U.P.B. Sci. Bull., Series A, Vol. 82, Iss. 2, 2020 ISSN 1223-7027

AN INVERSE PROBLEM FOR THE SIXTH-ORDER LINEAR
BOUSSINESQ-TYPE EQUATION

He Yang®

In this paper, we consider an inverse problem for the sizth-order linear Boussinesg-
type equation. Given some conditions of the data, we establish the proofs of existence
and uniqueness for sufficiently small time. In addition, we introduce a numerical method
to solve the inverse problem and present some numerical results.
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1. Introduction

The Boussinesq equation is a classical model to describe wave propagation with small
amplitude and long waves. A lot of attention has been paid recently to study the sixth-
order Boussinesq equation [1, 5, 6]. However, not much work has been done on the inverse
problems for the sixth-order Boussinesq equation. An inverse problem for a fourth-order
Boussinesq equation is discussed in [2], and inverse problems for hyperbolic and pseudo-
hyperbolic equation are investigated in [3, 4]. In this paper, we consider an inverse problem
for the sixth-order linear boussinesq-type equation. That is,

Ut = Ugy — ﬂluzmrz + ﬂZUzmrxzz + a(t)u + f(l’,t), HAIS (07 1)3 te [OaT]a
u(z,0) = ¢(x), u(z,0) =v(z), 0<z<1, (1)
with the additional condition
u(zo,t) = h(t), for a fixed z9 € (0,1), V¢ € [0,T]. (2)

Here (1, f2,T > 0 are three given constants, and we assume that h(t) # 0 for any ¢ € [0, T7.
The functions f, ¢, ¥ and h are sufficiently smooth functions which will be made more
precise later. In addition, the consistency conditions for ¢ and v will also follow in the next
section. The inverse problem is described as follows: given data {f(z,t), #(x), ¥(x), h(t)},
and seek {u(x,t),a(t)} such that (1) and (2) are satisfied. The purpose of this work is to
prove the uniqueness and existence of the inverse problem (in Section 2), establish numerical
methods and present some numerical results (in Section 3).

2. Existence and Uniqueness
2.1. Existence and Uniqueness
Based on equations (1), we assume the following consistency conditions:
{¢>(0) = ¢"(0) = ¢ (0) = p(1) = ¢"(1) = oW (1) = 0, 3)
$(0) = 9" (0) = ¢ (0) = (1) =¥ (1) =W (1) = 0.
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One key component for the proof of the existence is equation (11). To derive it, we assume
that all the series in (4), (7), (8), (9) and (10) converge and arbitrarily differentiable. Due
to the homogenous boundary conditions, we look for solution

u(z,t) = 220:1 Un () Xn(2), (4)

where X, (z) = v2sin(unx), pt, = nw for n = 1,2, ... The time-dependent coefficients u,, ()
satisfy

u’,i(t) + biun(t) = Fn(t; a, u)7
{ o)

U (0) = ¢p, ul,(0) =y,

= Vi +ﬁmn + Ba, Fult;a,u) = aft > < ) Fult), Ful) = V2 [ F(2,t) sin(unz)da,
\ffo ) sin(pnx)de, Pn = \[fo ) sin(p, ) d for all n.

We can solve the initial value problem (5) and obtain

Un I .
Up (t) = ¢y cos(byt) + . sin(bpt) + o / F,(s;a,u)sin(b,(t — s))ds, Vn (6)
n n JO

which leads to the solution
u(z,t) =230, [qbn cos(byt) +1£’ sin(bnt) + ¢- fo (s;a,u)sin(by, (t — s))ds} sin(p, ). (7)

We now consider the partial differential equation in (1) evaluated at = x, and apply the
condition (2) to get

h”(t) = Ugy (l‘o, t) - 61uwxmz (.1?0, t) + B2uwxwzwz (xO; t) + a(t)h(t) + f(an t)
We further substitute u(xo, t) = V2 0| u,(t) sin(p,z) into the equation above, and obtain
at) = i ["(8) = flwo,t) + 202 (i + Bupeg + Bapes) Jun (1) sin(pnzo)] - (8)

Here we have used the assumption that h(t) # 0. Note that the formulation of u,(t) in the
equation above is given by (6). Let z = [u(x,t),a(t)]T and ®(z) = [®1(z), P2(z)]T where
the functions ®; and ®, are defined as

® = V23 [(;5” cos(b,t) + w" sin(bnt) + ¢~ fo (s;a,u)sin(by, (t — s))ds] sin(p,), (9)
¢, = h(t) [h”( ) — f(zo,t) + Zzozl(un + Bll”’n + :62/%,) (¢n cos(bnt) + %: sin(by,t)
+b fo (s;a,u)sin(by, (t — s))ds) sin(pnxo)] . (10)

Therefore, we can see that the existence and uniqueness of the inverse problem (1)-(2) is
equivalent to that of the equation

z = ®(z). (11)

Before we proceed with a proof, we first define some important spaces. Let Dy = {(z,t) :
0<z<1,0<t<TY,

B;T = {u(z,t) = \/5220:1 un(t) Sin(:“‘nx) : un(t) € C[OaT]a Z?:l (ﬂz;”un(')HC[O,T])2 < OO}

and
Eg_’T = B;T x C[0,T].

[N

Foru € B] 1, z € EJ 1, we define the norm of u and z as ullgr . = ( o @llun(Olleor) ) ,

and [|zl|g7 . = llullpz . + lla()llco.m-

Lemma 2.1. B;T and E;T are Banach spaces.
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Proof. We only show that B;T is a Banach space, and the proof for the space E;T is similar.
For any Cauchy sequence {u(x,t)}pe_y C Bj 7, let u™(x,t) = V232wl (t) sin(un ).
Then for any € > 0, there exists a positive integer N, such that for all j,k > N, there is

. - , 2\ 3
I = sy, = (S, (b ~ o)) < (12)
Since p; > 1 for all ¢ > 1, the inequality above leads to
lu] = ufllcor <e Vi>1, (13)

which implies that {ul"(¢)}>°_, is a Cauchy sequence. Thus for any ¢ > 1, there exists
u;(t) € C[0,T] such that lim;_, o u? (t) = u;(t). This is due to the fact that the space C[0,T]
is complete. Let u(z,t) = V23 2, u;(t) sin(p;z). From (12), we know that for any [ > 1
there is

. ! i X 2 I 2
lim; o0 D05y (NZ”“Z - ufHC[O,T]) = i1 (NZH“z - “i‘CHC[O,T]) <é (14)

for any k > N. Therefore, we can obtain

o 2\ 3
hu—wtling, = 52 (W]l - dfllown)®)” <e k>N, (15)

which leads to the fact that u”(z,t) converges to u(z,t). Finally, since HUH%ET < 2w —

uk||2BgT + 2||uk||QB;T, we can get u € B ;.. Thus, B] 1, is a Banach space. O

Lemma 2.2. For anyz € EJ s there is d(z) € E 1 if the following conditions are satisfied:
(1) ¢ € C7[0,1], $(0) = ¢"(0) = 6D (0) = 6©(0) = $(1) = ¢"(1) = $¥ (1) = $® (1) = 0.
(2) ¥ € CH0,1], ¥(0) = 4"(0) = ¥ (1) = ¢"(1) = 0.

Jgt?)(f(m) ,t) € C(Dr), f(-,t) € C*0,1] for any t € [0,T], f(0,t) = f(1,t) = for(0,t) =
rxr ]‘7

(4) h(t) € CQ[O,T], h(t) #0, Vt € [0,T].

Remark 2.1. Lemma 2.1 and 2.2 imply that ® is an operator from the Banach space E;T
to itself.

Remark 2.2. The conditions in Lemma 2.2 are more restrictive than the consistency con-
ditions (3). For example, as we will show later, qﬁ 6 C710,1] and ¢©(0) = ¢ (1) = 0 are
needed to estimate the magnitude of ¢, = \[fo ) sin(ppx)de.

Proof. We prove of Lemma 2.2 in two steps.

Step 1. We show that ®5(z) € C[0, T, for any z = [u(x,t),a(t)]T € E7 ¢

From (10) and the fact h(t) € C%[0,T], h # 0, f € C(Dr), it is easy to see that we only
need to show that Y07 | (12 + Brus + Bapl )un (t) sin(pnxo) € C[0, T), where uy,(t) is given
n (6). We apply integration-by-parts and condition (1) in Lemma 2.2 to get

\ffo ) sin(ppz)dz = 77‘/75 fol & (2) cos(pnx)da. (16)
Similarly, we can derive
Un = L [ Vanea(z) sin(unz)de, (17)

and

Fa(®) = 2 [} Fawaa(@,t) sin () da. (18)
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We combine the equalities about ¢y, ¥, fn(t) to get

‘Zn 102 (qzbn cos(bpt) + 1/) = sin(bnt) + - fo (s; a,u) sin(by, (t — s))ds) sin(,unxg)‘
(L4 By + Bo) Yoy 1 (\asn\ + el J) | Fusi 0 w)lds)
L+ B+ 8 ot (&

2 ) a®)llun(®)]dt + L maxicory V2 o Fraee (@) sin(ua)de] ). (19)

IA

IN

¢(7)cos (pnz dz‘—l—ru ‘\[jo ) sin( )dx‘

Here we have used the fact that b, = \/u2 + B1ut + BouS > /Bapd in the second inequality
above. In addition, using the boundary conditions of u(z,t) and integration-by-parts, it is
easy to show that

U (t \[fo u(z, t) sin(u,z)de = \f fo Ugzee (T, 1) sin(pp2)de. (20)

Therefore, (19) and (20) lead to the following estimates

| Sy (i + Bupisy + Bopl,Jun () sin(pno) | (21)
e} 1 1 .
< (A+B8+B8)2 00, (HL V2 [, 6@ Cos(unx)dx‘ + ﬁ ‘ﬁfo Pp® sln(unx)dx‘
+ % max; |\/§f01 Uggae SIN(pnz)dz| + l - Max;e[o,7] ’\/ifol - sin(unx)de
<

(148 +8 (S0 &) (1900 + 190 oy

T
+ D) maxycio ) e ()| 200,11 + T maxeeor) | fomas ()l 200,11 )

where Cauchy-Schwartz inequality and Bessel’s inequality have been applied in the second
inequality above. Furthermore, we have

haazal = V2 201 hun(8) sin ()| < V2 (202 (0] lun(Vlowm)?)* (Sots )

for any ¢ € [0, T], which implies that max;cjo 77 ||Uzzaz (-, t)|[£2[0,1) is bounded. Combining
inequality (21), > oo, (1/p2) = 1/6 and Weierstrass M-test, we can see that > ., (u2 +
Byt + Bopul )y, (t) sin(pn ) converges absolutely and uniformly. Thus the series is contin-
uous on t € [0,T], and @5 € C[0,T].

Step 2. we then show that ®,(z) € Bj ;.

Since

Nn
‘\@fe ) cos(unx)dm‘ /% ’fo IS sin(unx)dx‘
/% s (Ia(t)ll I s s () dz| + | [y frzen Sin(unz)daz\) dt

®n cos(bnt) + 3 w" = sin(bnt) + 5- Jo (s;a,u)sin(by, (t — 3))d3’ (22)

for any ¢ € [0,T], we have

2
S (pn max; |¢p cos(bnt) + ’/’” sin(byt) + 5 fo (s;a,u)sin(by, (t — s))dsD

< 4 <H¢ 7)H%2[0,1] + 5 ”7/} 4)HL2 0,1] +4 (”ch[o 7] - haxy [tzzzal|® + max; || fozel® ))

Applying the conditions of the lemma to the equation above, we can show that the right
side of the inequality is bounded. Therefore, we have proved ®;(z) € B;T which concludes
the lemma. |
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From the proof of Lemma 2.2, we can show that for any z = [u(x,t),a(t)]" € EJ 1,
the following estimates for ||®1(z)|| and ||®2(z)]|| hold:

121l <2 (167 1210 + 10 @lzzi0, + Zoz W fawaal o,y + lallciomllullzg,)) -

[®2(2)]] < 14 lofo.zy [Hf”c(ﬁT) + 18 epo,ry + (1 + B+ B2) (302, %)% x

(1620, + el oo + Zelallopriluls, +Tlfaerelomn) |-
Let A(T) and B(T) be two functions of T, defined by
AT) = 206Dt + AW L2001 + 17 o, (”f”c Dr) T Hh””C[O,T])
o 1

+%||fLLLL‘|C(5T) + T”%HC[O,T](]‘ + 61 + 62)(271 1 T) Hf.’z.’L‘:L*:L'”C(BT)
B(T) = % + %(1 + B+ Ba)ll £ llcror (T, )

Hn

Then we can obtain
1®(2)llp7 . < A(T) + B(T)llallcpo,mllull s .- (23)

Due to the fact that B(T') — 0 as T — 0, and A(T) is a continuous function of T', there
exists a sufficiently small T > 0 such that

(A(T) +2)2B(T) < 1. (24)

For the fixed T, we define a ball K := {z € EJ Tt ||z||E7 < A(T) + 2}. Then, for every z

that belongs to K, one has
[®(z)llp;, < AT)+BDalcpmnllulsg, <AT)+B(T)(AT) +2)*

< AN +1<AT)+2

This implies that ®(z) € K for any z € K. That is, ® is an operator from K to itself. The
next lemma gives another important property of ®.

Lemma 2.3. For the constant T that satisfies (24), the operator ® : E27’T — E;T is a
contraction mapping on the ball K = {z € E;T 2l , < A(T) + 2}

Proof. For any 2",z € E] /., let 20 = [u(") (x,t),a’(t)]” for i = 1,2. Then
1®(2") — (22| g7, = [@1(2V) = 1(z) 57, + [P2(2) — 2(z)lcpory  (25)
= Ve [ @V ®ull - a® @ul?) sinba(t - 9)ds| sinuna)|

Hﬁ O [M JHaO @ud — a® (t)u?) sin (bt — s))ds] sin(,u:vo)H

bn

cl.1]

Note that we have used the fact F, (t; @, u®) = a® (#)ul (£)+ £, (t), and ul? = ¢, cos(bnt)+
w" sin(bnt) + - fo (530, u®)sin(b, (t — s))ds for i = 1,2 when we derive the equa-
tlon above. We now estimate each term of the right side of equation (25). By rewriting
a® ()us) —a® ()ul? as a® (@) () —ul) +uld (@D (t) — a®(t)), we have

1(2) - @1 ()ll5g,, (26)
o\ 1/2
(z;’; (Mg i (a0 = o)+ (0 = a®) ) sin(o (e = s T]) )

o) T 2 1z
(znzl(’r(na e, - lur” = i g, + 1w e - lla® = a® e, )))

IN

IN

Z- (Ja®llopmlu® - w5z, + e = a® oo ru® 55, ) -
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Similarly, we can estimate ||<I>2(z(1)) — ®9(2)||cpo,7) as follows,

[@2(2M)) = @2(2) | cj0,19 (27)
< maxee(o, ) ’m D 7“611'[32 3 f l[aMu o a(Q)u7<12>|dt
< BT Lo - (220:1 é) : (Ha(l)HC[O,T]HU(l) —u®||p7

Hu® 57, la® = a@ o) -

Note that we have used Cauchy-Schwartz inequality in the last inequality. We then combine
the estimates of |®;(z(M)) — <I>1(z(2))||BgT and ||®2(zM) — ®2(z?) | cpo,7) above to obtain
that ’

1®(2)) — @(23)] g7,

IN

LB(T) (la®lleomllut® = w5y, + 1oy, la® = o cpo.r))

< GBMAT) + 2202 = 2@y, < gy liz® = 2@ g, < 120 = 2@ gy, -

Therefore, ® is a contraction mapping on K. O

Lemma 2.1-2.3 lead to the conclusion that the inverse problem (1)-(2) has a unique
solution in the ball K.

Theorem 2.1. Given f(z,t), ¢(x), ¥ (x) and h(t) that satisfy the following conditions for
sufficiently small T > 0 with (A(T) + 2)? ( ) <1:

(1) ¢ € C7[0,1], $(0) = ¢"(0) = ¢ (0) = ¢V (0) = $(1) = ¢ (1) = ¢ (1) = {9 (1) = 0.
(2) ¥ € C*0,1], ¥(0) = 4"(0) = (1) = ¢’ ( )=0.

(3)(f($»t) € C(Dr), f(-,t) € C*0,1] for any t € [0,T], f(0,t) = f(1,t) = fuu(0,1)
Juz(1,t) = 0.

(4) h(t) € C?[0,T], h(t) # 0, ¥t € [0,T],

the inverse problem (1)-(2) has a unique solution in the ball K = {z € E;}T tlzlleg
A(T) + 2}. ’

2. Well-Posedness

IN

We then consider the well-posedness of the problem. Suppose we take two arbi-

trary sets of data, denoted by {f(z,t), (), (x), h(t)} and {f(z,t), d(x), ¥(x), h(t)} that
satisfy the conditions in Theorem 2.1, and the corresponding solutions to the inverse prob-

lem are {u(z,t),a(t)} and {u(z,t),a(t)}, respectively. Moreover, suppose |/f|q 3y and
||f||c(ﬁT) < C:f0§ foa:m”c(ﬁ) and Hfzmm”c(D*T) < Cy; H¢(7)||C[o,1]a H¢(7)HC[0,1] < C;
1o, 1P Nlewp,a < Cos hllezpr1, [Rlcz0m) < Cns llallcor, llallopr < Co and
minepo,7) |(t)| > ho for positive constants Cyo, Cy, Cy, Cy, Ch, Cq and hg. Therefore, we
can show the estimates of [lul|p7  as follows:

2
T,
lulldg, < 5oy (hidal + Zatinl + 22 (Jallopmlumllom + I fallc.r) )

2 2
S 4||¢(7)||20[01] + E‘lw“ ||C[0,1 +4T ”aHCOT HUH + 4T Hfzzxz”c[o T)

412 Cf

2
< ACE 4 40 + H5C HU’HQB; + (28)

where we have used the fact b, > /Boud in the first inequality; and (16)-(18), (20),
Cauchy-Schwartz inequality as well as Bessel’s inequality in the second inequality above.
For sufficiently small T > 0 such that 5T2C, < B, it follows that |ul| B1, < Cu, where

C, = \/(46202 +4C7 +4T2C3) /(B2 — AT?C,). Similarly, we can also get ||12||B;T < Cy.
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Now we can estimate |[u — /g7 and |la — dllcp,7)- (7) leads to

ho=aly < 5160 — DNy + E VD — GOy + L NalZig zy - lu = il

T2
4 5T~

FE o= all g, + 5 W enes — Foanelly

Since [lallcpo,r) < Ca, [l 7, < Cy and 5T?C, < Bz, the inequality above leads to
lu—allp;, < M6 = 6Dllcpn + Mallp® = Dllgpo,1) + TMslla — @l cjo,r)

where M, = \/562/(52 — 5T2Ca), My = \/5/(52 — 5T20a) and M3 = \/5Cu/(ﬁ2 — 5T20a).

Next, we estimate ||a — @l c[o,r]. From (8), we can show that

la = allcpo,m) (30)

< (5702 |lunh — nh‘ ‘h”ﬁ—fz”h— Vot f hH
= h2 (7121 n || W U clo,T] + f(m(h ) + f(x(h ) clo,T]
11682 ~ 7 2Cn+Cso 7, | F
< BB (Cyllu—illng,, + Cullh = Bllop,ay) + 2252 R — bllcapo.m + ST — fller)
< Mylju— {LHB;T + Ms||h — hllc2po,m) + Me|| f — f”C(ﬁT)a

where My = (14 B1 + B2)Cn/(V6h3), M5 = [(1+ 1+ B2)C, + (2C + C0)V/6]/ (V613 and
Mg = Cy/h2.
Finally, we combine (29) and (30) and eventually obtain

Ha — dHC[O,T] < % <H¢(7) - Q’;W)HC[O,I] + wa - 113(4)“0[0,1] + fomrw - fT$$$‘|C(BT)
+ ||k = Rllc2po,) + I1.f — f“c(ﬁr)) )
%2 <H¢(7) - QE(’?)HC[O,I] + H1/)(4) - 12;(4)“0[071] + Hf.E'.L.Ll - fzzszC(ﬁr)

+ b= Rlicsio + 1 = o) ) - (31)

where we denoted by D, = maX{M1M4,M2M4,TM2]W4, M5,]\/[6}7 Dy =1-— Tﬂfgﬂﬂl, D3 = max
{My, My, TMs, TM3Ms, TM3Mg} for sufficiently small T' > 0. Inequality (31) and (31) imply
that the solution of the inverse problem depends on the given data continuously.

IN

o — g,

3. Numerical Experiments

In this section, we introduce the numerical methods to solve the inverse problem (1)-
(2) and present some numerical results.

For a given final time T, we divide the time domain [0, 7] into N; steps with uniform
step size At. We first compute a° := a(0) using

a0 = P (0)=¢"(zo)+8 ¢(4)h(zvoo))+52¢<6)(Zo)—f(zoyo)7 (32)
and initialize u%, = uy(0) for N = 1,2,..., Nyode, where uQ; can be computed using
discrete sine transformation. We then compute u}v = un(At) for N = 1,2,..., Npode

using the initial conditions and the original PDE. In particular, using Taylor expansion of
u at t = At, we get

ulz, At) ~ ¢(2) + ¥(@)At + B (¢ (2) — B8 (2) + $20) (2) + a(0)d(2) + f(x,0)) .
Thus, we compute u]l\, using
U}V = ¢N + 2/}NAt + % ((¢H - ﬁ1¢(4) + /62¢(6))N + aO¢N + f]%) ) N = 1,2,.. -aNmod67

where (¢ — B10™ + B2¢(®)) N presents the N** mode of the sine transformation of ¢ —
Bio™ 4 Bogp® and £ = fN(0). Next, a' = h(gt) (B"(At) — f(x0, At) — Uy (0, At)
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+ B1Uszrr (X0, At) — Botigraraz (To, At)) , where ugz, (20, At) = —\/ﬁzx’;‘i‘“ uhyp sin(p, o).
Ugzzr (To, At) and Ugzgraz (To, At) can be computed similarly.

For the rest of the simulations, we compute u} := un(iAt) and a’ := a(iAt) for
N =1,2,..., Npode in alternating order. That is, for i = 2,3, ... N;, we update u’, and a’
as follows:

Ve = i -l (AP (B el ), (3)
at = 7h(11At) [h”(ZAt) - f(fE(), ZAt) — Ugy (iC(), ZAt) + /Bluzzzz(xm ZAt)
- B2Uzzzzzz(x07 ZAt)} . (34)

Finally, we compute the numerical solution of u(x,T) using the inverse sine transformation
N;
of uy' in (33).

Example 1

In this numerical example, we take the parameters in equation (1)-(2) as 8y = 2 =1
and zp = 1/2. We choose the following data

{as(x) — (x) = exp(2)sin(m),  h(t) = exp(t +2),

flz,t) = ((1 + 72+ 14+ 78 exp(t + 2) — exp(—t — 2)) sin(mz), (35)

for x € [0,1] and ¢t € [0, T]. The exact solution to the inverse problem is given by wu(z,t) =
exp(t + 2)sin(rx) and a(t) = exp(—2t — 4). We take Npoge = 7, At = 1074, T = 1. Our
numerical results show that the absolute error of a(t) for t € [0,1] is 9.0372 x 1077 (see
Figure 1), and the absolute maximum error of u(x,t = 1) is 1.6987 x 10~% (see Figure 2).

%107

0.02 w w ‘ ‘ 2

0.015¢

0.017
0.005 ¢
O 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T T
(A) Numerical solution of a(t) (B) Error of a(t)

FIGURE 1. Numerical solution and error of a(t) in example 1.

Example 2

We then consider the next numerical example, where we take parameters to be 51 = 1,
B2 =0.01, zg = 1/4 and T = 0.1. The given data is as follows
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(A) Numerical solution of u(zx,t) (B) Error of u(z,t)

FIGURE 2. Numerical solution and error of u(z,t) for (z,t) € [0,1] x [0,1]
in example 1.

¢(z) = sin(mz) + sin(27z), P(x) = sin(wz) — sin(27x),

h(t) = sin(w/4) + exp(—t),

flz,t) = (7% + 71 + 0.017%) sin(7z) + (1 + 472 + 1671 + 0.6475) x
exp(—t) sin(2wz) — exp(—t) sin(mwz) — exp(—2¢) sin(27x).

(36)

The exact solution to the inverse problem is u(x,t) = sin(wx) +sin(27z) exp(—t) and a(t) =
exp(—t). Our numerical simulations show that the error of a(t) is sensitive to the accuracy
of ul;. For At = 107%, the absolute error of u(x,t) at t = 0.1 is 4.0667 x 1073 and the
absolute error of a(t) for ¢ € [0,0.1] is 1.385. To obtain more accurate results, we can take
At = 107 which leads to the absolute error of u(z, T) to be 4.0717 x 1075 and the absolute
error of a(t) to be 1.3857 x 1072, Figure 3 shows the numerical solution and error of a(t)
for t € [0,0.1]. As ¢ increases, the absolute error of a(t) increases and then decreases. The
numerical solution and error of u(z,t) are given in Figure 4. The magnitude in the error in
this example is much larger compared to the results in the previous example. This is due to
the fact that the exact solution has more nonzero modes, which leads to a larger error when
we compute Uy, (o, t), Upree(To,t) and Upprees (o, 1), and it gives a larger error in a.

4. Conclusions

In this paper, we study and analyze an inverse problem for the sixth-order linear
Boussinesqg-type equation. Under certain conditions of the given data, we prove that the so-
lution of the inverse problem exists and it is unique in a ball of the Banach space. Moreover,
the solution depends continuously on the given data. The numerical methods for this prob-
lem is to update a and w in alternating order. Numerical results show that our numerical
methods lead to accurate solutions for sufficiently small At.
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FIGURE 3. Numerical solution and error of a(t) for ¢ € [0,1] in example 2.
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FIGURE 4. Numerical solution and error of u(z, t) for (x,t) € [0,1] x [0, 0.1]
in example 2.
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