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ANALYSIS OF NATURAL FREQUENCIES OF A CRACKED 

VISCOELASTIC EULER-BERNOULLI BEAM BASED ON 

EQUIVALENT VISCOELASTIC SPRING MODELS  

Chao FU1, Xiao YANG2 

In order to investigate effects of crack location or crack depth on the natural 

frequencies, the corresponding equations based on the finite element method and the 

approximate analytical method are presented by utilizing the principle of virtual 

work and compatibility conditions at the crack location, respectively. By numerical 

examples, the effectiveness and applicability of the two different methods are 

compared with those of the exact analytical method (EAM).  
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1. Introduction 

In recent years, the research of crack effect and crack identification has 

attracted considerable attention due to the influences of the external loads, 

environment and self-defects [1]. Herein, to study the effects of cracks or defects 

on the vibration properties of the cracked viscoelastic beam structures, some 

papers are cited. By the Galerkin method and multiple scales method, Younesian 

et al. [2] analyzed the frequency responses of a cracked beam rested on a 

nonlinear viscoelastic foundation. Utilizing Fourier transform and regarding the 

crack as a massless rotation spring, Sarvestan et al. [3] presented a spectral finite 

element model for vibration analysis of a cracked viscoelastic beam. With the 

standard linear solid constitutive equation, Fu and Yang [4] presented the exact 

analytical method (EAM) to investigate the vibration properties of a viscoelastic 

Euler-Bernoulli cracked beam. However, to investigate effects of size or location 

of cracks on the natural frequencies, a transcendental equation must be solved 

numerically. 

Based on the principle of virtual work and the compatibility conditions at 

the crack location, this paper extends the finite element method (FEM) and 

approximate analytical method (AAM) to overcome the weakness of solving 

eigenvalue problem, respectively. Then, by numerical examples, the accuracy and 

applicability are compared with those of the exact analytical method (EAM). 
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2. Theoretical model 

According to the constitutive equation of standard linear solid model[5], 

the relaxation modulus ( )Y t  defined in time domain is given as 
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      (1) 

Where 1E  and 
2E  are the elastic modulus of the elastic elements, 2  is the viscous 

coefficient of a viscous element,   is the Poisson's ratio, and t is the time.  

There is a viscoelastic rectangular beam of length L, height h and width b 

in the coordinate axis x, y, and z, respectively. Let us consider that ( , )w x t  and 

( , )x t  are the transverse deflection of the axial line and rotation angle of the beam 

cross section A. According to the hypothesis of the Euler-Bernoulli beam theory, 

the axial normal strain, rotation angle, and normal stress of the cross section are 

given as 
( , )

( , ) ,     ( , ) ( , ) ,    ( , ) (0) ( , ) ( ) ( , ).
x t
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Where ( )Y t  is the 1st derivative of ( )Y t  with respect to the time t, the asterisk * 

denotes the convolution, i.e.
 0

( ) ( ) ( ) ( )d
t

f t g t f g t   = − . 

And the bending moment ( , )M x t  of the intact beam is  
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Where I is the moment of inertia of the neutral axis, and 
2
d d .

A
I y y z=   

Supposing that the transverse crack ( 1, 2, , )j j N=  is always open, which 

means the crack can be equivalent as a massless viscoelastic torsion spring [1]. 

Let us denote the bending moment and equivalent viscoelastic torsion spring of 

the crack j with crack depth dj at x=xj by Mj(t) and kj(t), respectively, the rotation 

angle Δj(t) of the equivalent torsion spring can be expressed as 

( ) (0) ( ) ( )( ) .j j j j jM t k t k tt= −  +                                          (4) 

Based on the equation of the rotation angle ( , )x t  for a cracked beam [4], the 

bending moment in time domain and Laplace domain are given as, respectively. 

e e e

( , ) ( , ) ( , )
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= − +  = −
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 
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  (5) 

Where the superscript “－” denotes the Laplace transform of the function with 

respect to the time t, and s is the Laplace transform parameter.  

Utilizing the equation of the rotation angle and Dirac delta function ( )x  

[4], the equivalent bending stiffness of the viscoelastic cracked beam in Laplace 

domain is written as 

https://fanyi.so.com/?src=onebox#asterisk%20%28%2A%29
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3. Methods for vibration of a viscoelastic cracked beam 

3.1. Exact analytical method 

Based on the separation of variables method, an exact analytical method is 

presented to analyze the viscoelastic cracked beam with open cracks in reference 

[4]. Below is a brief progress as follows. 

The equivalent stiffness of the crack j ( 1, ,j N=  ) in time domain and 

Laplace domain are given as, respectively, 

( ) ( ), ( ) ( ).j j j jk t IY t k s IY s = =                                (7) 

Where the parameter  
2

(0.9 ) ( ) 1 ( ) 2 ( )/ .j j j jh d h d h d h = − −        
The free vibration equation of the Euler-Bernoulli beam is 

2 2
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Where   is the density of the beam. 

Introduce the following dimensionless variables and parameters 
2

* * * * *
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Based on the separation of variables method [6], the vibration solutions 

can be assumed as 
* ** * * i * * * i( , ) ( )e ,   ( , ) ( )e .t tw t W m t M    = =                    (10) 

Where *( )W   and *( )M   are the dimensionless mode functions of the transverse 

displacement and bending moment for the cracked beam, i 1= − ,   is the 

complex eigenfrequency, and the real part and imaginary part of   are the natural 

frequency and decrement coefficient [7,8], respectively.  

Then, the dimensionless mode functions of the bending moment and shearing 

force can be derived. With the corresponding boundary conditions, the set of 

linear equations is given as 
[ ]{ }= 0.A C                                                         (11) 

Where [ ]A  is a 4×4 coefficient vector, and    
T

1 2 3 4, , ,C C C C=C . 

If there exists a nonzero solution of { }C , the necessary and sufficient 

condition is stated that the determinant of the coefficients vector is zero, which is 

a transcendental equation. Here is the basic process of the present exact analytical 

method (EAM) [4]. By solving the equation, the complex eigenfrequency   can 

be obtained with the different boundary conditions.  
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3.2. Finite element method 

To analyze free vibration of the viscoelastic beam, Hamilton’s principle 

[8] and Newton’s second law [9] had been employed. On this basis, by regarding 

the crack as a massless rotation spring and considering the additional virtual work 

of the bending moment at the crack location [10], the principle of virtual work for 

the free vibration of the viscoelastic cracked beam is presented as 
2 2

2 20
1
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( , ) ( , ) d 0.
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j
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t x

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  (12) 

Where   is the variational operator. 

The vibration solutions [8] can be expressed as 

i i id ( , )
( , ) ( )e ,   ( , ) ( )e ,   ( , ) ( )e .

d

t t tw x t
w x t W x x t x M x t M x

x

  = = = =             (13) 

Where ( )W x , ( )x , and ( )M x  are the mode functions of deflection, rotation angle 

and bending moment, respectively. 

By combining Eqs. (3) , (13) and the 1st equation of Eq.(1), we have 
2
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2

1
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( ) ,     ( ) .
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
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                         (14) 

When 1E → , the parameter 1 2 1 2( )p E E= +  is reduced to zero, the 1st equation 

of Eq. (14) is degenerated into the mode function of bending moment for the 

Kelvin-Voigt beam [11] as follows  

( )
2

0 1 2

d ( )
( ) i .

d

W x
M x I q q

x
= − +                                        (15) 

Suppose that the crack j is located at the end point of beam element, i.e. 

jx x=
 
in fig. 1, the relative rotation angle of the equivalent rotation spring model 

at the crack location by using 2nd equation of Eq. (13) is given as 
i

R L( , ) ( ) ( ) ( )e .t

j j j jx t t t x   = − =                                          (16) 

Where L ( )j t  and R ( )j t  are the rotation angles of two adjacent beam elements at 

the both sides of the crack location jx x= , see fig. 1.  
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Fig. 1. Finite element mesh of the viscoelastic cracked beam 

http://dict.cnki.net/dict_result.aspx?scw=%e7%89%9b%e9%a1%bf%e7%ac%ac%e4%ba%8c%e5%ae%9a%e5%be%8b&tjType=sentence&style=&t=newton+%27+s+second+law
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Utilizing the 2nd equation of Eq. (13) and Eq. (16), we have 

R L( ) ( ) ( ).j j jx x x = −                                    (17) 

By combining Eqs. (1), (7) (16) and the Laplace transform of Eq. (3), the 

bending moment at the crack location jx x=
 
is given as 
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Substitution of Eqs. (13), (14), (16) and (18) into Eq. (12), one obtain 
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The beam is divided into K  units of the finite element along the axis (see 

fig. 1), there have eL L K=  and ( )1k k Kx = −
 
( 1, , 1k K= + ). With the interpolation 

function, the mode function of the k-th beam element is given as 
( )

e( ) .kW x Sp=                                                     (20) 

Where S  is the shape function vector composed with a series of two-node 

Hermite’s interpolation function [12], ( )

e

kp  is the nodal displacement vector of the 

k-th beam element, and 
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Utilizing the 2nd derivative of Eq. (20) with respect to the variable x , one obtain 
2 2
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e2 2

d ( ) d
,     .

d d

kW x S
Bp B

x x
= =                                            (23) 

Suppose that the crack is regarded as a massless torsion spring, and the 

length of crack element is zero [10]. Then, Eq. (17) can be rewritten as  
T

( ) ( )

c e c e L R( ) ,   [ 1  1],     .j j

j j jx S c S c   = = − =                       (24) 

Where ( )

e

jc  is the nodal displacement vector with two degrees of freedom, cS  is the 

matrix of shape function for the j-th crack element. 

By substituting Eqs. (20), (23) and (24) into Eq. (19), we have 
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Where the superscripts k and j denote the k-th beam element and j-th crack 

element, respectively, and 
e eT T T

e e 1 c,e 1 c c
0 0

d ,     d ,     .
L L

jM AS S x K E IB B x K E I S S = = =                (26) 

http://dict.cnki.net/dict_result.aspx?scw=%e8%bd%ac%e8%a7%92%e8%87%aa%e7%94%b1%e5%ba%a6&tjType=sentence&style=&t=rotational+degree+of+freedom


8                                                 Chao Fu, Xiao Yang 

Where ( )

e  ( 1, , )kM k K=  and ( )

e

kK  are the mass matrix and stiffness matrix of the k-

th beam element, respectively. ( )

c,e ( 1, , )jK j N=  is the stiffness matrix of the j-th 

crack element. 

When the crack location ( 1,2, , )jx x j N= =
 
is equal to the element nodal 

coordinate ( )1 ( 2, , )kx k K k K= − = , it means that the j-th equivalent torsion spring 

is connected by the k-th beam element and ( 1)k − -th
 
beam element, and the nodal 

vector of the ( 1)k − -th
 
beam element can be expressed as 

 
T( 1)

e 1 1      .k

k k k kp W W−

− −=                                 (27) 

In addition, the nodal vector of the k-th beam element Eq. (21) can be rewritten as 
T

( )

e R 1 1      .k

k j k kp W W + +
 =                                  (28) 

Where 
Rj

 
is a new independent variable. Considering of the crack effect, two 

degrees of freedom for the j-th crack element in Eq. (24) are presented as Lj k =
 

and Rj k  , respectively. 

Then, Eq. (25) is rewritten as 

( )  
2 1

1 p p
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1 i
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p
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q q
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Where 

   ( ) ( ) ( ) ( ) ( ) ( )

p e e p e e c,e e

1 1 1

,   .
K K N

k k k k j j

k k j

M M p K K p K c
= = =

= = +  p p                 (30) 

As the number of generalized node displacements is 2( 1)K N+ + , the 

vector  p  is expressed as 
T

1 1 2 2 1 1 R 1 1 1 1                      .}  {  k k k k j k k N N N NW W W W W W W− − + + + +
 =         p   (31) 

Then, the frequency equation is presented as follows  

( )
2 1

1 p p

0 1

1 i
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i

p
E M K

q q





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Applying the dimensionless form of Eq. (32) and utilizing Matlab 

programs, the dimensionless eigenfrequency of the viscoelastic cracked beam can 

be obtained with the different boundary conditions. 

3.3 Approximate analytical method 

For a simple-supported elastic beam with open cracks in reference [13], it 

was stated that the mode function of the elastic cracked beam was composed with 

the mode function of an undamaged beam and a polynomial function which 

showed the effect of cracks. By supposing that the maximum potential energy of 

the beam was equal to the maximum kinetic energy for an arbitrary k-th mode, the 

javascript:showjdsw('showjd_0','j_0')
http://dict.cnki.net/dict_result.aspx?scw=%e8%bd%ac%e8%a7%92%e8%87%aa%e7%94%b1%e5%ba%a6&tjType=sentence&style=&t=rotational+degree+of+freedom
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approximate analytical expression of the k-th natural frequency for a simple-

supported elastic beam with cracks were derived by employing the compatibility 

conditions at the crack locations. In addition, Manevich and Kołakowski [9] 

claimed that for a simple-supported beam, the mode function of the viscoelastic 

beam was the same to that of the elastic beam. On this basis, the approximate 

analytical expression of the complex eigenfrequency for a simple-supported 

viscoelastic cracked beam is presented in this subsection. 

At first, we take the viscoelastic beam with a single crack for an example. 

Suppose that there is a transverse open crack with depth 
1d  at 1x x= , the cracked 

beam is considered as a massless viscoelastic spring connected by two intact 

viscoelastic sub-beams. Let ( ) ( , )kw x t  is the transverse deflection of the k-th sub-

beam, and here 10 x x   and 1x x L   correspond to 1k =  and 2k = , 

respectively. 

Substituting Eqs. (6), (7) and the Laplace equation of Eq. (1) into the 2nd 

equation of Eq. (5), using the inverse Laplace transform and ignoring the effect of 

the crack, the equations of motion of the k-th intact sub-beam are 
2 ( )

( )

1 0 1 2

( , )
1 ( , ) .    ( 1,2)

k
k w x t

p M x t I q q k
t t x

     
+ = − + =   

     
               (33) 

2 ( ) 4 ( )

1 0 12 4

( , ) ( , )
1 .    ( 1,2)

k kw x t w x t
p A I q q k

t t t x


      
+ = − + =   

      
           (34) 

The boundary conditions of the simple-supported beam are 
(1) (1) (2) (2)(0, ) 0,   (0, ) 0,   ( , ) 0,   ( , ) 0.w t M t w L t M L t= = = =                  (35) 

And the compatibility conditions [14] at 1x x=  are given as follows 
(1) (2) (1) (2)

(1) (2) (2) (1)

( , ) ( , ),   ( , ) ( , ),

( , ) ( , ) ( , ) ( , )
,   ( , ).

w x t w x t M x t M x t

M x t M x t w x t w x t
x t

x x x x

 = =

   

= − = 
   

               (36) 

Where ( , )x t  is the relative rotation angle due to the crack effect and the Laplace 

transform of ( , )x t  is defined by Eq. (4). 

Combining Eqs. (1), (4), (7) and the 4th equation of Eq. (36) with the 

inverse Laplace transform, and then, combining Eq. (34), one obtain 
(2) (1) 2 (2)

1 1 1
0 1 2

1

( , ) ( , ) ( , )1
0.

w x t w x t w x t
q q

t x x x

    
+ − − =  

      
             (37) 

Similar to Eq. (13), the vibration solutions can be expressed as 
( ) ( ) i ( ) ( ) i( , ) ( )e ,     ( , ) ( )e .    ( 1,2)k k t k k tw x t W x M x t m x k = = =              (38) 

Substituting Eq. (38) into Eqs. (33) and (37), respectively 
2 ( )

( ) 0 1

2

1

i d ( )
( ) .    ( 1,2)

1 i d

k
k q q W x

m x I k
p x





+
= − =

+
                        (39) 
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(2) (1) 2 (2)

1 1 1

2

1

d ( ) d ( ) d ( )1
.

d d d

W x W x W x

x x x
− =                           (40) 

By extending the method of an elastic beam used by Bakhtiari-Nejad et al. 

[13], the n-th mode functions of the viscoelastic beam with a single crack are 

given as 
(1) 2 3

nc, 1, 1, 1, 1, 1

(2) 2 3

nc, 2, 2, 2, 2, 1

( ) ( ) ,      (0 )

( ) ( ) .    ( )

n n n n n n n

n n n n n n n

W x W x A B x C x D x x x

W x W x A B x C x D x x x L

  =  + + + +    


 =  + + + +    

          (41) 

Where 
nc, ( )nW x

 
is the n-th mode function of the intact beam, for a simple-

supported beam there has ( )nc, ( ) sin πnW x n x L=  [9,13]. 
n  is the relevant constant. 

,k nA , 
,k nB , 

,k nC  and 
,k nD （ 1,2k = ）are the undetermined functions. 

Substitution of Eqs. (38) and (41) into Eq. (35) , the first three equations of 

Eq. (36), and Eq.(40), respectively, one obtain 
2

1
1, 2, 1 1, 2, 1, 2,

1

2 2

1 1 1 1
2, 1,

1 1

π1 π
0,   sin ,   0,   0,   0,

π π1 π 1 π
sin ,  = sin .

n n n n n n

n n

n xn
A A x C C D D

L L

x n x L x n xn n
B B

L L L L L L



 

   
= = = = = =    

   


−       
= −       

      

        (42) 

Substitution of Eq. (42) into Eq. (41), the approximate expressions of 

mode functions for the viscoelastic beam with a single crack are presented as 

( )

( )

2

1(1) 1
1

1

2

1(2) 1
1

1

ππ 1 π
( ) sin sin ,   (0 )

ππ 1 π
( ) sin sin .   ( )

n n

n n

L x x n xn x n
W x x x

L L L L

L x x n xn x n
W x x x L

L L L L





  −     
=  +         

        


 −     
=  +        

       

        (43) 

Utilizing the principle of virtual work for a simple-supported viscoelastic 

beam with an open crack, Eqs. (12), (38), (39) and (43) are combined as follows 

( ) ( )
( )

( )

22 22
2 1 1 21 1

1

1 1

4 4

2 1
0 1

1

π π1 π 2
i 1 i sin sin

2 3

ππ 1 π
i sin 0.

2

x L x n x n xL n
A p

L L L L

n xn L n
I q q

L L L

  
 




  −     
+ + + +       

         

     
+ + =      

       
     

(44) 

Therefore, utilizing Eq. (9), the approximate analytical value of the 

dimensionless eigenfrequency for the viscoelastic beam with an open crack based 

on the standard linear solid model can be obtained. 

When 1 0d →
 or 1 →  , Eq. (44) is degenerated into the expression for a 

viscoelastic intact beam with standard linear solid equation as follows 
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( )

( )
( )

40 12

4

1

i1
π .

1 i

I q q
n

L A p




 

+
=

+
                                 (45) 

It is found that Eq. (45) corresponds to the expression presented by Lei et al. [15]. 

Combining Eqs. (9) and (43), the dimensionless mode function of the 

viscoelastic beam with an open crack is presented as follows 

( ) ( )* (1)* (2)*

1 1( ) ( ) ( ) .n n nW W H W H      = − + −                   (46) 

Where ( )H x  is the Heaviside function [4], and  

( )
( )

( ) ( )

( )
( )

( ) ( )

21(1)*

1 1*

1

21(2)*

1 1*

1

1
( ) sin π π sin π ,    (0 )

1
( ) sin π π sin π .    ( 1)

n n

n n

W n n n

W n n n

 
    



 
    



 − 
=  +    

  


− 
=  +   

 

         (47) 

In addition, the similar methodology can be utilized to analyze vibration of 

the viscoelastic beam with an arbitrary number of cracks. 

4. Numerical results and discussion 

4.1 Validation of the present methods

 

Let 1E →  and 1 0d → , the present model is degenerated into the Kelvin-

Voigt intact model. Suppose the geometric and physical parameters are 1 mL = , 
0.2 mb = , 0.0015 mh= , 

37800 kg m = , 
11 2

2 2 10  N mE =  , 1 2
9999E E =  and 

4

2 26.8 10 E −=  . And the beam is uniformly meshed by 20 finite elements ( 20K = ). 

The first five eigenfrequencies are shown in table 1. It can be seen that the results 

of the present methods are in excellent agreement with those of references [4,11].  

Table 1 

First five eigenfrequencies of the simply-supported Kelvin-Voigt beam 

 FEM AAM Ref. [4] Ref. [11] 

1st 3.4440+0.0253i 3.4424+0.0253i 3.4439+0.0253i 3.444+0.025i 

2nd 13.7702+0.4054i 13.7640+0.4047i 13.7702+0.4054i 13.771+0.405i 

3rd 30.9292+2.0524i 30.9147+2.0486i 30.9283+2.0523i 30.930+2.052i 

4th 54.7273+6.4876i 54.6993+6.4749i 54.7215+6.4862i 54.724+6.486i 

5th 84.6534+15.8437i 84.6031+15.8089i 84.6325+15.8356i 84.636+15.836i 

4.2 Analysis of natural frequency of a viscoelastic cracked beam 

For a standard linear solid beam under the simple-supported boundary 

conditions, we suppose that the geometric parameters of the rectangular beam are 

1 mL = , 3500 kg m =  and 20L h = . The material parameters are 1 14 GPaE = , 

2 39.68 GPaE =  and 3

2 6.9 10  GPa h =   .  

Considering the crack effects, a simple-supported viscoelastic beam with 

N symmetrically distributed cracks is considered. For the sake of simplicity, the 

crack location is ( )1j j N = +  ( 1, ,j N= ), crack depth is jd h , and the real part 
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(natural frequency) and imaginary part (decrement coefficient) of the k-th 

eigenfrequency 
k  are defined by Re( )k  and Im( )k , respectively.  

To analyze the natural frequency of a viscoelastic beam constituted by 

SLS model with a single crack( 1N = ), we denote 
EAM,Re( )n , 

FEM,Re( )n and 

AAM,Re( )n  as the real part of the n-th eigenfrequency based on the results of 

EAM, FEM and AAM, respectively. Then, the error comparisons between the 

first three natural frequencies obtained by EAM, FEM and AAM with the crack 

depth 
1d h  and crack location 1  are shown in tables 2~4. Here, the beam is 

uniformly meshed by 20 finite elements ( 20K = ). As can be seen, the errors of the 

first three natural frequencies obtained by EAM and FEM are extremely small, 

which indicates that the results of EAM and FEM are in excellent agreement with 

each other.  

However, in tables 3 and 4, as the crack depth increases from 1 0.2d h =  to 

0.4  and 0.6 , the errors between the 2nd natural frequency by EAM and AAM are 

11.95% and 38.5%, respectively, while the corresponding error values of 3rd 

natural frequency increase to be 44.83% and 73.01%. Obviously, the 2nd and 3rd 

natural frequencies obtained by the approximate analytical method show a 

significant error. There was a similar conclusion of the elastic cracked beam 

reported by Bakhtiari-Nejad et al. [13]. The possible reason of the error can be 

interpreted that the mode function Eq. (43) is the linear correction function. 

Therefore, by comparing with the results of EAM, the present FEM can provide 

higher accuracy and applicability for the viscoelastic cracked beam, while the 

present AAM is only advised to predict 1st natural frequency.  

Table 2 

Error comparisons between the 1st natural frequencies obtained by EAM, FEM and AAM 

 ( ) ( )FEM,1 EAM,1 EAM,1Re Re 100%  −   ( ) ( )AAM,1 EAM,1 EAM,1Re Re 100%  −   

ξ1 d1/h=0.2 d1/h=0.4 d1/h=0.6 d1/h=0.2 d1/h=0.4 d1/h=0.6 

0.1 0 0 0.002 0 0..001 0.005 

0.2 0.001 0.004 0 0.001 0.007 0.02 

0.3 0 0.001 0.004 0 0.005 0.025 

0.4 0.001 0 0 0.001 0.002 0.007 

0.5 0.003 0 0 0.003 0 0.001 

Table 3 

Error comparisons between the 2nd natural frequencies obtained by EAM, FEM and AAM 

 ( ) ( )FEM,2 EAM,2 EAM,2Re Re 100%  −   ( ) ( )AAM,2 EAM,2 EAM,2Re Re 100%  −   

ξ1 d1/h=0.2 d1/h=0.4 d1/h=0.6 d1/h=0.2 d1/h=0.4 d1/h=0.6 

0.1 0.001 0.001 0 0.103 0.93 5.94 

0.2 0 0.001 0 0.92 6.80 26.03 

0.3 0.001 0.001 0.001 1.73 11.95 38.50 

0.4 0 0.001 0 0.98 8.07 34.31 

0.5 0.001 0.001 0.001 0 0 0 
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Table 4 

Error comparisons between the 3rd natural frequencies obtained by EAM, FEM and AAM 

 ( ) ( )FEM,3 EAM,3 EAM,3Re Re 100%  −   ( ) ( )AAM,3 EAM,3 EAM,3Re Re 100%  −   

ξ1 d1/h=0.2 d1/h=0.4 d1/h=0.6 d1/h=0.2 d1/h=0.4 d1/h=0.6 

0.1 0.003 0.003 0.003 1.15 8.69 32.65 

0.2 0.003 0.003 0.003 5.00 27.28 60.13 

0.3 0.003 0.004 0.003 1.07 9.19 39.74 

0.4 0.003 0.003 0.003 4.60 27.62 63.69 

0.5 0.003 0.003 0.003 11.78 44.83 73.01 

To consider the effects of crack, we suppose that 
0n  and 

n  are the n-th 

eigenfrequency of the viscoelastic intact beam and cracked beam, respectively, 

then 
0Re( ) Re( )n n n  =

 
is the n-th natural frequency ratio. In the case of a 

viscoelastic beam with two symmetric cracks, the crack depths are equal to each 

other. Fig. 2 shows the first three natural frequencies of the cracked beam by 

EAM, FEM and AAM. In the computation, the beam is uniformly meshed by 21 

finite elements. It can be seen clearly that the first three natural frequency ratios of 

the three methods are in excellent agreement with each other for different crack 

depth. In Addition, when the cracks are located at the nodes of vibration, i.e. 

1 1 3 =  and 2 2 3 = , the 3rd natural frequency ratio is 3 1 = , which reveals that the 

3rd natural frequency is independent of the crack depth, in fig. 2(c). 
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Fig. 2. Comparisons between the first three frequencies ratio of the simply-supported beam with two 

symmetric cracks obtained by EAM, FEM and AAM 

5.  Conclusions 

In this paper, the finite element model and approximate analytical 

expressions to analyze the viscoelastic cracked beam with open cracks are derived 

to overcome the weakness of solving eigenvalue problem. In numerical 

computations, the accuracy and applicability of the present methods (FEM, AAM) 

are compared with those of the exact analytical method (EAM), and the effects of 

the crack location, crack depth, and crack number on the vibration properties of 

the viscoelastic cracked beam are demonstrated. Some conclusions arising from 

the numerical results can be summarized as follows: (1) Results of the present 

finite element method are in excellent agreement with those of the exact analytical 

method, while the approximate analytical method is advised to predict 1st natural 
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frequency with some acceptable deviations. (2) At the nodes of vibration, the 

natural frequency is independent of the crack depth. 
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