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AN INVERSE PROBLEM FOR THE SIXTH-ORDER LINEAR

BOUSSINESQ-TYPE EQUATION

He Yang1

In this paper, we consider an inverse problem for the sixth-order linear Boussinesq-
type equation. Given some conditions of the data, we establish the proofs of existence

and uniqueness for sufficiently small time. In addition, we introduce a numerical method

to solve the inverse problem and present some numerical results.
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1. Introduction

The Boussinesq equation is a classical model to describe wave propagation with small
amplitude and long waves. A lot of attention has been paid recently to study the sixth-
order Boussinesq equation [1, 5, 6]. However, not much work has been done on the inverse
problems for the sixth-order Boussinesq equation. An inverse problem for a fourth-order
Boussinesq equation is discussed in [2], and inverse problems for hyperbolic and pseudo-
hyperbolic equation are investigated in [3, 4]. In this paper, we consider an inverse problem
for the sixth-order linear boussinesq-type equation. That is,

utt = uxx − β1uxxxx + β2uxxxxxx + a(t)u+ f(x, t), x ∈ (0, 1), t ∈ [0, T ],

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = uxxxx(0, t) = uxxxx(1, t) = 0,

(1)

with the additional condition

u(x0, t) = h(t), for a fixed x0 ∈ (0, 1), ∀t ∈ [0, T ]. (2)

Here β1, β2, T > 0 are three given constants, and we assume that h(t) 6= 0 for any t ∈ [0, T ].
The functions f , φ, ψ and h are sufficiently smooth functions which will be made more
precise later. In addition, the consistency conditions for φ and ψ will also follow in the next
section. The inverse problem is described as follows: given data {f(x, t), φ(x), ψ(x), h(t)},
and seek {u(x, t), a(t)} such that (1) and (2) are satisfied. The purpose of this work is to
prove the uniqueness and existence of the inverse problem (in Section 2), establish numerical
methods and present some numerical results (in Section 3).

2. Existence and Uniqueness

2.1. Existence and Uniqueness

Based on equations (1), we assume the following consistency conditions:{
φ(0) = φ′′(0) = φ(4)(0) = φ(1) = φ′′(1) = φ(4)(1) = 0,

ψ(0) = ψ′′(0) = ψ(4)(0) = ψ(1) = ψ′′(1) = ψ(4)(1) = 0.
(3)

1 Department of Mathematics, Augusta University, Augusta, GA 30912, USA, e-mail:

hyang1@augusta.edu

27



28 He Yang

One key component for the proof of the existence is equation (11). To derive it, we assume
that all the series in (4), (7), (8), (9) and (10) converge and arbitrarily differentiable. Due
to the homogenous boundary conditions, we look for solution

u(x, t) =
∑∞
n=1 un(t)Xn(x), (4)

where Xn(x) =
√

2 sin(µnx), µn = nπ for n = 1, 2, . . . The time-dependent coefficients un(t)
satisfy {

u′′n(t) + b2nun(t) = Fn(t; a, u),

un(0) = φn, u′n(0) = ψn,
(5)

bn =
√
µ2
n + β1µ4

n + β2µ6
n, Fn(t; a, u) = a(t)un(t) + fn(t), fn(t) =

√
2
∫ 1

0
f(x, t) sin(µnx)dx,

φn =
√

2
∫ 1

0
φ(x) sin(µnx)dx, ψn =

√
2
∫ 1

0
ψ(x) sin(µnx) dx for all n.

We can solve the initial value problem (5) and obtain

un(t) = φn cos(bnt) +
ψn
bn

sin(bnt) +
1

bn

∫ t

0

Fn(s; a, u) sin(bn(t− s))ds, ∀n (6)

which leads to the solution

u(x, t) =
√

2
∑∞
n=1

[
φn cos(bnt) + ψn

bn
sin(bnt) + 1

bn

∫ t
0
Fn(s; a, u) sin(bn(t− s))ds

]
sin(µnx). (7)

We now consider the partial differential equation in (1) evaluated at x = x0, and apply the
condition (2) to get

h′′(t) = uxx(x0, t)− β1uxxxx(x0, t) + β2uxxxxxx(x0, t) + a(t)h(t) + f(x0, t).

We further substitute u(x0, t) =
√

2
∑∞
n=1 un(t) sin(µnx) into the equation above, and obtain

a(t) = 1
h(t)

[
h′′(t)− f(x0, t) +

∑∞
n=1(µ2

n + β1µ
4
n + β2µ

6
n)un(t) sin(µnx0)

]
. (8)

Here we have used the assumption that h(t) 6= 0. Note that the formulation of un(t) in the
equation above is given by (6). Let z = [u(x, t), a(t)]T and Φ(z) = [Φ1(z),Φ2(z)]T where
the functions Φ1 and Φ2 are defined as

Φ1 =
√

2
∑∞
n=1

[
φn cos(bnt) + ψn

bn
sin(bnt) + 1

bn

∫ t
0
Fn(s; a, u) sin(bn(t− s))ds

]
sin(µnx), (9)

Φ2 = 1
h(t)

[
h′′(t)− f(x0, t) +

∑∞
n=1(µ2

n + β1µ
4
n + β2µ

6
n)
(
φn cos(bnt) + ψn

bn
sin(bnt)

+ 1
bn

∫ t
0
Fn(s; a, u) sin(bn(t− s))ds

)
sin(µnx0)

]
. (10)

Therefore, we can see that the existence and uniqueness of the inverse problem (1)-(2) is
equivalent to that of the equation

z = Φ(z). (11)

Before we proceed with a proof, we first define some important spaces. Let DT = {(x, t) :
0 < x < 1, 0 ≤ t ≤ T},

B7
2,T =

{
u(x, t) =

√
2
∑∞
n=1 un(t) sin(µnx) : un(t) ∈ C[0, T ],

∑∞
n=1

(
µ7
n‖un(·)‖C[0,T ]

)2
<∞

}
and

E7
2,T = B7

2,T × C[0, T ].

For u ∈ B7
2,T , z ∈ E7

2,T , we define the norm of u and z as ‖u‖B7
2,T

=
(∑∞

n=1

(
µ7
n‖un(·)‖C[0,T ]

)2) 1
2

,

and ‖z‖E7
2,T

= ‖u‖B7
2,T

+ ‖a(·)‖C[0,T ].

Lemma 2.1. B7
2,T and E7

2,T are Banach spaces.
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Proof. We only show that B7
2,T is a Banach space, and the proof for the space E7

2,T is similar.

For any Cauchy sequence {um(x, t)}∞m=0 ⊂ B7
2,T , let um(x, t) =

√
2
∑∞
i=1 u

m
i (t) sin(µnx).

Then for any ε > 0, there exists a positive integer N , such that for all j, k > N , there is

‖uj − uk‖B7
2,T

=

(∑∞
i=1

(
µ7
i ‖u

j
i − uki ‖C[0,T ]

)2
) 1

2

< ε. (12)

Since µi > 1 for all i ≥ 1, the inequality above leads to

‖uji − uki ‖C[0,T ] < ε, ∀i ≥ 1, (13)

which implies that {umi (t)}∞m=0 is a Cauchy sequence. Thus for any i ≥ 1, there exists

ui(t) ∈ C[0, T ] such that limj→∞ uji (t) = ui(t). This is due to the fact that the space C[0, T ]

is complete. Let u(x, t) =
√

2
∑∞
i=1 ui(t) sin(µix). From (12), we know that for any l ≥ 1

there is

limj→∞
∑l
i=1

(
µ7
i ‖u

j
i − uki ‖C[0,T ]

)2

=
∑l
i=1

(
µ7
i ‖ui − uki ‖C[0,T ]

)2 ≤ ε2, (14)

for any k > N . Therefore, we can obtain

‖u− uk‖B7
2,T

=
∑∞
i=1

((
µ7
i ‖ui − uki ‖C[0,T ]

)2) 1
2 ≤ ε, k > N, (15)

which leads to the fact that uk(x, t) converges to u(x, t). Finally, since ‖u‖2
B7

2,T
≤ 2‖u −

uk‖2
B7

2,T
+ 2‖uk‖2

B7
2,T

, we can get u ∈ B7
2,T . Thus, B7

2,T is a Banach space. �

Lemma 2.2. For any z ∈ E7
2,T , there is Φ(z) ∈ E7

2,T if the following conditions are satisfied:

(1) φ ∈ C7[0, 1], φ(0) = φ′′(0) = φ(4)(0) = φ(6)(0) = φ(1) = φ′′(1) = φ(4)(1) = φ(6)(1) = 0.
(2) ψ ∈ C4[0, 1], ψ(0) = ψ′′(0) = ψ(1) = ψ′′(1) = 0.
(3) f(x, t) ∈ C(DT ), f(·, t) ∈ C4[0, 1] for any t ∈ [0, T ], f(0, t) = f(1, t) = fxx(0, t) =
fxx(1, t) = 0.
(4) h(t) ∈ C2[0, T ], h(t) 6= 0, ∀t ∈ [0, T ].

Remark 2.1. Lemma 2.1 and 2.2 imply that Φ is an operator from the Banach space E7
2,T

to itself.

Remark 2.2. The conditions in Lemma 2.2 are more restrictive than the consistency con-
ditions (3). For example, as we will show later, φ ∈ C7[0, 1] and φ(6)(0) = φ(6)(1) = 0 are

needed to estimate the magnitude of φn =
√

2
∫ 1

0
φ(x) sin(µnx)dx.

Proof. We prove of Lemma 2.2 in two steps.
Step 1. We show that Φ2(z) ∈ C[0, T ], for any z = [u(x, t), a(t)]T ∈ E7

2,T .

From (10) and the fact h(t) ∈ C2[0, T ], h 6= 0, f ∈ C(DT ), it is easy to see that we only
need to show that

∑∞
n=1(µ2

n + β1µ
4
n + β2µ

6
n)un(t) sin(µnx0) ∈ C[0, T ], where un(t) is given

in (6). We apply integration-by-parts and condition (1) in Lemma 2.2 to get

φn =
√

2
∫ 1

0
φ(x) sin(µnx)dx = −

√
2

µ7
n

∫ 1

0
φ(7)(x) cos(µnx)dx. (16)

Similarly, we can derive

ψn =
√

2
µ4
n

∫ 1

0
ψxxxx(x) sin(µnx)dx, (17)

and

fn(t) =
√

2
µ4
n

∫ 1

0
fxxxx(x, t) sin(µnx)dx. (18)
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We combine the equalities about φn, ψn, fn(t) to get∣∣∣∑∞n=1 b
2
n

(
φn cos(bnt) + ψn

bn
sin(bnt) + 1

bn

∫ t
0
Fn(s; a, u) sin(bn(t− s))ds

)
sin(µnx0)

∣∣∣
≤ (1 + β1 + β2)

∑∞
n=1 µ

6
n

(
|φn|+ |ψn|

bn
+ 1

bn

∫ t
0
|Fn(s; a, u)|ds

)
≤ (1 + β1 + β2)

∑∞
n=1

(
1
µn

∣∣∣√2
∫ 1

0
φ(7) cos(µnx)dx

∣∣∣+ 1√
β2µn

∣∣∣√2
∫ 1

0
ψ(4) sin(µnx)dx

∣∣∣
+

µ3
n√
β2

∫ T
0
|a(t)||un(t)|dt+ T

µn
maxt∈[0,T ]

∣∣∣√2
∫ 1

0
fxxxx(x, t) sin(µnx)dx

∣∣∣) . (19)

Here we have used the fact that bn =
√
µ2
n + β1µ4

n + β2µ6
n ≥
√
β2µ

3
n in the second inequality

above. In addition, using the boundary conditions of u(x, t) and integration-by-parts, it is
easy to show that

un(t) =
√

2
∫ 1

0
u(x, t) sin(µnx)dx =

√
2

µ4
n

∫ 1

0
uxxxx(x, t) sin(µnx)dx. (20)

Therefore, (19) and (20) lead to the following estimates∣∣∑∞
n=1(µ2

n + β1µ
4
n + β2µ

6
n)un(t) sin(µnx0)

∣∣ (21)

≤ (1 + β1 + β2)
∑∞
n=1

(
1
µn

∣∣∣√2
∫ 1

0
φ(7) cos(µnx)dx

∣∣∣+ 1√
β2µn

∣∣∣√2
∫ 1

0
ψ(4) sin(µnx)dx

∣∣∣
+

T‖a‖C[0,T ]√
β2µn

maxt |
√

2
∫ 1

0
uxxxx sin(µnx)dx|+ T

µn
maxt∈[0,T ]

∣∣∣√2
∫ 1

0
fxxxx sin(µnx)dx

∣∣∣)
≤ (1 + β1 + β2)

(∑∞
n=1

1
µ2
n

) 1
2
(
‖φ(7)‖L2[0,1] + 1√

β2
‖ψ(4)‖L2[0,1]

+
T‖a‖C[0,T ]√

β2
maxt∈[0,T ] ‖uxxxx(·, t)‖L2[0,1] + T maxt∈[0,T ] ‖fxxxx(·, t)‖L2[0,1]

)
,

where Cauchy-Schwartz inequality and Bessel’s inequality have been applied in the second
inequality above. Furthermore, we have

|uxxxx| =
√

2|
∑∞
n=1 µ

4
nun(t) sin(µnx)| ≤

√
2
(∑∞

n=1(µ7
n‖un(·)‖C[0,T ])

2
) 1

2

(∑∞
n=1

1
µ6
n

) 1
2

.

for any t ∈ [0, T ], which implies that maxt∈[0,T ] ‖uxxxx(·, t)‖L2[0,1] is bounded. Combining

inequality (21),
∑∞
n=1(1/µ2

n) = 1/6 and Weierstrass M-test, we can see that
∑∞
n=1(µ2

n +
β1µ

4
n + β2µ

6
n)un(t) sin(µnx0) converges absolutely and uniformly. Thus the series is contin-

uous on t ∈ [0, T ], and Φ2 ∈ C[0, T ].
Step 2. we then show that Φ1(z) ∈ B7

2,T .
Since

µ7
n

∣∣∣φn cos(bnt) + ψn

bn
sin(bnt) + 1

bn

∫ t
0
Fn(s; a, u) sin(bn(t− s))ds

∣∣∣ (22)

≤
∣∣∣√2

∫ 1

0
φ(7) cos(µnx)dx

∣∣∣+
√

2
β2

∣∣∣∫ 1

0
ψ(4) sin(µnx)dx

∣∣∣
+
√

2
β2

∫ T
0

(
|a(t)||

∫ 1

0
uxxxx sin(µnx)dx|+ |

∫ 1

0
fxxxx sin(µnx)dx|

)
dt,

for any t ∈ [0, T ], we have

∑∞
n=1

(
µ7
n maxt

∣∣∣φn cos(bnt) + ψn

bn
sin(bnt) + 1

bn

∫ t
0
Fn(s; a, u) sin(bn(t− s))ds

∣∣∣)2

≤ 4
(
‖φ(7)‖2L2[0,1] + 1

β2
‖ψ(4)‖2L2[0,1] + T 2

β2
(‖a‖2C[0,T ] ·maxt ‖uxxxx‖2 + maxt ‖fxxxx‖2)

)
.

Applying the conditions of the lemma to the equation above, we can show that the right
side of the inequality is bounded. Therefore, we have proved Φ1(z) ∈ B7

2,T which concludes
the lemma. �
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From the proof of Lemma 2.2, we can show that for any z = [u(x, t), a(t)]T ∈ E7
2,T ,

the following estimates for ‖Φ1(z)‖ and ‖Φ2(z)‖ hold:

‖Φ1(z)‖ ≤ 2
(
‖φ(7)‖L[0,1] + 1√

β2
‖ψ(4)‖L2[0,1] + T√

β2
(‖fxxxx‖C(DT ) + ‖a‖C[0,T ]‖u‖B7

2,T
)
)
,

‖Φ2(z)‖ ≤ ‖ 1
h‖C[0,T ]

[
‖f‖C(DT ) + ‖h′′‖C[0,T ] + (1 + β1 + β2)(

∑∞
n=1

1
µ2
n

)
1
2×(

‖φ(7)‖L2[0,1] + 1√
β2
‖ψ(4)‖L2[0,1] + 2T√

β2
‖a‖C[0,T ]‖u‖B7

2,T
+ T‖fxxxx‖C(DT )

)]
.

Let A(T ) and B(T ) be two functions of T , defined by

A(T ) = 2‖φ(7)‖L[0,1] + 2√
β2
‖ψ(4)‖L2[0,1] + ‖ 1

h‖C[0,T ]

(
‖f‖C(DT ) + ‖h′′‖C[0,T ]

)
+ 2T√

β2
‖fxxxx‖C(DT ) + T‖ 1

h‖C[0,T ](1 + β1 + β2)(
∑∞
n=1

1
µ2
n

)
1
2 ‖fxxxx‖C(DT )

B(T ) = 2T√
β2

+ 2T√
β2

(1 + β1 + β2)‖ 1
h‖C[0,T ](

∑∞
n=1

1
µ2
n

)
1
2 .

Then we can obtain

‖Φ(z)‖E7
2,T
≤ A(T ) +B(T )‖a‖C[0,T ]‖u‖B7

2,T
. (23)

Due to the fact that B(T ) → 0 as T → 0, and A(T ) is a continuous function of T , there
exists a sufficiently small T > 0 such that

(A(T ) + 2)2B(T ) < 1. (24)

For the fixed T , we define a ball K := {z ∈ E7
2,T : ‖z‖E7

2,T
≤ A(T ) + 2}. Then, for every z

that belongs to K, one has

‖Φ(z)‖E7
2,T

≤ A(T ) +B(T )‖a‖C[0,T ]‖u‖B7
2,T
≤ A(T ) +B(T )(A(T ) + 2)2

< A(T ) + 1 ≤ A(T ) + 2.

This implies that Φ(z) ∈ K for any z ∈ K. That is, Φ is an operator from K to itself. The
next lemma gives another important property of Φ.

Lemma 2.3. For the constant T that satisfies (24), the operator Φ : E7
2,T → E7

2,T is a

contraction mapping on the ball K = {z ∈ E7
2,T : ‖z‖E7

2,T
≤ A(T ) + 2}.

Proof. For any z(1), z(2) ∈ E7
2,T , let z(i) = [u(i)(x, t), ai(t)]T for i = 1, 2. Then

‖Φ(z(1))−Φ(z(2))‖E7
2,T

= ‖Φ1(z(1))− Φ1(z(2))‖B7
2,T

+ ‖Φ2(z(1))− Φ2(z(2))‖C[0,T ] (25)

=
∥∥∥√2

∑∞
n=1

[
1
bn

∫ t
0
(a(1)(t)u

(1)
n − a(2)(t)u

(2)
n ) sin(bn(t− s))ds

]
sin(µnx)

∥∥∥
B7

2,T

+
∥∥∥ 1
h(t)

∑∞
n=1

[
µ2
n+β1µ

4
n+β2µ

6
n

bn

∫ t
0
(a(1)(t)u

(1)
n − a(2)(t)u

(2)
n ) sin(bn(t− s))ds

]
sin(µx0)

∥∥∥
C[0,T ]

.

Note that we have used the fact Fn(t; a(i), u(i)) = a(i)(t)u
(i)
n (t)+fn(t), and u

(i)
n = φn cos(bnt)+

ψn

bn
sin(bnt) + 1

bn

∫ t
0
Fn(s; a(i), u(i)) sin(bn(t − s))ds for i = 1, 2 when we derive the equa-

tion above. We now estimate each term of the right side of equation (25). By rewriting

a(1)(t)u
(1)
n − a(2)(t)u

(2)
n as a(1)(t)(u

(1)
n − u(2)

n ) + u
(2)
n (a(1)(t)− a(2)(t)), we have

‖Φ1(z(1))− Φ1(z(2))‖B7
2,T

(26)

=

(∑∞
n=1

(
µ7
n

∥∥∥ 1
bn

∫ t
0

(
a(1)(u

(1)
n − u(2)

n ) + u
(2)
n (a(1) − a(2))

)
sin(bn(t− s))ds

∥∥∥
C[0,T ]

)2
)1/2

≤
(∑∞

n=1

(
Tµ4

n√
β2

(
‖a(1)‖C[0,T ] · ‖u

(1)
n − u(2)

n ‖C[0,T ] + ‖u(2)
n ‖C[0,T ] · ‖a(1) − a(2)‖C[0,T ]

))2
)1/2

≤ T√
β2

(
‖a(1)‖C[0,T ]‖u(1) − u(2)‖B7

2,T
+ ‖a(1) − a(2)‖C[0,T ]‖u(2)‖B7

2,T

)
.
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Similarly, we can estimate ‖Φ2(z(1))− Φ2(z(2))‖C[0,T ] as follows,

‖Φ2(z(1))− Φ2(z(2))‖C[0,T ] (27)

≤ maxt∈[0,T ]

∣∣∣ 1
h(t)

∣∣∣ ·∑∞n=1
1+β1+β2√

β2
µ3
n

∫ T
0
|a(1)u

(1)
n − a(2)u

(2)
n |dt

≤ (1+β1+β2)T√
β2

· ‖ 1
h‖C[0,T ] ·

(∑∞
n=1

1
µ2
n

) 1
2 ·
(
‖a(1)‖C[0,T ]‖u(1) − u(2)‖B7

2,T

+‖u(2)‖B7
2,T
‖a(1) − a(2)‖C[0,T ]

)
.

Note that we have used Cauchy-Schwartz inequality in the last inequality. We then combine
the estimates of ‖Φ1(z(1)) − Φ1(z(2))‖B7

2,T
and ‖Φ2(z(1)) − Φ2(z(2))‖C[0,T ] above to obtain

that

‖Φ(z(1))−Φ(z(2))‖E7
2,T

≤ 1
2B(T )

(
‖a(1)‖C[0,T ]‖u(1) − u(2)‖B7

2,T
+ ‖u(2)‖B7

2,T
‖a(1) − a(2)‖C[0,T ]

)
≤ 1

2B(T )(A(T ) + 2)2‖z(1) − z(2)‖E7
2,T
≤ 1

A(T )+2‖z
(1) − z(2)‖E7

2,T
< ‖z(1) − z(2)‖E7

2,T
.

Therefore, Φ is a contraction mapping on K. �

Lemma 2.1-2.3 lead to the conclusion that the inverse problem (1)-(2) has a unique
solution in the ball K.

Theorem 2.1. Given f(x, t), φ(x), ψ(x) and h(t) that satisfy the following conditions for
sufficiently small T > 0 with (A(T ) + 2)2B(T ) < 1:
(1) φ ∈ C7[0, 1], φ(0) = φ′′(0) = φ(4)(0) = φ(6)(0) = φ(1) = φ′′(1) = φ(4)(1) = φ(6)(1) = 0.
(2) ψ ∈ C4[0, 1], ψ(0) = ψ′′(0) = ψ(1) = ψ′′(1) = 0.
(3) f(x, t) ∈ C(DT ), f(·, t) ∈ C4[0, 1] for any t ∈ [0, T ], f(0, t) = f(1, t) = fxx(0, t) =
fxx(1, t) = 0.
(4) h(t) ∈ C2[0, T ], h(t) 6= 0, ∀t ∈ [0, T ],
the inverse problem (1)-(2) has a unique solution in the ball K = {z ∈ E7

2,T : ‖z‖E7
2,T
≤

A(T ) + 2}.

2.2. Well-Posedness

We then consider the well-posedness of the problem. Suppose we take two arbi-
trary sets of data, denoted by {f(x, t), φ(x), ψ(x), h(t)} and {f̃(x, t), φ̃(x), ψ̃(x), h̃(t)} that
satisfy the conditions in Theorem 2.1, and the corresponding solutions to the inverse prob-
lem are {u(x, t), a(t)} and {ũ(x, t), ã(t)}, respectively. Moreover, suppose ‖f‖C(DT ) and

‖f̃‖C(DT ) ≤ Cf0; ‖fxxxx‖C(DT ) and ‖f̃xxxx‖C(DT ) ≤ Cf ; ‖φ(7)‖C[0,1], ‖φ̃(7)‖C[0,1] ≤ Cφ;

‖ψ(4)‖C[0,1], ‖ψ̃(4)‖C[0,1] ≤ Cψ; ‖h‖C2[0,T ], ‖h̃‖C2[0,T ] ≤ Ch; ‖a‖C[0,T ], ‖ã‖C[0,T ] ≤ Ca and
mint∈[0,T ] |h(t)| ≥ h0 for positive constants Cf0, Cf , Cφ, Cψ, Ch, Ca and h0. Therefore, we
can show the estimates of ‖u‖B7

2,T
as follows:

‖u‖2
B7

2,T
≤ ∑∞

n=1

(
µ7
n|φn|+

µ4
n√
β2
|ψn|+ Tµ4

n√
β2

(
‖a‖C[0,T ]‖un‖C[0,T ] + ‖fn‖C[0,T ]

))2

≤ 4‖φ(7)‖2C[0,1] + 4
β2
‖ψ(4)‖2C[0,1] + 4T

2

β2
‖a‖C[0,T ] · ‖u‖2B7

2,T
+ 4T

2

β2
‖fxxxx‖2C[0,T ]

≤ 4C2
φ + 4

β2
C2
ψ + 4T 2Ca

β2
‖u‖2

B7
2,T

+
4T 2C2

f

β2
, (28)

where we have used the fact bn ≥
√
β2µ

3
n in the first inequality; and (16)-(18), (20),

Cauchy-Schwartz inequality as well as Bessel’s inequality in the second inequality above.
For sufficiently small T > 0 such that 5T 2Ca < β2, it follows that ‖u‖B7

2,T
≤ Cu, where

Cu =
√

(4β2C2
φ + 4C2

ψ + 4T 2C2
f )/(β2 − 4T 2Ca). Similarly, we can also get ‖ũ‖B7

2,T
≤ Cu.
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Now we can estimate ‖u− ũ‖B7
2,T

and ‖a− ã‖C[0,T ]. (7) leads to

‖u− ũ‖2
B7

2,T
≤ 5‖φ(7) − φ̃(7)‖2C[0,1] + 5

β2
‖ψ(4) − ψ̃(4)‖2C[0,1] + 5T 2

β2
‖a‖2C[0,T ] · ‖u− ũ‖

2
B7

2,T

+ 5T 2

β2
‖a− ã‖2C[0,T ] · ‖ũ‖

2
B7

2,T
+ 5T 2

β2
‖fxxxx − f̃xxxx‖2C(DT )

.

Since ‖a‖C[0,T ] ≤ Ca, ‖ũ‖B7
2,T
≤ Cu and 5T 2Ca < β2, the inequality above leads to

‖u− ũ‖B7
2,T

≤ M1‖φ(7) − φ̃(7)‖C[0,1] +M2‖ψ(4) − ψ̃(4)‖C[0,1] + TM3‖a− ã‖C[0,T ]

+ TM2‖fxxxx − f̃xxxx‖C(DT ), (29)

where M1 =
√

5β2/(β2 − 5T 2Ca), M2 =
√

5/(β2 − 5T 2Ca) and M3 =
√

5Cu/(β2 − 5T 2Ca).
Next, we estimate ‖a− ã‖C[0,T ]. From (8), we can show that

‖a− ã‖C[0,T ] (30)

≤ 1
h2
0

( ∞∑
n=1

b2n

∥∥∥unh̃− ũnh∥∥∥
C[0,T ]

+
∥∥∥h′′h̃− h̃′′h− f(x0, ·)h̃+ f̃(x0, ·)h

∥∥∥
C[0,T ]

)
≤ 1+β1+β2√

6h2
0

(
Ch‖u− ũ‖B7

2,T
+ Cu‖h̃− h‖C[0,T ]

)
+

2Ch+Cf0

h2
0
‖h̃− h‖C2[0,T ] + Ch

h2
0
‖f̃ − f‖C(DT )

≤ M4‖u− ũ‖B7
2,T

+M5‖h− h̃‖C2[0,T ] +M6‖f − f̃‖C(DT ),

where M4 = (1 +β1 +β2)Ch/(
√

6h2
0), M5 = [(1 +β1 +β2)Ch + (2Ch +Cf0)

√
6]/(
√

6h2
0) and

M6 = Ch/h
2
0.

Finally, we combine (29) and (30) and eventually obtain

‖a− ã‖C[0,T ] ≤ D1

D2

(
‖φ(7) − φ̃(7)‖C[0,1] + ‖ψ(4) − ψ̃(4)‖C[0,1] + ‖fxxxx − f̃xxxx‖C(DT )

+ ‖h− h̃‖C2[0,1] + ‖f − f̃‖C(DT )

)
,

‖u− ũ‖B7
2,T

≤ D3

D2

(
‖φ(7) − φ̃(7)‖C[0,1] + ‖ψ(4) − ψ̃(4)‖C[0,1] + ‖fxxxx − f̃xxxx‖C(DT )

+ ‖h− h̃‖C2[0,1] + ‖f − f̃‖C(DT )

)
, (31)

where we denoted by D1 = max{M1M4,M2M4, TM2M4,M5,M6}, D2 = 1− TM3M4, D3 = max

{M1,M2, TM2, TM3M5, TM3M6} for sufficiently small T > 0. Inequality (31) and (31) imply
that the solution of the inverse problem depends on the given data continuously.

3. Numerical Experiments

In this section, we introduce the numerical methods to solve the inverse problem (1)-
(2) and present some numerical results.

For a given final time T , we divide the time domain [0, T ] into Nt steps with uniform
step size ∆t. We first compute a0 := a(0) using

a0 = h′′(0)−φ′′(x0)+β1φ
(4)(x0)+β2φ

(6)(x0)−f(x0,0)
h(0) , (32)

and initialize u0
N := uN (0) for N = 1, 2, . . . , Nmode, where u0

N can be computed using
discrete sine transformation. We then compute u1

N := uN (∆t) for N = 1, 2, . . . , Nmode
using the initial conditions and the original PDE. In particular, using Taylor expansion of
u at t = ∆t, we get

u(x,∆t) ≈ φ(x) + ψ(x)∆t+ (∆t)2

2

(
φ′′(x)− β1φ

(4)(x) + β2φ
(6)(x) + a(0)φ(x) + f(x, 0)

)
.

Thus, we compute u1
N using

u1
N = φN + ψN∆t+ (∆t)2

2

(
(φ′′ − β1φ

(4) + β2φ
(6))N + a0φN + f0

N

)
, N = 1, 2, . . . , Nmode,

where (φ′′ − β1φ
(4) + β2φ

(6))N presents the N th mode of the sine transformation of φ′′ −
β1φ

(4) + β2φ
(6), and f0

N = fN (0). Next, a1 = 1
h(∆t) (h′′(∆t)− f(x0,∆t)− uxx(x0,∆t)
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+ β1uxxxx(x0,∆t)− β2uxxxxxx(x0,∆t)) , where uxx(x0,∆t) = −
√

2
∑Nmode

N=1 u1
Nµ

2
n sin(µnx0).

uxxxx(x0,∆t) and uxxxxxx(x0,∆t) can be computed similarly.
For the rest of the simulations, we compute uiN := uN (i∆t) and ai := a(i∆t) for

N = 1, 2, . . . , Nmode in alternating order. That is, for i = 2, 3, . . . Nt, we update uiN and ai

as follows:

uiN = 2ui−1
N − ui−2

N + (∆t)2
(
−b2Nu

i−1
N + ai−1ui−1

N + f i−1
N

)
, ∀N, (33)

ai = 1
h(i∆t) [h′′(i∆t)− f(x0, i∆t)− uxx(x0, i∆t) + β1uxxxx(x0, i∆t)

− β2uxxxxxx(x0, i∆t)] . (34)

Finally, we compute the numerical solution of u(x, T ) using the inverse sine transformation

of uNt

N in (33).

Example 1

In this numerical example, we take the parameters in equation (1)-(2) as β1 = β2 = 1
and x0 = 1/2. We choose the following data{

φ(x) = ψ(x) = exp(2) sin(πx), h(t) = exp(t+ 2),

f(x, t) =
(
(1 + π2 + π4 + π6) exp(t+ 2)− exp(−t− 2)

)
sin(πx),

(35)

for x ∈ [0, 1] and t ∈ [0, T ]. The exact solution to the inverse problem is given by u(x, t) =
exp(t + 2) sin(πx) and a(t) = exp(−2t − 4). We take Nmode = 7, ∆t = 10−4, T = 1. Our
numerical results show that the absolute error of a(t) for t ∈ [0, 1] is 9.0372 × 10−7 (see
Figure 1), and the absolute maximum error of u(x, t = 1) is 1.6987× 10−8 (see Figure 2).
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(a) Numerical solution of a(t)
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(b) Error of a(t)

Figure 1. Numerical solution and error of a(t) in example 1.

Example 2

We then consider the next numerical example, where we take parameters to be β1 = 1,
β2 = 0.01, x0 = 1/4 and T = 0.1. The given data is as follows
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(a) Numerical solution of u(x, t) (b) Error of u(x, t)

Figure 2. Numerical solution and error of u(x, t) for (x, t) ∈ [0, 1]× [0, 1]
in example 1.


φ(x) = sin(πx) + sin(2πx), ψ(x) = sin(πx)− sin(2πx),

h(t) = sin(π/4) + exp(−t),

f(x, t) = (π2 + π4 + 0.01π6) sin(πx) + (1 + 4π2 + 16π4 + 0.64π6)×
exp(−t) sin(2πx)− exp(−t) sin(πx)− exp(−2t) sin(2πx).

(36)

The exact solution to the inverse problem is u(x, t) = sin(πx) + sin(2πx) exp(−t) and a(t) =
exp(−t). Our numerical simulations show that the error of a(t) is sensitive to the accuracy
of u1

N . For ∆t = 10−4, the absolute error of u(x, t) at t = 0.1 is 4.0667 × 10−3 and the
absolute error of a(t) for t ∈ [0, 0.1] is 1.385. To obtain more accurate results, we can take
∆t = 10−6 which leads to the absolute error of u(x, T ) to be 4.0717×10−5 and the absolute
error of a(t) to be 1.3857 × 10−2. Figure 3 shows the numerical solution and error of a(t)
for t ∈ [0, 0.1]. As t increases, the absolute error of a(t) increases and then decreases. The
numerical solution and error of u(x, t) are given in Figure 4. The magnitude in the error in
this example is much larger compared to the results in the previous example. This is due to
the fact that the exact solution has more nonzero modes, which leads to a larger error when
we compute uxx(x0, t), uxxxx(x0, t) and uxxxxxx(x0, t), and it gives a larger error in a.

4. Conclusions

In this paper, we study and analyze an inverse problem for the sixth-order linear
Boussinesq-type equation. Under certain conditions of the given data, we prove that the so-
lution of the inverse problem exists and it is unique in a ball of the Banach space. Moreover,
the solution depends continuously on the given data. The numerical methods for this prob-
lem is to update a and u in alternating order. Numerical results show that our numerical
methods lead to accurate solutions for sufficiently small ∆t.
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(a) Numerical solution of a(t)
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Figure 3. Numerical solution and error of a(t) for t ∈ [0, 1] in example 2.

(a) Numerical solution of u(x, t) (b) Error of u(x, t)

Figure 4. Numerical solution and error of u(x, t) for (x, t) ∈ [0, 1]× [0, 0.1]
in example 2.
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