Shβ β βθ β−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(11) 
The solutions from Eqs. (8) and (10) yield the mode shapes of the cantilever beam 
with a single edge-crack as: 
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The complete solution for the homogeneous system in Eq. (2) can be now 
expressed as follows: 
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In Eq. (13), ( ),ny x t  is the solution corresponding to nβ  for n = 1, 2, 3, …, and is 
expressed as: 

( ) ( ) ( ),n n ny x t X x T t=                                       (14) 
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The solution of the forced vibration problem in Eq. (1) is expressed using modal 
superposition as follows: 

( ) ( ) ( )
1

, n n
n

y x t X x q t
∞

=

=∑                                  (15) 

In Eq. (15), Xn(x) is the nth mode shape defined in Eq. (12) and qn is the 
generalized modal coordinate that needs to be determined. Substituting Eq. (15) in 
Eq. (1), multiplying both sides by Xm(x) and integrating both sides from 0 to l 
yields uncoupled ODE because of the orthogonality property of the mode shapes. 
The uncoupled equations are in terms of the generalized modal coordinate and can 
be expressed as: 
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In Eq. (16), ( )2

0
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n n sQ t X x f x t dx= ∫ . Including damping 

in the above formulation, the uncoupled equations can be re-written as: 
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Eq. (17) is analogous to Eq. (16) and ξn is the damping ratio corresponding to the 
nth equation. All other variables in Eq. (17) are identical to the variables in Eq. 
(16). 

The number of modes that need to be controlled has to be established in 
order to implement the control algorithms. This paper builds the control 
algorithms for controlling only the first three modes of the beam. This, however, 
does not limit or constrain the development of the control algorithm in any way. 
 For sinusoidal excitation acting along the length of the beam at xs, 
modeled as a point load, the input load can be expressed as: 

( ) ( )0,s sf x t f Sin t x xω δ= −                              (18) 
In Eq. (18), f0 is the amplitude of the sinusoidal point load per unit length of the 
beam, ω is the excitation frequency and δ (.) is the impulse function used for 
expressing the point load. Substituting Eq. (18) in Qn(t) yields: 

( ) ( )0n n sQ t f Sin t X xω=                                 (19) 
Substituting Qn(t) from Eq. (19) in Eq. (17), yields the uncoupled equations in 
terms of the generalized modal coordinates as: 
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The steady-state solution of Eq. (20) can be simplified to the following form: 
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In Eq. (21), ωd,n is the damped frequency. Using Eqs. (15) and (21), and using 
only the first three modes, the overall steady-state displacement of the cracked 
beam due to the sinusoidal, point load excitation input can be expressed as 
follows: 
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In Eq. (22), Xi(x) and Xi(xs) can be substituted from Eq. (12). 
This yields the steady-state solution for a cantilever beam with a 

transverse crack located anywhere along the length of the beam that is excited by 
a sinusoidal point load. The model developed in this section will be used in the 
subsequent section to build control algorithms in order to reduce displacement at 
specific points on the beam or over a certain length of the beam in order to 
mitigate crack propagation. 

3. Control Algorithms 

This section presents two feed-forward control algorithms in order to 
reduce or minimize transverse displacement of the cracked cantilever beam by 
using the model developed in the previous section. 

Applying Fourier transform to the steady-state solution in Eq. (22) results 
in a transfer function form for the transverse displacement of the beam in the 
frequency domain and can be expressed as: 

( ) ( ) [ ]0, ,sY x H x f Sin tω ω ω= F                                 (23) 

In Eq. (23), ( ) ( ), ,Y x y x tω = ⎡ ⎤⎣ ⎦F , i.e. the Fourier transform of the transverse 

displacement, and ( ),sH x ω  is defined as follows: 
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It may be noted that the three terms in Eq. (24) correspond to the three modes that 
are being used, the number of terms will increase as the number of modes for 
computing the steady-state solution is increased. In Eq. (24), ( )1H ω , ( )2H ω  and 

( )3H ω  are defined as: 

( ) 2 2

1
2n

n n n

H
j

ω
ω ω ωω ξ

=
− +

                                      (25) 

In Eq. (25), n = 1, 2, 3 yields ( )1H ω , ( )2H ω  and ( )3H ω , corresponding to the 
three modes that are being used to compute the steady-state displacement of the 
beam. 

Eq. (23) can be re-written in the form of a transfer function as follows: 
( )
( ) ( ) ( ) ( ) ( )
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, 1, n s
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F A
ω
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In Eq. (26), ( ) [ ]0sF f Sin tω ω= F , i.e. the Fourier transform of the input 
excitation. Eq. (26) yields the transfer function between the transverse deflection 
of the cracked beam and the input excitation due to a sinusoidal point load with a 
known excitation frequency. 

For an additional point load acting along the length of the beam, due to the 
control force of a feed-forward controller, the transverse displacement can be 
expressed by superposition as: 

( ) ( ) ( ) ( ) ( ), , ,s s c cY x H x F H x Fω ω ω ω ω= +                 (27) 

In Eq. (27), ( )cF ω  is the Fourier transform of the time-varying control force and 

( ),cH x ω  is the transfer function between the transverse displacement and the 
control force, and is defined as follows: 
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In Eq. (28), xc is the location of the control force, also acting as a point load. Xn, γn 
and Hn are the same as previously defined. The control force, ( )cF ω , is defined 
as follows: 

( ) ( ) ( )c sF H Fω ω ω=                                      (29) 

In Eq. (29), ( )H ω  is the Fourier transform of the impulse response of the 
controller. Eq. (29) is expressed in time domain as follows: 

( ) ( ) ( )c sf t h f t dτ τ τ
∞

−∞

= −∫                                  (30) 
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In Eq. (30), ( )h τ  is the impulse response of the controller that needs to be 
determined for a control force acting at point xc along the length of the beam. It 
may be noted that the controller defined in Eq. (30) is non-causal, meaning that 
the future values of the excitation input are assumed to be known. Since the 
controller is being developed for a known disturbance acting as a sinusoidal input, 
the excitation load is predictable and is assumed to be known a priori. 

The main objective for introducing a feed-forward control force in this 
paper is to minimize transverse displacement at the crack location, thereby 
mitigating crack propagation. Two control algorithms are introduced to meet this 
objective. The first algorithm minimizes the displacement at the crack location, 
therefore yielding the following condition: 

( ) ( ) ( )
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,
, 0

,
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x l
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Y x H
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ω

ω ω
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= ⇒ = −                      (31) 

Eq. (31) results from the substitution of Eq. (29) in Eq. (27) for the crack location 
x = l1 and enforcing the resulting displacement at the crack location to be zero. 
This yields the control law and can be used to compute the required control force 
as: 
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In Eq. (32), 1−F  is the inverse Fourier transform and fc is the control force per unit 
length of the beam that satisfies the control requirement expressed in Eq. (31). 

The second control algorithm is based on minimizing the transverse 
displacement over a certain length of the beam that contains the crack. The control 
objective is defined as the minimization of the mean square value of transverse 
displacement of the beam over a specific length of the beam. Solving for the 
control objective yields the following form of ( )H ω  [6]: 
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In Eq. (33), *
cH  is the complex conjugate of cH , defined in Eq. (28) and x1 and x2 

are the lower bound and the upper bound of the beam length over which the 
transverse displacement is being minimized.  The corresponding control force 
resulting from the outcome in Eq. (33) is as follows: 
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 The control forces derived in Eqs. (32) and (34), therefore, yield the 
results for the governing algorithms in order to eliminate transverse displacement 
at the crack location or minimize transverse displacement over a length of the 
beam that includes the crack, when the beam is excited by a known point load 
sinusoidal disturbance input. The subsequent section will use the control 
algorithms developed in this section for a simulation in order to demonstrate the 
effectiveness of the control algorithms in reducing transverse displacements as 
well as reducing the rate of crack propagation of the damaged beam, and 
increasing its useful life. 

4. Results 

This section discusses the simulation results obtained by using the 
formulation presented in Sections 2 and 3. The simulation is used to demonstrate 
the differences between the controlled and un-controlled response and the 
effectiveness of the proposed feed-forward control algorithms. 

The dimensions of the cantilever beam used for simulation are as follows: 
600 mm (l) × 30 mm (b) × 15 mm (h). The beam is made of 7075-T651 
Aluminum, a density of 2700 kg/m3 and a modulus of elasticity of 70 GPa are 
used as the material properties of the beam. The first three frequencies of the 
above specified un-cracked cantilever beam are computed to be 34.3, 214.8 and 
601.4 Hz. The corresponding damping ratios for all three modes are assumed to be 
0.02, primarily due to material damping. A crack is introduced to be at l1 = 200 
mm from the origin of the coordinate system with a crack depth, a, of 1.5 mm. The 
excitation source is located at the edge of the beam, at xs = 600 mm in order to 
maximize the bending moment acting on the crack. The excitation source is 
placed such that it does not coincide with any of the nodes for the first three 
natural modes of the cantilever beam which are located at 302 mm, 470 mm and 
520 mm from the origin. 

Fig. 2(a) shows the simulated magnitude response of the uncontrolled 
beam, when excited by a sinusoidal load with an amplitude of 1 N/m and an 
excitation frequency that is identical to the first natural frequency of the beam. 
The controlled response is simulated by placing the controller at xc = 400 mm and 
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the control algorithm that minimizes deflection at the crack location is used for 
the controlled response shown in Fig. 2(b). 

 
(a)         (b) 

Fig. 2. Beam Response – Excitation at First Mode (a) Un-controlled (b) Controlled 
As can be seen from the comparison of Figs. 2(a) and 2(b), the magnitude 
response reduces by orders of magnitude with even more significant reduction 
around the crack location (x = l1 = 0.2). Figs. 3(a) and 3(b) show another two 
simulation results to compare the uncontrolled and controlled response when the 
excitation frequency is between first and second natural frequency, and when the 
excitation frequency coincides with the second natural frequency respectively. 

 
(a)           (b) 

Fig. 3. Beam Response (a) Excitation between First & Second Modes (b) Excitation at Second 
Mode 

It can be concluded from the simulated responses in Figs. 2 and 3 that the 
magnitude responses over the entire length of the beam are substantially reduced 
when the excitation frequency coincides with a natural frequency of the beam. 
However, the displacement amplitude does not change appreciably over the entire 
length when the excitation frequency does not coincide with a natural frequency, 
as seen in Fig. 3(a). This can be attributed to the fact that only one control actuator 
is being used, resulting in poor performance when excitation is governed by more 
than one natural mode of the beam. The best controlled response is achieved when 
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the beam response is dominated by one mode only. The three plots can be further 
used to conclude that the crack propagation will be significantly mitigated if the 
excitation frequency is such that the beam response is dominated by a single 
mode, and it may further be concluded that the rate of crack propagation may not 
change significantly if more than one natural mode is being excited by the 
disturbance input. Fig. 4 shows a comparison between the excitation force and the 
control force that corresponds to the controlled response shown in Fig. 2(b). It 
may be noted that the control effort can be significantly reduced if the controller is 
co-located at the location of the excitation input. 

 
Fig. 4. Excitation versus control force – Excitation at First Mode 

 
Fig. 5. Controlled Response – Excitation at   Fig. 6. Controlled Response – Excitation 
First Mode     between First & Second Modes 
Figs. 5 and 6 compare the controlled response between the two feed-forward 
control algorithms outlined in the previous section. Fig. 7 demonstrates the 
sensitivity of the response amplitude to the placement of the controller actuator 
when the disturbance input excites the first mode only. Co-location of the 
controller actuator with the excitation input, if possible, results in minimum 
amplitudes. This can be observed in Fig. 7 for the controller location of 0.6 m 
(600 mm), which is coincident with the excitation location for this simulation. 
However, placement of the controller at a location that coincides with a node will 
result in significant deterioration of the control performance. 
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Fig. 7. Varying Controller Location      Fig. 8. Natural Frequency v/s Crack Length 

 
Another simulation run is performed in order to determine the influence of 

the proposed control algorithms on the useful life of the cantilever beam with a 
pre-existing crack depth of 1.5 mm. A sinusoidal load varying between 720 N and 
240 N is used as the excitation input at xs = 600 mm, resulting in maximum and 
minimum normal stresses of 128 MPa and 42.7 MPa respectively, and the 
excitation frequency of the input load is 10 Hz. All other parameters remain the 
same as in the previous simulation. Using linear elastic fracture mechanics 
(LEFM), the crack depth is expected to extend till 7.5 mm before failure due to 
brittle fracture can be expected. Fig. 8 shows the drop in natural frequencies 
resulting from crack propagation, as the crack length increases from 1.5 mm to 7.5 
mm. The controlled response is simulated by placing the controller at xc = 400 mm 
and the control algorithm that minimizes deflection at the crack location is used to 
determine the control force. The useful life of the beam is computed as the 
number of cycles it takes the crack to propagate from 1.5 mm to 7.5 mm, using 
modified Paris law and numerical integration [18, 19] and is briefly discussed in 
Appendix B. 

 
Fig. 9. Crack Propagation Results   Fig. 10. a-N Plot – Comparison 
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The results are shown in Fig. 9 with the area under the curve representing 
useful life. As can be observed from Fig. 9, implementation of the control 
algorithm results in increasing useful life by an order of magnitude. Fig. 10 shows 
the a-N plot comparing crack growth between the un-controlled and the controlled 
beam, an order of magnitude increase in the useful life can be observed from this 
plot as well. This serves as a validation of the proposed control algorithms to 
minimize transverse deflection of the damaged beam and simultaneously reduce 
the rate of crack propagation and, hence, increase the useful life of the damaged 
beam. 

5. Conclusions 

This paper proposes the use of two feed-forward control algorithms in 
order to minimize transverse deflection as well as mitigate crack propagation in a 
cantilever beam with a pre-existing single-sided open-crack. Simulation results 
demonstrate that transverse displacement is substantially reduced when the beam 
response is dominated by a single mode, and that the useful life of the damaged 
beam can be increased by an order of magnitude. The results further demonstrate 
that the control effort can be minimized if the controller is co-located with the 
excitation source. 

The control algorithms presented in this paper can be used in conjunction 
with crack detection and identification techniques by studying changes in natural 
frequencies and mode shapes or by the analysis of the vibration response of the 
beam, and thereby identifying the crack size and the crack location. Once the 
crack is detected, one of the two control algorithms presented in this paper can be 
used to significantly reduce the rate of crack propagation and enhance the useful 
life of the damaged structure. Future work will implement the proposed 
algorithms on breathing cracks. Future work will also be undertaken to implement 
the proposed algorithms on truss structures and experimentally evaluate the 
implementation of the feed-forward algorithms proposed in this paper by using a 
semi-active control device so as to minimize power requirements. 
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APPENDIX A 

The change in strain energy of the torsional spring used to model the 
crack, as discussed in Section 2, can be represented in terms of the bending 
moment, M, at the crack location as follows: 

2

2 t

MU
K

Δ =                                                    (A.1) 

In Eq. (A.1), ΔU is the change in strain energy and Kt is the torsional stiffness of 
the spring. The change in strain energy resulting from the presence of the crack 
can be expressed in terms of the stress intensity factor as [18, 19]: 

2

0

1 A

IU K dA
E

Δ = ∫                                             (A.2) 
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In Eq. (A.2), KI is the stress intensity factor (SIF) corresponding to Mode I 
(opening mode) of crack propagation, E is the modulus of elasticity of the beam 
material and A is the area of the cracked section of the beam at the crack location. 
Only Mode I is considered for contribution to any change in strain energy in Eq. 
(A.2), since shear due to bending is expected to be negligible. It may be noted that 
Eq. (A.2) holds for a plane stress condition only. A modified form of the modulus 
of elasticity can be used for plane strain applications. 
 The stress intensity factor corresponding to a crack length, a, and a 
nominal (or far-field) stress of σ is defined as follows: 

( )IK a Fσ π δ=                                                (A.3) 

In Eq. (A.3), ( )F δ is a dimensionless function governed by geometry, boundary 
conditions and loading conditions of the cracked structure, and δ is the 
dimensionless crack length. For a cantilever beam with a rectangular cross-section 
and a bending load acting on the cross-section which results in an opening mode, 
the dimensionless function is empirically defined as [18, 19]: 
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Substituting Eqs. (A.3) and (A.4), with 2

6M
bh

σ =  and dA bdα= , in Eq. (A.2) and 

equating Eqs. (A.1) and (A.2) yields the following: 
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F d
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π α α= ∫                                          (A.5) 

Solving Eq. (A.5) yields the torsional stiffness of the modeled spring used to 
represent the crack. Kt, as defined in Eq. (A.5), represents the torsional stiffness of 
the spring used to model the open single sided edge-crack, as shown in Fig. 1. It 
may be noted that the torsional stiffness is a function of relative crack length, and, 
therefore, changes as the crack propagates. This modeled stiffness has been used 
in Sections 2 and 3 in the form of a dimensionless stiffness constant, K, defined 
as: 

tK lK
EI

=                                                    (A.6) 

In Eq. (A.6), I is the area moment of inertia of the entire un-cracked cross-section 
of the beam. K is called the crack section stiffness and is dimensionless. The 
inverse of K, represented by θ, is called the crack section compliance or flexibility 
and has been used in the governing beam equation in Sections 2 and 3 to model 
the crack. 
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APPENDIX B 

The rate of crack propagation in a damaged structure is most widely 
modeled by using the modified Paris Law, also commonly called as the Walker 
equation, and is expressed as: 

( ) ( ) ( ) 1

1

1
11

m

m

Cda K
dN R γ−= Δ

−
                                    (B.1) 

In Eq. (B.1), C1, m1 and γ are material constants, R is the ratio between the 
minimum and maximum stress intensity factors that the crack geometry is subject 
to and ΔK is the range of the stress intensity factors resulting from cyclic loading. 
 For constant amplitude loading, the Walker equation is expressed 
iteratively so as to compute crack growth per unit cycle or vice versa. This is 
written as: 
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                           (B.2) 

In Eq. (B.2), ΔS is the stress range and Fj is the dimensionless function of crack 
length, defined in Appendix A, Eq. (A.4), for the geometry and boundary 
conditions of the cantilever beam used in this paper. Furthermore, C is used to 
replace the coefficient in Eq. (B.1) and is a function of the material constants and 
the ratio, R. 

The Walker equation can be used to compute the number of loading cycles 
that will lead to final failure as the crack propagates. Using the modified 
Simpson’s rule, life of the damaged structure can be computed as [18]: 
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In Eq. (B.3), Nif is the number of cycles that the crack takes to propagate from 
length ai to length af and r is the increment in crack length used for integration 
such that n

f ia r a=  and n is any even number, with the substitution of Eq. (B.2). 
A value of r = 1.0272 and n = 60 has been used for calculating Nif in the 
simulation presented in Section 4 with ai = 1.5 mm and af = 7.5 mm. The material 
constants used for computing Nif in the simulation in Section 4 are C1 = 2.71×10-11 

( ) 1
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m cycle

MPa m
, m1 = 3.7 and γ = 0.641. 


