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INFLUENCE OF THE NUMERICAL METHOD ON THE 
PREDICTED BONE DENSITY DISTRIBUTION IN ELEMENT 

BASED SIMULATIONS 

Emil NUŢU1, Horia GHEORGHIU2 

Most bone remodeling simulations developed upon the basis of the strain 
energy density theory make use of Euler method for the numerical integration of 
density evolution equation. However, it is well known the imprecision of this 
method.  In this work is accomplished a comparison between five numerical methods 
used for integration of the density evolution equation, namely Euler, Heun, forth 
order Runge Kutta, second order Adams Bashford uncorrected and corrected using 
Adams-Moulton. The comparison criteria are the computational time, convergence 
behavior and final apparent density distribution. 
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1. Introduction 

The natural ability of bones to achieve structural changes according to 
their mechanical environment, namely bone modeling and/or remodeling, was 
theoretically investigated by several authors [1-8], resulting different 
mathematical models of the same problem. The fundamental differences between 
the mathematical theories rely not on the general formulation, but on the details 
regarding the mechanical quantities and the mechanisms that locally trigger and 
control the adaptation process.  It was assumed, in this respect, that the bone 
remodeling driving force may be single mechanical quantities including stress [5], 
strain [1,2], cumulative damage [6,7] and strain energy density (SED) [8,9]  or 
coupled quantities such as strain with microdamage [10]. From all the specified 
single quantities, the latter is the most used, probably because the simplicity of 
implementing it in algorithms due to its scalar nature and to its attribute of 
incorporating both stresses and strains.  

The essence of bone mechanical adaptation models is, in general, a 
feedback evolution law of bone mass with respect to a homeostatic value of a 
certain mechanical stimulus which depends on the theory involved. The general 
form of bone remodeling equation may be written as [11]: 
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 is the derivative of a mass dependent function with respect to time, B is 
a coefficient which controls the remodeling speed, S is the actual mechanical 
stimulus and So is the homeostatic equilibrium value of the mechanical stimulus to 
which the system seeks to approach. In many studies, the mass change is 
quantified within the bone tissue apparent density evolution. In some models [8], 
instead of assuming a single value for the remodeling equilibrium, So, of the 
mechanical stimulus, an interval of equilibrium values, centered in So , is defined. 
Values of the stimulus above this interval cause bone deposition and those under 
the interval determine bone to resorb away. Considering the SED as mechanical 
stimulus and imposing the equilibrium interval, the remodeling equation is written 
as [8]: 
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where U is the actual SED, Uo is the homeostatic SED value and 2s measures the 
length of the equilibrium interval. It is also possible that the resorption and 
deposition speeds to be different, as coefficients B1 and B2 indicate. In the above 
equation, the mass evolution is replaced with the evolution of Young modulus. 
Nevertheless, this approach doesn’t change the essence of the model, as the 
Young modulus of bones is correlated with the density using empirical relations 
of the form [12]: 

ܧ ൌ ܽ ൅  ௠,                                        (3)ߩܾ

where E is the Young modulus of bone material, ρ is a densiometric measure of 
bone tissue, a, b and m are constants depending on different factors such as the 
measuring method, the anatomic site or the bone type (compact or spongy) [12]. 

Euler method is the most simple of all numerical schemes for solving 
ordinary differential equations (ODEs), but it is not practical as it needs very 
small integration steps for the accuracy to grow [13]. Nevertheless, in case of 
bone remodeling simulations, Euler method proved to be preferred. This fact is 
probably based upon the lack of explicit analytical expression of the stimulus     
S=S(t,ρ), in equation (1), as it depends on stress-strain field or other mechanical 
quantities. The problem is usually solved using the finite element method (FEM) 
which, for given density distributions, allows for numerical estimation of the 
mechanical stimulus. The mass evolution equation is iteratively coupled with 
FEM so the values of S are estimated per iteration. In case of using higher order 
integration schemes, the need to establish intermediate values of S for each 
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incremental update requires additional FEM calculations. Hence, the time cost is 
significantly increased. In addition, the implementation is more involved. 
However, we consider rather important to evaluate whether different integration 
schemes introduce significant variations in final apparent density distribution.    

2. Methods 

We have selected from the literature [13-15] the Euler, the Heun and the 
fourth order Runge-Kutta (RK) as single-step numerical methods and, from the 
multistep category, the second order Adams Bashford (AB) and second order 
predictor-corrector Adams Bashford-Adams Moulton (ABAM). We considered 
the comparison relevant on the basics of the following arguments: Euler method is 
the most used in bone remodeling simulations due to its simplicity, but is 
considered as non-practical because its inaccuracy and instability in case of using 
large integration steps [13]. Heun scheme increases the accuracy of Euler with an 
acceptable time cost. The RK is usually preferred for its accuracy provided with 
higher integration steps, based only on the first derivative [13]. The AB was 
already used in bone remodeling simulations, but in node based approach [16]. It 
was proved that it keeps the time cost as low as Euler variant, but with improved 
accuracy. The last scheme was implemented in order to investigate whether 
improvements to AB density prediction can be attained. 

The remodeling process is simulated using an equation of the form (2), but 
adapted in terms of density evolution, as follows: 
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where ρ is the apparent density of bone and k is the equilibrium constant that 
regulates the process. The values of k and s are determined from the initial 
conditions which are assumed to correspond to a homeostatic state [10], 
following:  

           ݇ ൌ ௎௢
ఘ೚

  and  ݏ ൌ 0.1 · ݇.                 (5) 

A common way of imposing initial conditions, which is adopted in this 
work, consists of applying a uniform density distribution equal to half of compact 
bone density. Hence, we have taken the initial value of apparent density, ρo ,  
equal to 0.87 g/cm3.  
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Writing in a more concise form the equation (4) coupled with the initial 
condition, we have: 
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With the notation 

    ௜݂ ൌ ݂ሺݐ௜, ௜ሻߩ ൌ ,௜ݐሾܵሺܤ ௜ሻߩ െ ܵ௢ሿ ,      (7) 

equations (8), (9), (10) and (11) reprezent  the recourence relations given by 
Euler, Heun, RK and AB, respectively, for the density update evaluation 
described by equation (6): 
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In the predictor-corrector ABAM variant, the recurrence expressions are:  
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The initial values of densities for AB and ABAM were determined using 
the Euler method in the first increment, but with a diminished step relative to the 
overall constant value. A five time lower value was chosen.   

In order to iteratively simulate the apparent density distribution in bone 
models, we have written a code which couples Matlab and Ansys programs. The 
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code comprises two modules, one for carrying out the finite element component 
of the simulation, making use of Ansys capabilities and the other for numerical 
solving the remodeling equation, employing Matlab resources. The 
communication between the two programs and the material update are 
accomplished according to Martin Groß approach [17]. The implementation is 
element based [9], which assumes the existence of one sensor per finite element  
and that the apparent density is constant per element. Figure 1 shows the block 
diagram of the algorithm. 

 
Fig. 1. Block diagram of the remodeling algorithm: the finite element module implemented in 

ANSYS (right) and the density evolution module implemented in MATLAB (left) 
 
The simulation was performed on the structure presented in figure 2, 

which is common for employing topology optimization [18]. This approach 
allows for the qualitative comparison of the density distribution achieved with our 
code with the one presented in the literature [18]. It is to be mentioned that, 
although bone remodeling and structural topology optimization are different 
methods of determining optimum density distribution, they should generate 
similar topologies. This fact allows a qualitative validation of our models. 

In order to evaluate the mechanical stimulus we have developed five 
Matlab functions, each corresponding to the selected numerical schemes, 
respectively.  
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Fig. 2. Cantilever plate used for remodeling simulations 

In the simulations presented here, for the cantilever plate from figure 2 we 
have chosen L=15 mm, H=10 mm and p distributed on several nodes so that the 
resultant force to be 100 N. Several tests are first performed in order to identify 
the relevant finite element density and integration step values. It is considered that 
finer meshes should better approximate the averaged stress-strain field. Hence it is 
expected for more realistic3 density distributions to reveal in finer meshes. 
Therefore, we have accomplished our study on two groups of finite element mesh 
sizes, each with two integration steps. We used squared finite elements with the 
element edge length of 0.5 mm in the first group and of 0.25 mm in the second, 
denoted as coarse mesh and fine mesh, respectively. For both groups and for each 
numerical method, the two integration step values were taken as 0.5 and 0.25.  

Ideally, the objective of the simulation would be to attain, in every 
element, a mechanical stimulus within the homeostatic limits (So). This is not the 
case with the remodeling rule simulated here because the density change is 
stopped within the elements whose density reach either the superior or the inferior 
limits. In these elements, the remodeling stimulus is artificially forced to keep a 
value which is not necessary inside the initial established equilibrium interval. 
This observation stands for the irrelevance of comparing the uniformity of final 
stimulus distribution according to each numerical method, as it would be a general 
objective. The comparison between the predicted densities is only relevant as a 
global qualitative distribution. 

The convergence is controlled using the objective function proposed by 
Weinnans et. all [9]: 
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where NE represents the number of finite elements meshing the model, Ui and ρi   
are the SED and the apparent density  corresponding to element i. The function ф 

                                                           
3 The term “realistic” used in this paper is strictly related to the remodeling equation, i.e. to the 
precision of approximating its solution. 
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measures the amount of global adaptation towards the value So. When no 
significant change is recorded, in any of the finite elements, the values of ф 
should stabilize. In this respect, the algorithm is stopped when during three 
consecutive iterations the objective function does not change by more than an 
imposed tolerance (10-4 MPa·g-1·cm3), i.e.: 

         ∆߶௧ ൌ |߶௧ െ ߶௧ିଵ| ൏ 10ିସ.        (14) 

3. Results and discussions 

As shown in figure 3, good resemblance between density distributions is 
revealed by the five different methods, respectively. One can also notice the 
qualitative similarity between our results and the ones obtained by Ole Sigmund 
using a Matlab code for topology optimization [18]. 

Figure 3 indicates that, if coarse meshes are used, no relevant differences 
appear between final density distributions whatever the method used. Neither in 
terms of convergence were not identified any significant aspects that would make 
the difference, except in the case of AB method which proved to be locally 
unstable (figures 5a and 5b). Decreasing the integration step is also insignificant. 
However, when using denser meshes additional density struts appear in the case 
of multistep methods, as figure 4 reveals. This effect raises the question whether 
the single-step or multistep methods produce more realistic density distributions. 
Therefore, we conducted further analysis by deeper refining the finite element 
mesh. The results in terms of density distribution and convergence behavior are 
presented in figures 6 and 7, respectively, but only for Euler and AB schemes, 
because their required computational time is almost the same and significantly 
lower than the other methods. It is demonstrated that higher mesh refinement 
introduces similar density struts in both Euler and AB predictions, but has the 
disadvantage of high computational cost. It is to be observed that AB already 
predicted similar struts in coarser meshes (figure 4), thus with significant lower 
computational time. Therefore, it is an argument that accounts for using AB 
instead of Euler. However, the convergence of AB proved unstable, even in high 
mesh refinements and small integration steps (figures 5c, 5d and 7). If this detail 
is important, as in time dependent bone remodeling simulations, a method that 
shows a smooth convergence should be used. 
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Method h=0.5 h=0.25 

Euler 

 

Heun 

 

RK 

 

AB 

 

 
ABAM 

 

 
Fig. 3. Final apparent density plots corresponding to each integration scheme in the case of coarse 

mesh (0.5 mm element edge length) 
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Method h=0.5 h=0.25

Euler 

 

Heun 

 

RK 

 

AB 

 

ABAM 

 

 
Fig. 4. Final apparent density plots corresponding to each integration scheme in the case of mesh 

refinement (0.25 mm element edge length) 



82                                                    Emil Nuţu, Horia Gheorghiu 

 
           a                                                                             b       

 
           c                                                                             d       

Fig. 5. Convergence plots corresponding to the four initial meshing conditions 

 

 
Fig. 6. Final apparent density plots corresponding to Euler (left) and AB (right) integration 

schemes in the case of high mesh refinement (0.1 mm element edge length) with h=0.25 
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Fig. 7. Convergence plots corresponding to the Euler and AB integration schemes in the case of 
high mesh refinement (0.1 mm element edge length) 

Regarding the other methods studied here (other than Euler and AB), one 
can observe no important changes neither in terms of predicted density or 
convergence behavior. Additionally, the time cost is about two times higher in the 
case of Heun and ABAM and almost four times higher in the case of RK relative 
to Euler and AB.  

4. Conclusions  

The comparison presented in this work revealed no significant difference 
between final apparent density distribution in relatively coarse meshes, but some 
density struts are found to appear as differences in case of mesh refinement. 
Because the remodeling problem is mesh dependent, this numerical effect should 
be taken into account.  

Decreasing the convergence tolerance does not imply any supplementary 
effect. In the case of convergence behavior, all the methods revealed the same 
evolution, except the AB approach which generated some local instability, 
irrespective of mesh density. 

The use of a certain method is dependent upon the scope of the simulation. 
For instance, Euler and AB schemes provide similar density distributions but for 
different mesh sizes. Assuming that mesh refinement ensures more realistic 
results, the AB method is therefore more appropriate as it reveals the same mesh 
as Euler but in coarser meshes. This is obviously an advantage in terms of time 
cost. However, in the case of simulations where time becomes important, the 
integration step being correlated with the experimental time of remodeling 
process, the instability of AB would affect the density evolution. In such cases, a 
scheme that ensures a smooth convergence is more appropriate.   
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