
U.P.B. Sci. Bull., Series A, Vol. 70, No. 3, 2008                                                     ISSN 1223-7027 

BINARY RELATIONS – ADDENDA 1 (KERNEL, 
RESTRICTIONS AND INDUCING, RELATIONAL 

MORPHISMS) 

Mihai REBENCIUC1 

Această lucrare (în două părţi) conţine unele completări la teoria relaţiilor 
binare într-un cadru extins prin operaţii categoriale generalizate – relativ la 
categoria neregulată a relaţiilor binare Rel.asociată categoriei regulate Set. 
Primele două completări din această parte a lucrării se referă la nucleul, 
respectiv la restricţiile şi indusa în mulţimi arbitrare a unei relaţii binare – în 
legătură cu operaţii de algebră Booleană şi categoriale generalizate Ultima 
completare constă   într-o  ierarhie de morfisme relaţionale în paralel în cazurile 
omogen şi neomogen la care se raportează şi noţiunea de (bi)simulare 
(generalizată pentru cazul neomogen) – esenţială în programarea concurentă . 

This paper( in two parts) contains some addenda  to binary relations theory 
in a background witch is extended by generalized categorical operations – relative 
to the unregulated category of binary relations Rel associated with the  regulate 
category Set. The first two addenda from this part of the paper refer to the kernel, 
respectively to the restrictions and the induced relation in arbitrary sets of a binary 
relation - in connection with Boolean algebra operations  and generalized 
categorical operations.  The last addendum consists in a hierarchy of relational 
morphisms in parallel in homogeneous and inhomogeneous cases to witch the 
notion of (bi)simulation (generalized for inhomogeneous case) is reported - 
important in concurrency programming.  
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1. Introduction 

The concept of multivocity is illustrated in a naturally way  by  the notion 
of  binary relation in the regulate category  of sets Set – in witch the binary 
relations form the unregulated category  Rel  in regard to the categorical operation 
of composition and the binary relations between the same sets have a structure of 
complete Boolean algebra  – with the known properties [1], [2], [3], [4];  in a 
topoi E  it  is maintained  the corresponding  category RelE  – but the structure of a  
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complete Boolean algebra it is replaced by the structure of Heyting algebra [5]  
and in a category that in the finite case is more generally then a topoi  
(wellpowered  and wellcopowered category with products, coproducts and finite 
intersections ) remains just the structure  of complete lattice - with a conditionally 
distributivity of the composition in regard to union [6], [7]. 
 

The first addendum from this part of the paper is relates to the functional 
type – by defining the kernel of a relation and the determination of some 
properties as a special homogeneous relation (of tolerance and equivalence) 
respectively of connection with generalized categorical operations.  

 
In the second addendum, we associate the concept of multivocity with the 

one of partiality - with a unification of functional and order approach by defining 
in the same generalized way of the notions of restrictions and induced binary 
relation in arbitrary sets, followed by the study of Boolean algebra and 
generalized categorical operations. 

 
These generalisations - relative to categorical operations and restrictions 

and inducing in arbitrary sets are categorical validated in categories with 
intersections and unions of “objects” [8], [9]. 

 
The last addendum refers to a hierarchy of relational morphisms with a 

parallel between homogeneous and inhomogeneous cases -  to witch the notion of 
(bi)simulation (generalized for inhomogeneous case) is reported ; the notion of 
(bi)simulation – that induces the notion of (bi)similarity is important in 
concurrency programming [10], [11].   

We close up with an example relative to ones of the above generalizations. 
 
Example 1.1 (operations with subtotal and subdiagonal relations) Relative 

to the set Rel(A, B) of binary relations between  A, B we consider the set Relst(A, B) 
= { ∈′′×′=′′ ABABA /,ω P(A), ∈′B P(B)}⊂Rel(A, B)  of the subtotal relations 
with BA,ω  the total relation and for ∈′A P*(A), ∈′B P*(B) with 

∅=== ∅∅′∅∅′ ,,, ωωω BA  the vide relation in Rel(A, B) ;  τ1: P(A)×{• }→Relst(A, 
• ), τ1 •′=•′ ,),( AA ω (and analogously τ2)  is complete isomorphism of Boolean 
algebras , but  τ: P(A)×  P(B) →Relst(A, B), τ BABA ′′=′′ ,),( ω remains only 
morphism of inferior semilattices (and partial order semiembedding ) with P(A)×  
P(B) complete Boolean algebra and with  Relst(A, B) bounded inferior semilattice 
by  Ø,  BA,ω .   Consequently Relst(A, • ),  Relst(• , B)  are complete Boolean 
subalgebras of complete Boolean algebra Rel(A, B) -  through the medium of 
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inferior semilattice Relst(A, B) ; analogously in homogeneous case Rel(A) = Rel(A, 
A) - in addition with Relsd(A) = { =Δ X {(x, x)/x ∈∈ XX /}  P(A)}⊂Rel(A) (the set 
of subdiagonal relation in A with AΔ  the diagonal relation in A) complete 
sublattice of Rel(A) according to  complete lattice isomorphism δ: P(A) → Relsd(A), 
δ(A’)= A′Δ . Reltot   corresponding to the sets Reltot(A, B) = { BA,ω }, Reltot(A) = { Aω }  

is preordered subcategory of Rel with ABBA ,
1

, )( ωω =−  ; categorical operation of 
composition “ ” (graphically omitted) is generalized by  ∅=BADC ,, ωω  for 

∅=∩CB , respectively DABADC ,,, ωωω =  for ∅≠∩CB . If Rel(A, B) is non-
strictly,  i.e. ∅≠∩= BAO  [12], then Rel(A, B) is semigroup relative to 
composition ( AΔ , BΔ  the neutral elements to the right , respectively to the left) 
which Relst(A, B) subsemigroup . In homogeneous case Rel(A)  is monoid  with 
Relsd(A) submonoid because YXYXXY ∩Δ=ΔΔ=ΔΔ ; in addition we have 

YXYX Δ×Δ=Δ × .  

 2. Kernel 

 Definition 2.1 ((co)kernel of a relation). The kernel of the relation R∈ 
Rel(A, B) is  the homogeneous relation of Rel(A), noted ker R and defined by 

RRR 1ker −= ; dually 1ker −= RRRco ∈ Rel(B) is the cokernel of R.  
 

Observation 2.1.i (duality) We have 1kerker −= RRco , 1kerker −= RcoR  
because 1ker −= RRRco = 11 )( −− RR = 1ker −R  and analogously for the other 
equality.   

 
ii (symmetry) Ker R is symmetric relation because 

RRRRRR ker)()(ker 1111 === −−−−  and analogously for cokernel. 
 
iii(tolerance) Ker R is D-tolerance relation, D = dom(R) = subfield(ker R)   

( = dom(ker R)∩ codom(ker R), where dom(ker R) = codom(ker R) = dom(R)) 
because ker R is reflexive in any Da∈  - there is Bb∈ such that Rba ∈),(  and 
hence Raa ker),( ∈  and according to ii; analogously(but dually) coker R is        
C-tolerance relation, C = codom(R) = subfield(coker R). Particularly, if R is     
left-total (dom(R ) = A), respectively right-total (codom(R) = B), then ker R, 
respectively coker R are tolerance relations.  
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iv (equivalence) If in addition R∈Rel(A, B) is dysfunctional [13], i. e. 
RRRR 1−= ( RRRR ⊆−1  is a sufficient condition) – which is named also i-regulate 

or preunivocal(for unification of terminology in the category Rel [14]), then ker R 
is D-equivalence and coker R is C-equivalence; in the case R left-total, 
respectively right-total these became equivalences. Indeed we have 

RRRRRRRRRRRR ker)())(()(ker 111112 ==== −−−−−  and analogously for 
cokernel.  

 
Theorem 2.1(inclusion, categorical operations) Let be R∈ Rel(A, B); for 

S∈ Rel(A, B), S⊆R implies (co)ker S⊆ (co)ker R. For S∈Rel(C, D) we have the 
equalities ker (R, S) = ker R∩ ker S, coker (R, S) = coker (R×S), (co)ker (R×S) = 
(co)ker R× (co)ker S. 

 
Proof .  Relative to inclusion we have   11 −− ⊆ RS , ⊆= − SSS 1ker          

RRRRS ker11 =⊆ −− and analogously for cokernel. Relative to categorical 
operations we have =××=××=× −−− ))(()()()(ker 111 SRSRSRSRSR  

SRSSRR kerker)()( 11 ×=× −−  and analogously for cokernel. In addition, we 
have ),(ker),( SRaa ∈′  iff there exists DBdb ×∈),( such that ∈),(,( dba (R, S), 

1),()),,(( −∈′ SRadb  iff SdadaRbaba ∈′∈′ ),(),,(,),(),,(  iff ∈′),( aa          
ker R∩ ker S, respectively ),(ker)),(),,(( SRcodbdb ∈′′  iff there exists 

CAa ∩∈  such that ),()),(,(,),()),,(( 1 SRdbaSRadb ∈′′∈ −  iff 
Rbaba ∈′),(),,( , Sdada ∈′),(),,(  iff ∈′∈′ ),(,ker),( ddRcobb  coker S iff 

ScoRcodbdb kerker)),(),,(( ×∈′′ . 
 
Definition 2.2(w-composability) The relations R∈  Rel(A, B),  S∈Rel(C, D) 

are weak composable – for short w-composable if there exist composable pairs of 
R, S, i. e. . ∅≠SR . Particularly, R is weak self-composable – for short w-self-
composable if ∅≠= RRR 2 ; more generally, for )1{\*INn∈  (implicitly n = 2) 
R is n-weak self-composable – for short nw-self-composable if ∅≠nR .    

 
Observation 2.2.i (sufficient condition) A relation is w-self-composable if 

it is non-banal transitive. 
 
ii (monotony) For )1{\, *INnm ∈  if m < n, then R n-w-self-composable 

implies R m-w-self-composable.   
iii (the w-self-composability of the (co)kernel) Ker R(and analogously 

coker R) is w-self-composable because whichever of the inclusion RRRR 1−⊆  or 
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RD ker⊆Δ , D = dom(R) (see  the points iii and iv of observation 2.1) imply the 
inclusion 2)(kerker RR ⊆  with ∅≠Rker .    

 3. Restrictions and inducing 

 Definition 3.1 ((co)restriction, induced relation) Let R∈ Rel(A, B) be a 
relation and let X, Y be arbitrary sets; the restriction of R to X and dually, the 
corestriction of R to Y and the relation which is induced by R in X, Y are  
respectively the relations BXX RR ,| ω∩= , YAY RR ,| ω∩= , ∈∩= YXYX RR ,, ω  
Rel(A, B). 
 
 Observation 3.1 (nuances, terminology) More exactly we have ∈XR |  
Rel(A∩X, B), ∈RY |  Rel(A, B∩ Y) (which are named also the left restriction of R 
to X, respectively the right restriction of R to Y) and ∈YXR ,  Rel(A∩X, B∩ Y); R 
is the extension of XR | , RY |  and YXR ,  respectively to A, B and A, B. For 
∈R Rel(A) XXX RR ,=  is the relation which is induced by R in X. 

 
 Theorem 3.1 (connections) Let R∈ Rel(A, B) be a relation and let X, Y be 
arbitrary sets. We have the equalities  XX RR Δ=| ,  RR YY Δ=| , =)|(| XY R  

XYXY RR ||(|)|( =  - “associativity”), .||||, XYYXXYYX RRRRR ΔΔ=∩==  
 
 Proof. The first two equalities, the last equality and the equalities of the 
“associativity” follow at once (by definition or according to the last equality for 
the equalities of the “associativity”) – and imply the equality XYYX RR ||, = . 
Finally, we have  =∩∩=∩∩∩=∩ YABXYABXYX RRRRR ,,,, )()(|| ωωωω  

YXXY RR ,|| = .  
 Example 3.1 (restrictions and induced relations of the subtotal and 
subdiagonal relations) Relative to the arbitrary sets X, Y we have the following 
restrictions and induced relations of the relations ∈VU ,ω Relst(A, B), ∈ΔU  
Relsd(A):  

XVUVXUBXVUXVU Δ==∩= ∩ ,,,,, | ωωωωω , ==∩= ∩YVUYAVUVUY ,,,,| ωωωω  

VUY ,ωΔ , ==∩=∩= ∩∩∩∩ YVXUYVUVXUVUYXVUYXVU ,,,,,,, ||)( ωωωωωω  

XVUY ΔΔ ,ω  - particularly for X∈P*(A), Y∈P*(B) BXXBA ,, | ωω = , YABAY ,,| ωω = ,  

YXYXBA ,,, )( ωω = , respectively XUXUXXU ∩Δ=ΔΔΔ=Δ )(  - particularly for 
X∈P*(A) XXA Δ=Δ )( . In addition, for R∈ Rel(A, B) we have YXYX RRR ,, \\ ω=   
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 Theorem 3.2 (relations and operation of Boolean algebra) Let R, S∈ Rel(A, 
B) be relations and let X, X', Y, Y'  be arbitrary sets. i (inclusion preserving) 

XX ⊆′  imply XX RR || ⊆′ , RS ⊆  imply XX RS || ⊆  - and analogously it is the 
inclusion preserving relative to corestriction, XX ⊆′ , YY ⊆′  imply 

YXYX RR ,, ⊆′′ , RS ⊆  imply YXYX RS ,, ⊆ ;   
 
 ii (union preserving) XUXU RRR ||| ∪=∪ , XXX SRSR ∪=∪ ||)(  - and 
analogously it is the union preserving relative to corestriction, 

YXVXYUVUYVXU RRRRR ,,,,, ∪∪∪=∪∪ , YXYXYX SRSR ,,,)( ∪=∪ ;  
 
 iii (behaviour towards intersection) UXXUXU RRR )|()|(| ==∩ , 

XXX SRSR |||)( ∩=∩  - and analogously for corestriction, =∩∩ YVXUR ,  

YUVXVXYUVUYXYXVU RRRR ,,,,,,,, )()()()( === , YXYXYX SRSR ,,,)( ∩=∩ .  
 
 Proof. i. It is easy – for example by making use of the expressions of the 
restrictions and of the induced relation with subdiagonal relations (as operands of 
the composition – see theorem 3.1) and by inclusion preserving by composition.  
 
 ii. We have (see theorem 3.1) =Δ∪Δ=Δ= ∪∪ )(| XUXUXU RRR        

XUXU RRRR || ∪=Δ∪Δ , XXXXXX SRSRSRSR ||)(|)( ∪=Δ∪Δ=Δ∪=∪  
(or by definition and according to the example 1.1) - and analogously for the 
preservation of the union relative to corestriction, == ∪∪∪∪ )|(|, XUYVYVXU RR    

=∪∪∪=∪=∪ ∪∪∪ XYXVUYUVXYVUYVXUYV RRRRRRRR ||||||||)|(|)|(|)||(|   

YXVXYUVU RRRR ,,,, ∪∪∪ , =∪=∪=∪ )||(|)|)((|)( , XXYXYYX SRSRSR   

YXYXXYXY SRSR ,,|||| ∪=∪ .   
 
 iii. We have (by definition) =∩∩=∩= ∩∩ )(| ,,, BXBUBXUXU RRR ωωω   

XUBXBU RR |)|()( ,, =∩∩ ωω  - and analogously for the other expression and for 
corestriction, YXVUYXVUYVXUYVXU RRRR ,,,,,, )()( =∩∩=∩= ∩∩∩∩ ωωω  - and 
analogously for the other expressions, =∩∩∩=∩ )()()( ,,, YXYXYX SRSR ωω  

.,, YXYX SR ∩    
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 Observation 3.2 (the taking of the restrictions and of the induced relation 
as morphisms)  The taking of the restriction ρ :P(A) ×  Rel(A, B) → Rel(A, B), χ : 
Rel(A, B)×P(B)→ Rel(A, B), respectively of the induced relation ι : P(A) ×  Rel(A, 
B) ×P(B)→ Rel(A, B) are order morphisms and lattice morphisms in the relation 
argument;  they only are the superior semilattice morphisms in the set argument –  
respectively in an set argument.  
 
 Theorem 3.3 (generalized categorical operations) Let R∈ Rel(A, B), 
S∈Rel(C, D) be relations and let U, X, Y, Z   be arbitrary sets. i (inversion) 

11 |)|( −− = RR XX  - and analogously for corestriction, XYYX RR ,
11

, )()( −− = ;  
 
 ii (composition) )|()( XX RSSR =  - and analogously for corestriction, 

)|)(|()( , XYYX RSSR = ;  
 
 iii (other operations) )|,|(|),( XXX SRSR = , )|,|(),(| SRSR ZYZY =× , 

),(),( ,,, ZXYXZYX SRSR =× , )|()|(|)( XUXU SRSR ×=× ×  - and analogously for 
corestriction, ZXYUZYXU SRSR ,,,)( ×=× ×× .   
 
 Proof. i. We have (see theorem 3.1) 1111 |)()|( −−−− =Δ=Δ= RRRR XXXX  - 
and analogously for corestriction,  === −−−

YXXYYX RRR |)|())|(|()( 111
,    

XYYX RR ,
11 )(|)|( −− = .   

 ii. We have successively (see theorem 3.1) =Δ=Δ= )()(|)( XXX RSSRSR  
)|( XRS  - and analogously for corestriction, === ))|((|)|)((|)( , XYXYYX RSSRSR  

XY RS |)(|( .   
 
 iii. We have successively (see theorem 3.1, example 1.1 and [4]) 

)|,|(),(),(|),( XXXXXX SRSRSRSR =ΔΔ=Δ= , =Δ= ×× ),(),(| SRSR ZYZY  
)|,|(),(),)(( SRSRSR ZYZYZY =ΔΔ=Δ×Δ , == ×× )|),((|),( , XZYZYX SRSR   

),()||,||()|,|(| ,, ZXYXXZXYXXZY SRSRSR ==× , respectively =× ×XUSR |)(  
)|()|()()())(()( XUXUXUXU SRSRSRSR ×=Δ×Δ=Δ×Δ×=Δ× ×  - and 

analogously for corestriction, =×=× ×××× )|)((|)( , XUZYZYXU SRSR   

ZXYUXZUYXUZY SRSRSR ,,)||()||())|()|((| ×=×=×× .   

 4. Relational morphisms 
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 Definition 4.1 (r-(bi)morphism) The inhomogeneous relation F∈ Rel(A, B) 
is relational morphism – for short r-morphism between the homogeneous 
relational structures (A, AR ), (B, BR )  if it is compatible with AR , BR , i. e. for 
each BbbAaa ∈′∈′ ,,,  with Fbaba ∈′′ ),(),,(  (or equivalently with 

FFFbbaa ×=∈′′ 2)),(),,(( ), ARaa ∈′),(  implies BRbb ∈′),( ; F is relational 
bimorphism(relational semiembedding) for short r-bimorphism(r-semiembedding) 
if 1, −FF  are r-morphisms.  
 
 Observation 4.1 (partial – but non-banal compatibility) The compatibility 
with BR  from the r-morphism condition can be partially – but it is totally non-
banal because ∈′aa, dom (F); other two distinct conditions with Fba ∈′′ ),( , 
respectively (a, b), Fba ∈′′ ),(  after implication lead to two partially non-banal 
variants.  
 
 Definition 4.2 (variants)     The inhomogeneous relation F ∈ Rel(A, B) is 
r'-morphism between the homogeneous relational structures (A, AR ), (B, BR )  if 
for each BbAaa ∈∈′ ,,  with ARaaFba ∈′∈ ),(,),(  implies for each ,Bb ∈′  

Fba ∈′′ ),( , BRbb ∈′),( ; F is r"-morphism if for each ARaaAaa ∈′∈′ ),(,,  
imply for each BRbbFbabaBbb ∈′∈′′∈′ ),(,),(),,(,, . F is r'-bimorphism       
(r'-semiembedding) if 1, −FF  are r'-morphisms – and analogously for                  
r"-bimorphism (r"-semiembedding).  
 
 Theorem 4.1 Let be (A, AR ), (B, BR ), F ∈ Rel(A, B). i (connections) The 
condition of r-bimorphism is equivalent with the condition of r-morphism with 
equivalence (instead of implication). The condition of F r'-morphism with 
equivalence imply 1−F  r'-morphism between  ))(,(),)(,( 11 −−

BA RBRA ; the 
condition of F r"-morphism with equivalence imply 1−F  r-morphism.  
 
 ii (hierarchy) We have the implications F r-morphism imply F                   
r'-morphism imply F r"-morphism – with equivalences if dom(F) ⊇  field ( AR ); 
analogously for the relational bimorphisms – with the equivalences condition in 
hierarchy completed with codom(F) ⊇  field ( BR ).  
 Proof. i. The statements follow at once (by definition).   
 ii. We have ),(),(),( aaraaraar ′′′→′′→′ , where F r-morphism iff 

),(,, aarAaa ′∈′∀ , F r'-morphism iff ),(,, aarAaa ′′∈′∀ , F r"-morphism iff 
),(,, aarAaa ′′′∈′∀ , )),(()()(),( qaapatataar →′∧′′∧=′ , ∧=′′ )(),( ataar  
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)),(())(),(()()))((),(( qaapataapatqataap →′∧′′→′∧≈∧′′→′ , =′′′ ),( aar   
∧′′→′∧→′≈∧′′∧→′′ ))(),(())(),(()),()((),( ataapataapqaatataap   

)),(( qaap →′ , ,),(,,,),(),( BA RbbBbbqRaaaap ∈′∈′∀=∈′=′  
,),(,)( FbaBbat ∈∈∀= FbaBbat ∈′′∈′∀=′′ ),(,)( .    

The conditioned equivalences by dom (F) ⊇  field ( AR )  are consequences of the 
above implications and of the total non-banality of the implication from the 
condition of r"-morphism because for ∈′∀=′∈′=′ bbaarRbbbbq B ,),(,),(),(  
codom(F), ),(),( bbqaap ′→′ , ∈′∀→′=′′′ bbaapaar ,),(),( codom(F), ),( bbq ′  
we have ),(),( aaraar ′′′≈′ .  
In the case of the relational bimorphisms the above results are valid for the inverse 
relation ∈−1F  Re l(B, A) – with codom(F) = dom( 1−F )⊇  field ( BR ).    
 Observation 4.2.i (categorical composition) The categorical composite of 
two (w-composable) r-morphisms is r-morphism; analogously for the other 
relational morphisms and for the relational bimorphisms – w-composed under the 
conditions of the equivalences in relational bimorphisms hierarchy.  
 ii (the case of the left-total and right-total relations) The left-total relations 
satisfy the equivalences condition in relational morphisms hierarchy.; the left-total 
and right-total relations satisfy the equivalences condition in relational 
bimorphisms hierarchy.    
 iii (duality) The condition 1)(),( −∈′ BRbb  (instead of BRbb ∈′),( ) lead to 
dual r-(bi)morphism – with invariant, respectively partial variant composite 
towards dualizing.  

iv (the inhomogeneous case – vs. the homogeneous case) In the  
inhomogeneous case relative to the inhomogeneous relational structures 

),,( , AARAA ′′ , ),,( , BBRBB ′′   a (inhomogeneous ) r-morphism is a ordered pair 
∈′),( FF Rel(A, B)×Rel(A', B')  (with ∈′×≈′ FFFF ),(  Rel ),( BBAA ′×′× ) 

which satisfies the compatibility condition with AAR ′, , BBR ′, , i. e. for each 
BbBbAaAa ′∈′∈′∈′∈ ,,,  with Fba ∈),( , Fba ′∈′′ ),( (or equivalently with 

FFbbaa ′×∈′′ )),(),,(( ), AARaa ′∈′ ,),(  implies BBRbb ′∈′ ,),( ; in fact, in 
homogeneous case a r-morphism is a singlet }{F ),( FF≈ , noted F which 
satisfies the compatibility condition. The other relational morphisms and the 
relational bimorphisms can be defined similarly. In addition in the 
inhomogeneous case are valid theorem 4.1 and points i-iii, where  

),,(),)(,(),)(,(),( 111 FGGFFFGGFFFF ′′=′′′=′ −−−  (co)dom (F, F') = 
((co)dom(F), (co)dom(F')).    
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 v (bi)simulation) A simulation S∈ Rel(A, B) between the homogeneous 
relational structures (A, AR ), (B, BR ) is defined by a non-banal existential variant 
of the compatibility condition with AR , BR  of a r'-morphism, i. e.  for each 

BbAaa ∈∈′ ,,  with ARaaSba ∈′∈ ),(,),(  implies there exists ,Bb ∈′  
Sba ∈′′ ),( , BRbb ∈′),(  - which is equivalently with the usual condition(see [10], 

[11]) “for each  BbAa ∈∈ ,  with Sba ∈),(  and for each ARaaAa ∈′∈′ ),(,  
implies there exists ,Bb ∈′  Sba ∈′′ ),( , BRbb ∈′),( ”; but it is weaker than the          
r-morphism condition which is conditioned equivalently with the r'-morphism 
condition(see theorem 4.1 and point i) – with Sba ∈′′ ),( . There is analogously 
for bisimulation vs. r'-bimorphism, respectively r-bimorphism – with the mention 
of the non-equivalence between the bisimulation condition and the simulation 
condition with equivalence instead of implication.     
 Definition 4.3 ((bi)simulation in the inhomogeneous case) A simulation 
between the inhomogeneous relational structures ),,( , AARAA ′′ , ),,( , BBRBB ′′  is 
a ordered pair ∈′),( SS Rel(A, B)×Rel(A', B')  (with ∈′×≈′ SSSS ),(  
Rel ),( BBAA ′×′× ) which satisfies the non-banal existential variant of the 
compatibility condition with AAR ′, , BBR ′, , i. e. for each BbAaAa ∈′∈′∈ ,,  with 

AARaaSba ′∈′∈ ,),(,),(  implies there exists ,Bb ∈′  Sba ′∈′′ ),( , 

BBRbb ′∈′ ,),( ; ),( SS ′  is bisimulation if it is simulation – along with 1),( −′SS .  
 Observation 4.3.i (equivalence) The compatibility condition is 
equivalently with the condition “for each  BbAa ∈∈ ,  with Sba ∈),(  and for 
each AARaaAa ′∈′′∈′ ,),(,  implies there exists  ,Bb ′∈′  Sba ′∈′′ ),( , 

BBRbb ′∈′ ,),( ” – a inhomogeneous analogue of the usual condition in 
homogeneous case (see observation 4.2.v).  
 ii (two-way similarity) In addition can be defined similarity, bisimilarity, 
two-way similarity respectively 

~
< , 

~
↔ , 

~
−∈ Rel(A, B) by ba

~
<  iff there exists 

∈′),( SS Rel(A, B)×Rel(A', B') simulation with Sba ∈),( , ba
~
↔  iff there exists 

∈′),( SS Rel(A, B)×Rel(A', B') bisimulation with Sba ∈),( , ba
~
−  iff ba

~
< , ab

~
< , 

i. e. there exists ∈′),( SS Rel(A, B)×Rel(A', B'), ∈′),( TT Rel(B, A)×Rel(B', A') 
simulations with Sba ∈),( , Tab ∈),(  - with the inclusion 

~
↔ ⊆

~
− .   

 iii (strict inclusion) Generally, the inclusion is strictly (see next example), 
hence we have not equality – possibly we have only conditioned equality. 
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 Example 4.1 (counterexample) For },{},,{},{ aAaaAaA ′′=′′′′=′=  
},{bB = },{bB ′=′ BBBBAAAA RR ′′′′ == ,,,, , ωω  and the simulations  ∈′),( SS  

Rel(A, B)×Rel(A', B'), BABA SS ′′=′= ,, , ωω , ∈′),( TT  Rel(B, A)×Rel(B', A'), 

ABAB TT ′′=′= ,, , ωω  we have ba
~
−  and non ba

~
↔ .   

5. Conclusions 

 In the first two addenda of this part of the paper we define the notions of 
kernel and restriction (which are dualized), respectively the notion of  induced 
relation, where the last two are in arbitrary sets - in connection with Boolean 
algebra operations  and generalized categorical operations (see the theorems 2.1, 
3.1, 3.2, 3.3 and the observation 3.2 ); so that we have done a unification of 
functional and order approach and more generally an association of the 
multivocity and  partiality concept – existent in some domains of the theoretical 
computer science.  These generalizations (relative to categorical operations, 
restrictions and inducing in sets)  are categorical valid [8], [9]. 
 The last addendum refers to a hierarchy of relational morphisms in parallel 
in homogeneous and inhomogeneous cases - with equivalence conditions (see the 
theorem 4.1 and the observation 4.2.iv); the notion of (bi)simulation (generalized 
for the inhomogeneous case) is reported to this hierarchy  and it is important in 
concurrency programming [10], [11] along with the notion of (bi)similarity which 
it induces.   
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