
U.P.B. Sci. Bull., Series C, Vol. 69, No. 1, 2007 ISSN 1454-234x

SMART C# DEBUGGER – DEBUGGING C# PROGRAMS
USING MODEL BASED DIAGNOSIS

Oana PLATON1

Depanarea programelor este una dintre cele mai comune sarcini ale unui
programator, astfel încât automatizarea acestui proces este nu numai dorită, dar
poate deveni o necesitate. Folosirea diagnosticării bazate pe model pentru crearea
unui depanator semi-automat este o idee nouă care uşurează viaţa creatorilor de
programe. Această lucrare prezintă o aplicaţie care foloseşte modelarea bazată pe
valori a programelor C# pentru descoperirea fără efort a erorilor acestuia.

Debugging programs is one of the most common tasks a programmer must

face, so automating this process is not only desired and welcomed, is a necessity.
Using model based diagnosis for creating a semi-automatic debugger is an
innovative idea that brings together two fields with the ultimate goal of making
developers’ life easier. This paper describes an application that applies value based
modeling of C# programs for finding bugs with minimum developer effort.

Keywords: model based diagnosis, value based diagnosis, semi-automatic
debugger.

1. Introduction

Writing programs is an innovative and challenging field, where
everything can be tried, everything can be questioned, everything can be
improved; there are no limits. In order to create a new piece of software some
basics steps have to be followed: requirement research, writing a specification,
coding, testing and so on. The most important thing is that the final application
behaves according to the specification.

A recent study Error! Reference source not found. shows that 60-70%
of the developing time is consumed for debugging purposes. Classic ways of
debugging assume a lot of attention and experience from the programmer. Most of
today’s debugging tools (Dbx [2]. , Sdb Error! Reference source not found.,
VAX Debug Error! Reference source not found.) allow users to see the values
of variables while the program is running, to set breakpoints at certain lines /
instructions and nothing more. The programmer is responsible for choosing the
locations inside programs where bugs are looked for. In this way, debugging is
more an art than a science, because it asks for intuition and complex reasoning.

1 Eng., Dept. of Computer Science, University POLITEHNICA of Bucharest, Romania

Oana Platon

46

There are also more advanced debugging tools that offer backward
execution (Spyder Error! Reference source not found.) or query the behavior of
the program (Powell or Linton’s OMEGA Error! Reference source not found.,
LeDoux’s YODA Error! Reference source not found.).

Fault recognition techniques help a programmer formulate hypotheses
about fault identity and fault location. They require either a knowledge base of
faults or the program specification as their input. Lint’s application Error!
Reference source not found. is based on knowledge about basic errors and finds
common portability problems and certain types of programming errors in C
programs. FxCop Error! Reference source not found. analyses statements
(targets) in managed assemblies (.NET) using rules. When a rule is violated, the
programmer receives information about the targets. The messages identify
relevant programming and design problems, and, when possible, propose possible
ways of repairing the errors.

Program specifications are used in LAURA Error! Reference source not
found., ASPECT Error! Reference source not found. and PUDSY (Program
Understanding and Debugging System) Error! Reference source not found..
These applications try to discover the discrepancies between the program and its
specifications.

Fault localization techniques help the programmer formulate hypotheses
about fault location. Program slicing extracts the statements on which certain
variables or instructions depend on, directly or indirectly. The programmer then
chooses one of these statements as a location for a possible bug. Static program
slicing doesn’t depend on the execution of the program and can be determined
before runtime. It was proposed by Weiser Error! Reference source not found..
Dynamic slicing depends on a test case, and had been introduced by Korel and
Laski [14.

To increase performance, heuristics for bug localization can be used in
debugging tools (e.g. slicing heuristics from Pan Error! Reference source not
found. and decision-to-decision heuristics, from Collofello or Cousins Error!
Reference source not found. use test based knowledge for diagnosing the error
faster).

Other debuggers use backtracking for returning the program to a previous
state Error! Reference source not found..

The objective of this paper is to describe a semi-automatic debugger for
C# programs, using model based diagnosis. As programs grow bigger and more
complex, following the variables and the functions in thousands of line of code is
now overwhelming. Creating tools that can tell the programmer exactly where to
look for a bug has become a necessity.

In the next section, model based diagnosis will be introduced. Afterwards,
it will be shown how MBD can be applied for debugging programs (especially C#

Smart C# debugger – debugging C# programs using model based diagnosis 47

programs) and how the process of debugging becomes easier using this method.
In the end, this method will be compared with other debugging methods,
discussing its viability and usefulness.

2. Model Based Diagnosis (MBD)

Model Based Diagnosis is a new technique used to solve real problems
from today’s world, in fields like mobile phones networks, electric circuits or
spatial exploration. These applications have in common the need of using a model
that will help the diagnosis when errors can not be found by trying all possible
values.

The model describes the structural and the functional behavior of the
analyzed system and represents, in most of the cases, a mapping of physical world
to a logical description.

There is no common language for representing the model, and a lot of
techniques have been proposed to solve this problem. Studies have revealed some
indubitable benefits of using model based diagnosis, such as: reusability,
understandability, well defined semantics, model separation on abstraction levels,
simple ways of presenting meta-knowledge, easy utilization and configuration.

3. Applying Model Based Diagnosis in Programs Debugging

Debugging and model based diagnosis share the goal of finding a diagnose
(a solution) for a complex system not functioning properly. In order to be able to
unify the two, programs are treated as open systems.

In the field of diagnosis, open systems are composed from a large number
of components, not necessarily of the same type and with the same behavior.
Programs are made of statements that contain variables – lots of them, so it is
natural to transform each statement in a corresponding component and each
variable in a connection between components. This way, the program can be seen
as a structural model. The last part is to add a functional side to this model, using
the correct behavior of the statements.

After creating the model, the debugging task is reduced to watching a
condition while running the model and to isolating the components suspected of
wrong behavior if the condition is not fulfilled.

4. Model Based Diagnosis in Debugging Imperative Programs

Before applying a theory and creating an application that works by the
standards of that theory, the first required step is to theorize the theory.

Using the consistency based approach Error! Reference source not
found., a diagnose system is a tuple (SD, COMP), where SD is a logic theory that

Oana Platon

48

models the behavior of the system (in this case, the C# program) and COMP is a
set of components (statements).

The system and a set of observations OBS (in this case, test cases) forms a
diagnosis problem.

A diagnose ∆ (possible bug) is a subset of COMP, that respects the
assumption that all instructions from ∆ are wrong, the rest of statements being all
correct, is consistent with SD and OBS. Formally, ∆ is a diagnosis if (1) is
consistent.

{ } (){ }Δ∈∪Δ∈¬∪∪ CCABCOMPCCABOBSSD |\|)((1)
A component that does not behave as it should (in the case of a program, a

statement that contains a bug) is represented by the abnormal predicate AB(C).
The diagnose is based on the fact that, if wrong behavior is noticed, it is logical to
assume that there are components with abnormal behavior in order to keep the
system consistent with its description and to avoid contradictions. We are looking
for finding the minimum number of components whose malfunctioning creates the
observed error.

The elements involved in diagnosing a program are evidenced in
Diagram 1. As a first stage, the C# program is compiled into an internal
representation. The model can be adapted for any language, and the only
modification to be made is in the part of language specifications.

Starting with the internal representation and a set of model fragments, a
converter translates the program into the logical model used for diagnosis. The
model fragments represent a logical description of parts of the model, for example
the functional description of the methods. This description must be derived from
C# language semantics. A value based model must describe model fragments for
all base functions and for all kinds of statements (e.g. for binary operator “+” the
result is obtained as Out = In1 +In2 in case of normal behavior).

Once the model is built (which is done automatically, when the C#
program is compiled), the model and the test cases are used by the diagnosis
engine for finding bug candidates. The number of these candidates can be
minimized by using additional information, such as the values of variables at
different locations in program.

The location can be selected with an algorithm of selection measurement
(finding the variables that should be investigated at certain lines in the original
program). The information about value must be given by user. The other
candidates offer a reference to the lines / statements from the program, which
facilitates bug discovery.

As shown in Diagram 1, formal models have several forms. The best
known are functional dependencies model and value based model. The first one
assumes the calculus of variables dependencies within a program. Second is based

Smart C# debugger – debugging C# programs using model based diagnosis 49

on calculating the value of all variables at all times. Both models had been tried in
Jade Debugger – a debugger for a subset of Java programs Error! Reference
source not found..

Diagram 1: Steps in debugging a C# program using Model Based Diagnosis

In this paper, value based diagnosis had been chosen, because it gives

much more information about the actual location of the bug. The principles of
model based diagnosis are illustrated in Diagram 2, which presents the three
layers followed in diagnosing a C# program.

Diagram 2: Model Based Diagnosis layers for program’s debugging

Oana Platon

50

5. The Model

To apply MBD in the field of software debugging, the program is
automatically transformed in a model, comprised of components and connections
between components. The model must have the same behavior as the program, so
for same input variables, the output of the model must be identical to the output of
the program.

The transformation implies two operations: the statements are converted
into components and variables into connections, and represents the structural part
of the model. The functional part describes the behavior of the components and
does not depend on the program, but only on language semantics. It is added on
top of the previous obtained model.

There can be defined an algorithm for constructing the model, based on
apparitions of variables. Each variable creates a connection used to connect
components. Each time a variable is used in left part of an expression, a new
connection is created and used until a new connection appears.

The model is therefore created from components, connected by ports and
has inner components as descendants. The C# subset treated at this point is:
Program := Namespaces ... [Program]
Namespaces := Classes ... [Namespace]
Class := class Id [: Id2] {ClassStmnts} .. [Class]
 ClassStmnts := ClassStmnt ClassStmnts | ε
 ClassStmnt := VariableDecl; | MethodDecl
VariableDecl := Type Id .. [VarDecl]
 Type := int | uint | sbyte | byte | string | char | bool | float | double | ushort | short | Id_class
MethodDecl := Type Id (FormalParList) {C#Stmnts } ... [MethodDecl]
 FormalParList := VariableDecl FormalParListRest | ε
 FormalParListRest := , VariableDecl FormalParListRest | ε
 C#Stmnts := C#Stmnt C#Stmnts | ε
 C#Stmnt := Assignment | Selection | While | MethodCall | ReturnStmnt
Assignment := Id = Expr; ... [Assign]
Selection := if (Expr) { C#Stmnts } [else { C#Stmnts_else }] [Conditional]
While := while (Expr) {C#Stmnts} ... [Iteration]
MethodCall := Id (ActualParList) | Id_Class.Id (ActualParList) [MethodCall]
 ActualParList := Expr ActualParListRest | ε
 ActualParListRest := , Expr ActualParListRest | ε
ReturnStmnt := return Expr; ... [Return]
Expr := Id | Constantă | MethodCall | (Expr) | Expr1 Operator Expr2 | new MethodCall [Expr]

Once the structural part of the model is created, the functional part (that
describes the behavior of each component) must be added in order to debug it.

We use the predicate)(CAB to show that component C has an abnormal
behavior, and)(CAB¬ - correct behavior. For each component, we describe the
correspondent normal behavior.

Smart C# debugger – debugging C# programs using model based diagnosis 51

Assignment statements [Assign]

Assignments are transformed into components with two ports: an input
port, connected at the evaluation of right sided expression, and an output port,
created by the variable from the left side. Example:

≡

Instruction 1: Assign

(2) describes the normal behavior of the statement.
)(_)var(_)(CrightretvalCleftCAB =⇒¬ (2)

The debugger first evaluates the right side of the expression (the second
descendant of the component) and obtains its #retval port. For the variable on the
left side, it creates a new state and adds the value from #retval.

Return statements [Return]

Return statements are mapped the same way as the assignment statements:

≡

Instruction 2: return
Normal behavior is (2), where left_var represents the return value.

Conditionals [Conditional]

Conditionals are mapped to components with variable number of ports.
The component contains a subcomponent for the condition, and a subcomponent
for each branch. The condition has an auxiliary output port #retval, obtained after
computing the inner expression. All variables from this expression create input
ports for the condition and for the conditional component.

Each variable x used as a destination in an assignment statement inside the
branches, generates three ports: two in ports connected to the output port
regarding x from the last statement that changes x from then / else branches, and a
#retvalx output port, connected to the future statement that uses x. Example:

Oana Platon

52

≡

Instruction 3: If-then-else

Behavior: For each variable X modified inside any branch we have (3),
where cond(C) is an in port connected to #retval(Cond) (out port for condition),
and in port thenX(C) (respective elseX(C)) is bound to the out port of the last
statement that modifies X in the respective branch.

⎩
⎨
⎧

=⇒=∧¬
=⇒=∧¬

)()()()(
)()()()(

CelseCoutfalseCcondCAB
CthenCouttrueCcondCAB

XX

XX (3)

The debugger evaluates the condition (which is the first descendant) and
creates a new state in the #retval port of the condition. Depending on the value of
#retval (true or false), it executes the corresponding branch.

Iteration statement [Iteration]

The iteration (while and for loops) is mapped to a component with ports
associated with the inner variables, containing a subcomponent for the condition
and another one for the block. These are converted separately into two separate
diagnosis systems, (SDC, COMPC) for the condition and (SDB, COMPB) for the
block. In the first system, for each variable x used in the condition a connection cx
is created in SDC. Another connection #retval corresponds to the value of the
condition. In the second system, f or each in variable x from the block and for
each out variable, box a connection bix is created in SDC. Example:

≡

Instruction 4: while

Smart C# debugger – debugging C# programs using model based diagnosis 53

Before actually executing the loop, the debugger checks if it is finite. If the
loop contains a break or a return statement in a reachable position, no infinite loop
can happen. E.g.:
while(true){
 i++;
 break;
}

Otherwise, if the variables from the condition never change inside the
block, or change but in the wrong direction (the distance between them grew
bigger), the debugger prompts the user for a possible infinite loop. E.g.:

while(a < b) i++;
while(a < b){
 a--; b++;
}
The normal behavior of the component depends on the #retval of the

condition: if it is true, we use SDB to discover new values for the variables, values
copied in an auxiliary variable i

Xv , where X is the variable and i the current
iteration. At the end, the values will be equal with out ports. We use notations VC
= variables from condition and VBI (VBO) = in / out variables from the block.

The formal description describes the actual behavior: if the condition is
true, execute the block and continue, describing the steps executed from the
current iteration to the next one, otherwise end the loop.

()
{ } { }

{ }
{ }

{ } { }

{ }
{ }

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=→

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⇒∈=

∪∈¬∪∧<¬∃∧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=⇒

∈=∪∈¬∪

∧

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⇒∈=

∪∈¬∪∈∀→
=⇒

∈=∪∈¬∪

∧=<∀−∪∈∀

∧=∀∧=∀

⇒¬
+

+

IMAX

falseCcondVCXCcCv

CCOMPDDABCSDIJJ
falseCcond

VCXCcCvCCOMPDDABCSD

CboyCvVBIXCbiCv

CCOMPDDABCSDVBOY
trueCcond

VCXCcCvCCOMPDDABCSD

CvCvMAXIVBOVBIVCx

CvCoutxCvCinx

CAB

X
J
X

CC

X
I
XCC

I
YX

I
X

BB

X
I
XCC

I
X

I
X

MAX
XXXX

)(|)()(

)(|)()(((:
)(

|)()()(|)()(

))()(|)()(

)(|)()((
))(

|)()()()()((

)()(

)()()()(

)(
1

1

0

Oana Platon

54

The debugger executes the condition, and adds a new state in #retval port
for this child. If the new state is true, the debugger executes the body of the loop;
otherwise, it is terminated.

Method calls [MethodCall]

Method calls are mapped to components with in ports created by global
variables used inside the called method or the actual parameters of the method.
Out ports are bound to global variables used inside the method, to variables
derived from actual parameters of reference types, changed inside the body and to
objects created in the called method and accessible from the location where the
method is called.

For a method m, the component MC is obtained from m’s model M by
replacing the ports generated by global variables and formal parameters with the
actual values and actual parameters. The component has an out port #retval that
represents the value returned by the method (can be void).

Correct behavior: considering the behavior of the called method Id, BId,
for each rule IdBBA ∈⇒)(, we have: '')(BACAB ⇒∧¬ , where A’ (and B’) are
derived from A (and B) making the replacements described above.

Expressions [Expr]

The expressions are used in statements; the associated component has an
out port #retval that contains the evaluated result of the expression. Other ports
depend on the variables that appear inside the expression. If the expression is:
 - Constant or variable – is added an in port bound to the constant / variable.
Correct behavior is described by (4).

)()()(CinCretvalCAB =⇒¬ (4)
- Operator – two in ports connected to the #retval ports of the inner expressions
are added. Correct behavior (5) dependes on the in ports connected to out ports
#retval(Expr).

)()()(21 CinOperatorCinCAB ⇒¬ (5)
The debugger executes this expression depending on the operators

number. It executes the operation given the operator and getting the values of the
descendants from their #retval ports. The result is added in a new state for the
#retval port of the expression.

6. Example – creating the model

Let us model the following simple program (StopICondition):
public static void Main()
{
 int from = 5;
 int to = 10;
 int start, stop, i;

Smart C# debugger – debugging C# programs using model based diagnosis 55

 if(from < to)
 {
 start = from;
 stop = to;
 }
 else
 {
 start = to;
 stop = from;
 }
 i = start;
 while(i <= stop)
 {
 i = i+1;
 }
}

The model for this program is:

Diagram 3: The model for StopICondition program

7. Debugging the Model

As shown in Diagram 1, the model and the test cases are used by the
debugging engine to diagnose a program. Diagnosis is done by following wrong
output. To keep consistency in the model, we must assume that there are some
components that do not behave correctly. It is desirable to discover the minimum
diagnose (minimum number of components whose misbehavior can explain the
wrong output).

Oana Platon

56

In our approach, test cases are conditions inserted in components.
Conditions can be any expression that evaluates to Boolean values (true/false).
The evaluation of the conditions is done by following two principles:

1) Since the evaluation is done at runtime, we know the value of each
variable, so we can follow the exact instructions that are executed (which branch
in a conditional is executed, how many times a loop is performed and so on).

2) When investigating a component and the error is not found, the
investigated program can be reduced to a preliminary state (backward execution).

For StopICondition program we insert the condition i == stop. When
we run the program we see that the condition fails (i = 11, stop = 10).

The last component that modifies one of the variables from the condition
is while. Here, the error can be in the condition or inside the block. If the error is
not in while, we go backwards, and the next analyzed instruction is the
assignment i = start, then if changes stop‘s value. Assuming that the
initializations are correct, we have the candidates: { });(startiAB =¬ ,
{ });(stopiAB <=¬ , { })(whileAB¬ .

By executing the program backwards, we extract states for variables
conforming to the instructions that are rewound. This way, we see that if while is
executed only five times, not six, the condition is respected. We can apply the
principle that tells that most specific information is preferred, so we get as
principal candidate the condition of the loop. Indeed, the buggy statement is i <=
stop, which should be replaced with i < stop.

The debugger is also able to find infinite loops in a program, checking
whether variables from the condition are modified inside the block in such a way
that the distance between them increases.

8. Testing the Debugger

In order to test the application, several syntactically correct C# programs that
contained some logical errors have been used. Test examples:
♦ Programs with infinite loops or possible infinite loops. The debugger can find

the problems in proportion of 100%, but gives warnings for programs that
contain some finite special loops. E.g.:

 int i = 100, n = 200;
 int x1 = 10, x2 = 20;
 while (i < n)
 {

 if (x1 < x2) {
 if (1 < i)

 i = i - 1;
 else {

 x1 = 20;
 x2 = 10;

Smart C# debugger – debugging C# programs using model based diagnosis 57

 }
 }
 else

 i = i + 2;
 n = n + 1;
 }

♦ Program that contains many assignment statements, with the following

conditions:
a) Condition that implies all variables that help determine the value of the

respective variable;
b) Conditions that contain only some of the variables. In this case the other

variables that influence the evaluation of the condition must be watched.
♦ Program that contains conditionals with wrong condition, or correct condition

and error inside the executing branch. In the last case, the following conditions
have been watched:
a) All statements that contain variables from the list with ports to watch as

out ports must be investigated;
b) None of the statements that do not modify variables to watch should be

investigated.
♦ Program with finite loops, but with some problems, like:

a) Wrong condition
b) Errors inside the block.

♦ More complicated programs, with embedded instructions, with different
errors.

9. Evaluating the Performance of the Debugger

Because debugging programs is a NP-C problem (cannot be solved with a
deterministic algorithm in polynomial time), our approach uses the oracle’s
technique (the programmer is asked if at the proposed location is indeed an error).

The time for constructing the model is directly proportional with the
number of components that have to be created. The worst time depends on the
maximum number of statements (I), the methods called in the converted method
(M) and the maximum number of expressions used in the method (E). The number
of created components respects relation (6).

 ()EIMC +≤ (6)
As seen in Diagram 4, the time needed to create the model is the most

significant. This is acceptable, because the model is created once, and then many
conditions to investigate can be inserted, and the model can be executed many
times.

Oana Platon

58

Programs with thousands of components can be run in several seconds, as
Diagram 5 shows. The inserted and investigated conditions do not take more than
that, so time needed to diagnose small and intermediate size programs is not big.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

74 214 414 2014 4014 6014 10014 20014 40014
Components number

Comparison between times needed to perform operations on a file with variant number of components

Parsing time Modelling time Execution time
Diagram 4: Comparison between times needed to parse a file, create and execute a model

Time to parse, model and execute files with variable number of components

0

1

2

3

4

5

6

7

8

9

10

74 214 414 2014 4014 6014 8014 10014 12014 14014 16014 18014 20014 22014 24014 26014 28014 30014 32014 34014 36014

Component's number

T
im

e
 (

se
co

n
d

s)

Parsing time Modelling time Execution time
Diagram 5: Times to parse, model and execute a file

Smart C# debugger – debugging C# programs using model based diagnosis 59

10. Conclusions

Automatic debugging represents a difficult problem, because it is NP-
Complete. Over the time, partial solutions have been proposed, but none of them
solves the problem entirely.

This paper presents a new method, based on MBD. According to the
results obtained, the method is viable, the debugger finds infinite loops and then
checks conditions and proposes possible bug location to user. If the user doesn’t
recognize the problem, the program is backward-executed, until the error is found.

The time needed for creating the model is short for small and medium
programs (hundred / thousands of components). The debugging time is
proportional with the number of components, the number of variables V implied
in conditions, and the number of variables that V depends on. The advantage of
this approach is that the variables value are known at runtime, so only the
statements that are actually executed are investigated (e.g., in if and while).

Locations farther away are investigated just as easily as the closer ones,
because to get from a statement to another we simply destroy the intermediate
statements that don’t change investigated variables.

The debugger has a graphical interface that allows easy manipulation of
the debugee, of the conditions inserted in components, and presents information
about dependencies and values of the variables at each moment.

Because the application has proved its viability, it is normal to look into the
future with new features, like treating all statements in C# language. In this
version, only the presented statements are investigated.

Another desired feature is reducing the number of questions presented to the
user, by prioritizing the errors (depending on the probability of the error to show
up in a location).

A database with possible errors can be created, so that the bugs can be more
easily recognized. The debugger can be augmented with reinforcement learning,
to understand what mistakes the user usually does (this way, the debugger can be
personalized for the programmer). Also, to improve performance, the debugger
can use heuristics to minimize the error search space.

Once the debugger had found the error, it should automatically modify the
program and continue the execution with the next statement.

A new version will allow the user to insert multiple test cases. The debugger
will run the test cases at the same time, finding the bug easier by comparing the
conditions for all the data. The debugger can be updated to investigate distributed
or parallelized programs.

If the debugger can diagnose MSIL (Microsoft Intermediate Language)
code, then it could understand any kind of “managed” language (Common
Language Specifications compliant): VB, C#, managed C++, managed Python etc.

Oana Platon

60

In this version, the debugger receives an abstract syntax tree from the C# parser
and uses it to create the model. A C# compiler specialized for creating the model
had to be written. The performance can increase significantly if the debugger
would be integrated with the Microsoft C# compiler.

R E F E R E N C E S

[1].http://itpapers.zdnet.com/whitepaper.aspx?kw=software+development&tag=wpr_more&promo
=200111&docid=13933

[2]. Dunlap, Kevin J. – “Debugging with Dbx”, Unix Programmers Manual, Supplementary
Document. University of California, Berkeley, CA, April 1986.

[3]. Katso, H. - “Sdb: a symbolic debugger”, Unix Programmer's Manual, University of California,
Berkeley, CA, 1979.

[4]. Beander, B. - “VAX DEBUG: An interactive, symbolic, multilingual debugger”, SIGPLAN
Notices, 173-179, August 1983.

[5]. Agrawal, Hiralal – “Towards Automatic Debugging of Computer Programs”. PhD thesis,
Purdue University, West Lafayette, IN, 1991.

[6]. Powell, Michael L. and Linton, Mark A. – “A Database Model of Debugging”. SIGPLAN
Notices, 67-70, August 1983.

[7]. LeDoux, C. H. – “A Knowledge-Based System for Debugging Concurrent Software”. PhD
thesis, University of California, Los Angeles, December 1985.

[8]. Darwin, Ian F. – “Checking C Programs with Lint”. O'Reilly and Associates, CA, 1990.
[9]. “FxCop Documentation”, Microsoft Corporation, 2004.
[10]. Adam and Laurent, J. P. – “LAURA: A system to debug student programs”. Artificial

Intelligence, 15:75-122, 1980.
[11]. Jackson, D. – “Abstract Analysis with Aspect”. Proceedings of the 1993 International

Symposium on Software Testing and Analysis, 19-27. ACM Press, 1993.
[12]. Lukey, F. J. – “Understanding and Debugging Programs”. International Journal of Man-

Machines Studies, 189-202, February 1980.
[13]. Weiser, M. – “Program slicing”. IEEE Transactions on Software Engineering, SE-10(4):352–

357, July 1984.
[14]. Korel, Bogdan and Laski, Janusz – “Dynamic program slicing”. Information Processing

Letters, 29:155–163, October 1988.
[15]. Pan, Hsin – “Software Debugging with Dynamic Instrumentation and Testbased

Knowledge”. PhD thesis, Purdue University, West Lafayette, IN, 1993.
[16]. Collofello, James S. and Cousins, Larry – “Toward automatic software fault localization

through decision-to-decision path analysis”. Proceedings of AFIP National Computer
Conference, 539-544, 1987.

[17]. Agrawal, Hiralal and Spafford, Eugene H. – “An execution backtracking approach to
program debugging”. In Proceedings of the 6th Annual Pacific Northwest Software Quality
Conference, 283–299, Portland, Oregon, September 1988.

[18]. Reiter, R. - “A theory of diagnosis from first principles”, Artificial Intelligence, 57–95, 1987.
[19]. Mateis, C.; Stumptner, M. and Wotawa, F. – “Debugging of Java Programs using a Model-

Based Approach”, Proceedings of the 10th International Workshop on Principles of
Diagnosis, Loch Awe, Scotland, 1999.

