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ON CONNES AMENABILITY OF UPPER TRIANGULAR MATRIX

ALGEBRAS

S. F. Shariati1, A. Pourabbas2, A. Sahami3

In this paper, we study the notion of Connes amenability for a class of I× I-
upper triangular matrix algebra UP (I,A), where A is a dual Banach algebra with a

non-zero wk∗-continuous character and I is a totally ordered set. For this purpose, we
characterize the ϕ-Connes amenability of a dual Banach algebra A through the existence
of a specified net in A⊗̂A, where ϕ is a non-zero wk∗-continuous character. Using this,

we show that UP (I,A) is Connes amenable if and only if I is singleton and A is Connes
amenable. In addition, some examples of ϕ-Connes amenable dual Banach algebras,
which is not Connes amenable are given.
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1. Introduction

The concept of amenability for Banach algebras was first introduced by B. E. Johnson
[1]. Let A be a Banach algebra and let E be a Banach A-bimodule. A bounded linear map
D : A → E is called a derivation if for every a, b ∈ A, D(ab) = a ·D(b)+D(a) · b. A Banach
algebra A is called amenable if every derivation from A into each dual Banach A-bimodule
E∗ is inner, that is, there exists a x ∈ E∗ such that D(a) = a · x − x · a (a ∈ A). Let A

be a Banach algebra. An A-bimodule E is called dual if there is a closed submodule E∗
of E∗ such that E = (E∗)

∗. The Banach algebra A is called dual if it is dual as a Banach
A-bimodule. A dual Banach A-bimodule E is normal, if for each x ∈ E the module maps
A → E; a 7→ a · x and a 7→ x · a are wk∗-wk∗ continuous. The class of dual Banach algebras
was introduced by Runde [5]. The measure algebras M(G) of a locally compact group G,
the algebra of bounded operators B(E), for a reflexive Banach space E and the second dual
A∗∗ of Arens regular Banach algebra A are examples of dual Banach algebras. A suitable
concept of amenability for dual Banach algebras is the Connes amenability. This notion
under different name, for the first time was introduced by Johnson, Kadison, and Ringrose
for von Neumann algebras [1]. The concept of Connes amenability for the larger class of
dual Banach algebras was later extended by Runde [5]. A dual Banach algebra A is called
Connes amenable if for every normal dual Banach A-bimodule E, every wk∗-continuous
derivation D : A −→ E is inner.

Let A be a Banach algebra and let I be a totally ordered set. Sahami [8] studied the
notions of amenability and its related homological notions for a class of I×I-upper triangular
matrix algebra UP (I,A) =

{[
ai,j

]
i,j∈I ; ai,j ∈ A and ai,j = 0 for every i > j

}
.
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He showed that UP (I,A) is pseudo-contractible (amenable) if and only if I is singleton
and A is pseudo-contractible (amenable), respectively. He also studied the notions of pseudo-
amenability and approximate biprojectivity of UP (I,A).

In this paper, we investigate the notion of Connes amenability for a class of I×I-upper
triangular matrix UP (I,A), where A is a dual Banach algebra and I is a totally ordered
set. For this purpose, first in section 2 we study the duality of UP (I,A) by considering
the isometric-isomorphism UP (I,A) ∼= ℓ1- ⊕

α∈J
Aα as Banach spaces, where J is a subset

of I × I and for every α ∈ J , Aα = A. In section 3 by using the fact that every Connes
amenable Banach algebra is ϕ-Connes amenable, we obtain a new characterization of ϕ-
Connes amenability through the existence of a bounded net with a certain condition, where
ϕ is a non-zero wk∗-continuous character. By applying latter characterization, we show that
UP (I,A) is Connes amenable if and only if A is Connes amenable and I is singleton. Finally
in section 4 we provide some examples of ϕ-Connes amenable dual Banach algebras, which
are not Connes amenable.

2. Preliminaries

For a given dual Banach algebra A and a Banach A-bimodule E, σwc(E) denote the
set of all elements x ∈ E such that the module maps A → E; a 7→ a · x and a 7→ x · a
are wk∗-wk-continuous, one can see that, it is a closed submodule of E. If θ : E −→ F
is a bounded A-bimodule homomorphism, where F is another Banach A-bimodule, then
θ(σwc(E)) ⊆ σwc(F ). Runde also showed that E = σwc(E) if and only if E∗ is a normal
dual Banach A-bimodule [6, Proposition 4.4]. Let A be a Banach algebra. The projective
tensor product A⊗̂A is a Banach A-bimodule with the usual left and right operations with
respect to A. Then the map π : A⊗̂A −→ A defined by π(a⊗ b) = ab is an A-bimodule ho-
momorphism. Since σwc(A∗) = A∗, the adjoint of π maps A∗ into σwc(A⊗̂A)∗. Therefore,
π∗∗ drops to an A-bimodule homomorphism πσwc : (σwc(A⊗̂A)∗)∗ −→ A. Any element
M ∈ (σwc(A⊗̂A)∗)∗ satisfying a ·M = M · a and a · πσwcM = a (a ∈ A), is called a
σwc-virtual diagonal for A. Runde showed that a dual Banach algebra A is Connes amenable
if and only if there is a σwc-virtual diagonal for A [6, Theorem 4.8].

3. The duality of UP (I,A)

Let A be a dual Banach algebra and let I be a totally ordered set. Then the set of all
I×I-upper triangular matrices with the usual matrix operations and the norm ∥[ai,j ]i,j∈I∥ =∑
i,j∈I

∥ai,j∥ < ∞, becomes a Banach algebra. Before we study the duality of UP (I,A), we

state the following Lemma:

Lemma 3.1. If A is a dual Banach algebra with the predual A∗ and I is a non-empty set,
then
(c0- ⊕

i∈I
Ai∗)

∗ ∼= ℓ1- ⊕
i∈I

Ai, where for every i ∈ I, Ai = A and Ai∗ = A∗.

Proof. Let g = (gα)α∈I ∈ ℓ1- ⊕
i∈I

Ai. We define ϕg : c0- ⊕
i∈I

Ai∗ −→ C by ϕg(f) =
∑
α∈I

gα(fα),

where f = (fα)α∈I ∈ c0- ⊕
i∈I

Ai∗ . We show that ϕg is bounded,

|ϕg(f)| ≤
∑
α∈I

|gα(fα)| ≤
∑
α∈I

∥fα∥∥gα∥ ≤ ∥f∥∞
∑
α∈I

∥gα∥ ≤ ∥f∥∞∥g∥1, (1)

So ∥ϕg∥ ≤ ∥g∥1. Now we define T : ℓ1- ⊕
i∈I

Ai −→ (c0- ⊕
i∈I

Ai∗)
∗ by T (g) = ϕg and we show

that T is isometric-isomorphism. It is clear that the map T is linear. Let ϕ ∈ (c0- ⊕
i∈I

Ai∗)
∗,

we show that there exists g ∈ ℓ1- ⊕
i∈I

Ai such that ϕg = ϕ. Fixed α0 ∈ I and λ0 ∈ A∗, we
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define δ(α0;λ0) : I −→ A∗ by δ(α0;λ0)(α) = λ0 whenever α = α0 and δ(α0;λ0)(α) = 0 for
every α ̸= α0. It is obvious that δ(α0;λ0) ∈ c0- ⊕

i∈I
Ai∗ and ∥δ(α0;λ0)∥∞ = ∥λ0∥. Now we

consider g = (gα)α∈I , where gα(λ) = ϕ(δ(α;λ)) for every α ∈ I and λ ∈ A∗. It is easy to
see that ∥gα∥ ≤ ∥ϕ∥ for every α ∈ I, so gα is a continuous linear functional on A∗.

Consider (fα)α∈I ∈ c0- ⊕
i∈I

Ai∗ , we define ηα :=
ϕ(δ(α; fα))

|ϕ(δ(α; fα))|
, whenever ϕ(δ(α; fα)) ̸=

0 otherwise we define ηα = 1. So for every α ∈ I, |ηα| = 1. Let F be the family of all finite
subsets of I. Then for every f = (fα)α∈I ∈ c0- ⊕

i∈I
Ai∗ we have ∥f∥∞ = sup

F∈F

∑
α∈F

(∥fα∥). So

for every f in the unit ball of c0- ⊕
i∈I

Ai∗ , we have∑
α∈F

|gα(fα)| =
∑
α∈F

|ϕ(δ(α; fα))| =
∑
α∈F

ηαϕ(δ(α; fα))

=
∑
α∈F

ϕ(ηαδ(α; fα)) =
∑
α∈F

ϕ(δ(α; ηαfα)) = ϕ(
∑
α∈F

δ(α; ηαfα)) ≤ ∥ϕ∥∥f∥∞ ≤ ∥ϕ∥.

So for every F ∈ F we have
∑
α∈F

∥gα∥ ≤ ∥ϕ∥ which implies that∑
α∈I

∥gα∥ ≤ ∥ϕ∥. (2)

Thus g = (gα)α∈I ∈ ℓ1- ⊕
i∈I

Ai. Since c00- ⊕
i∈I

Ai∗ is dense in c0- ⊕
i∈I

Ai∗ , first we show that

ϕg = ϕ on c00- ⊕
i∈I

Ai∗ . Let f = (fα)α∈I ∈ c00- ⊕
i∈I

Ai∗ , so there exists a finite subset F of I

such that for any α ∈ I − F , fα = 0. We have

ϕg(f) =
∑
α∈I

gα(fα) =
∑
α∈F

ϕ(δ(α; fα)) = ϕ(
∑
α∈F

δ(α; fα)) = ϕ(f). (3)

Now suppose that f ∈ c0- ⊕
i∈I

Ai∗ , so there exists a net fα ∈ c00- ⊕
i∈I

Ai∗ such that fα
∥.∥∞−−−→ f .

By (3) we have ϕ(f) = ϕ(lim
α
fα) = lim

α
ϕ(fα) = lim

α
ϕg(fα) = ϕg(lim

α
fα) = ϕg(f). Hence

ϕg = ϕ. Now by (2) and (1) we have ∥g∥1 ≤ ∥ϕg∥ = ∥T (g)∥ ≤ ∥g∥1. Therefore the map T
is isometry and by applying the open mapping theorem, we have

ℓ1- ⊕
i∈I

Ai ∼= (c0- ⊕
i∈I

Ai∗)
∗.

�
Remark 3.1. Let A be a dual Banach algebra and let I be a totally ordered set. Consider
the subset J of I × I defined by J = {(i, j) | i, j ∈ I, i ≤ j}. So we have an isometric-
isomorphism UP (I,A) ∼= ℓ1- ⊕

α∈J
Aα as Banach spaces, where for every α = (i, j) ∈ J ,

Aα = A.

Theorem 3.1. If A is a dual Banach algebra with the predual A∗ and I is a totally ordered
set, then UP (I,A) is a dual Banach algebra.

Proof. According to Remark 3.1 and by Lemma 3.1, it is sufficient to show that c0- ⊕
α∈J

Aα∗ is

a closed UP (I,A)-submodule of ℓ∞- ⊕
α∈J

A∗
α, where for every α ∈ J , A∗

α = A∗ and Aα∗ = A∗.

First we show that c0- ⊕
α∈J

Aα∗ is a closed subspace of ℓ∞- ⊕
α∈J

A∗
α. Let xn = (ξnα)α∈J be

in c0- ⊕
α∈J

Aα∗ and suppose that xn −→ x = (ξα)α∈J in ℓ∞- ⊕
α∈J

A∗
α. Fixed ε > 0. For

sufficiently large N ,

sup
α∈J

∥ξNα − ξα∥ <
ε

2
.
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Since (ξNα ) vanishes at infinity, for sufficiently large α, we have ∥ξNα ∥ < ε

2
. Then

∥ξα∥ = ∥ξα − ξNα + ξNα ∥ ≤ ∥ξα − ξNα ∥+ ∥ξNα ∥

<
ε

2
+
ε

2
= ε,

for sufficiently large α. It follows that x = (ξα)α∈J ∈ c0- ⊕
α∈J

Aα∗ . Now we show that

c0- ⊕
α∈J

Aα∗ is an UP (I,A)-module. Suppose that X = (aα)α∈J and Λ = (fα)α∈J are

arbitrary elements in ℓ1- ⊕
α∈J

Aα and c0- ⊕
α∈J

Aα∗ , respectively. For every Y = (bα)α∈J in

ℓ1- ⊕
α∈J

Aα, we have X · Λ(Y ) = Λ(Y X). Then by Lemma 3.1 and (1) we have

X · Λ(Y ) =
∑
α∈J

fα(cα), (4)

where (cα)α∈J = [ci,j ]i,j∈I = Y X with respect to matrix multiplication in UP (I,A). Since
ℓ∞- ⊕

α∈J
A∗
α is an UP (I,A)-bimodule with dual actions, then we have X · Λ ∈ ℓ∞- ⊕

α∈J
A∗
α.

We claim that X · Λ belongs to c0- ⊕
α∈J

Aα∗ , that is, vanishes at infinity. By (4) we have

X · Λ(Y ) =
∑
i,j∈I

⟨ci,j , fi,j⟩ =
∑
i,j∈I

⟨
∑
k∈I

bi,kak,j , fi,j⟩

=
∑
i,j∈I

∑
k∈I

⟨bi,kak,j , fi,j⟩ =
∑
i,j∈I

∑
k∈I

⟨bi,k, ak,j · fi,j⟩,
(5)

where i, j ∈ I and i ≤ j. Since ∥Y ∥1 < ∞, one can see that sup
i,j∈I

∥bi,j∥ < ∞. Let M =

sup
i,j∈I

∥bi,j∥. Take a finite subset F of I. We have

∑
i,j∈F

∑
k∈F

|⟨bi,k, ak,j · fi,j⟩| ≤
∑
i,j∈F

∑
k∈F

∥ak,j∥∥fi,j∥∥bi,k∥

≤ ∥Λ∥∞M
∑
i,j∈F

∑
k∈F

∥ak,j∥

≤ ∥Λ∥∞M
∑
i,j∈F

∥ai,j∥ ≤ ∥Λ∥∞M∥X∥1.

So
∑
i,j∈I

∑
k∈I

|⟨bi,k, ak,j · fi,j⟩| <∞. By rearrangement series in (5), we have

X · Λ(Y ) =
∑
i,j∈I

∑
k∈I

⟨bi,j , aj,k · fi,k⟩ =
∑
i,j∈I

⟨bi,j ,
∑
k∈I

aj,k · fi,k⟩. (6)

Suppose that X · Λ = (gα)α∈J . By (6) for every α = (i, j) ∈ J , we have gα = gi,j =∑
k∈I

aj,k · fi,k. Fixed ε > 0. Since Λ vanishes at infinity, there is a α0 = (i0, j0) ∈ J such

that for every α ≥ α0 we have ∥fα∥ ≤ ε
∥X∥ . Now for every (i, j) ≥ (i0, j0) in J with product

ordering, we have

∥gi,j∥ ≤
∑
k∈I

∥aj,k∥∥fi,k∥ ≤ ε

∥X∥
∑
k∈I

∥aj,k∥ ≤ ε

∥X∥
∥X∥ ≤ ε,

note that in UP (I,A), if j > k, then aj,k = 0. Therefore X · Λ vanishes at infinity. �
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4. Connes amenability of UP (I,A)

Let A be a dual Banach algebra and let I be a totally ordered set. In this section we
characterize the notion of Connes amenability of UP (I,A). Throughout this section the set
of all homomorphism from A into C is denoted by ∆(A) and the set of all wk∗-continuous
homomorphism from A into C is denoted by ∆wk∗(A). For every φ ∈ ∆(A), the notion of
φ-amenability for a Banach algebra was introduced by Kaniuth, Lau and Pym [2]. Indeed
A is φ-amenable if there exists a bounded linear functional m on A∗ satisfying m(φ) = 1
and m(f · a) = φ(a)m(f) for every a ∈ A and f ∈ A∗. They characterized φ-amenability in
different ways:

• Through vanishing of the cohomology groupsH1(A, X∗) for certain BanachA-bimodule
X [2, Theorem 1.1].

• Through the existence of a bounded net (uα) in A such that∥auα − φ(a)uα∥ → 0 for
all a ∈ A and φ(uα) = 1 for all α [2, Theorem 1.4].

By [2, Theorem 1.1], we conclude that every amenable Banach algebra is φ-amenable for
any φ ∈ ∆(A).

In the sense of Connes amenability for a dual Banach algebra A, the notion of φ-
Connes amenability for φ ∈ ∆wk∗(A), was introduced by Mahmoodi and some characteri-
zations were given [4]. We say that A is φ-Connes amenable if there exists a bounded linear
functional m on σwc(A∗) satisfying m(φ) = 1 and m(f · a) = φ(a)m(f) for any a ∈ A

and f ∈ σwc(A∗). The concept of φ-Connes amenability was characterized through van-
ishing of the cohomology groups H1

wk∗(A, E) for certain normal dual Banach A-bimodule
E. By [4, Theorem 2.2], we conclude that every Connes amenable Banach algebra is
φ-Connes amenable for any φ ∈ ∆wk∗(A). If φ ∈ ∆wk∗(A), then one may show that,
φ⊗ φ ∈ σωc(A⊗̂A)∗, where φ⊗ φ(a⊗ b) = φ(a)φ(b) for any a, b ∈ A.

Now by inspiration of methods that used in [3, Proposition 3.2], we characterize the
notion of φ-Connes amenability through the existence of a bounded net in A⊗̂A with certain
properties.

Proposition 4.1. Let A be a dual Banach algebra and φ ∈ ∆wk∗(A). Then A is φ-Connes
amenable if and only if there exists a bounded net {uα} in A⊗̂A such that

(i) a · uα − φ(a)uα
wk∗−→0 in (σwc(A⊗̂A)∗)∗.

(ii) ⟨uα, φ⊗ φ⟩ −→ 1.

Proof. Let A be a φ-Connes amenable. Then by [4, Theorem 3.2], there exists an element
M in (σwc(A⊗̂A)∗)∗such that for any a ∈ A, a ·M = φ(a)M and ⟨φ⊗ φ,M⟩ = 1. Since
σwc(A⊗̂A)∗ is a closed subspace of (A⊗̂A)∗, we have a quotient map q : (A⊗̂A)∗∗ −→
(σwc(A⊗̂A)∗)∗. Composing the canonical inclusion map A⊗̂A ↪→ (A⊗̂A)∗∗ with q, we
obtain a continuous A-bimodule map τ : A⊗̂A −→ (σwc(A⊗̂A)∗)∗ which has a wk∗-dense
range. So there exists a net (uα)α∈I in (A⊗̂A) such that

M = wk∗- lim
α
τ(uα) = wk∗- lim

α
(ûα)|σwc(A⊗̂A)∗ . (7)

By Goldstein’s theorem, the net (uα)α∈I can be chosen to be a bounded net. We know that
for any T ∈ σwc(A⊗̂A)∗ and for any a ∈ A,

T · a− φ(a)T ∈ σwc(A⊗̂A)∗.

So

⟨T · a− φ(a)T, ûα⟩ −→ ⟨T · a− φ(a)T,M⟩.
Thus we have

⟨T, a · ûα⟩ − ⟨T, φ(a)ûα⟩ −→ ⟨T, a ·M⟩ − ⟨T, φ(a)M⟩.
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This equation is equivalent with

⟨T, a · ûα − φ(a)ûα⟩ −→ ⟨T, a ·M − φ(a)M⟩ = 0. (8)

Therefore, a · uα − φ(a)uα
wk∗−→0 in (σwc(A⊗̂A)∗)∗.

On the other hand, since φ⊗φ ∈ σwc(A⊗̂A)∗, by (7) ⟨φ⊗φ, ûα⟩ −→ ⟨φ⊗φ,M⟩ = 1,
that is,

⟨uα, φ⊗ φ⟩ −→ 1.

Conversely, regard (uα) as a bounded net in (σwc(A⊗̂A)∗)∗. By Banach-Alaoglu theorem
the bounded net (ûα)|σwc(A⊗̂A)∗ has a wk∗-limit point. Let

M = wk∗- lim
α
((ûα)|σwc(A⊗̂A)∗).

So M ∈ (σwc(A⊗̂A)∗)∗. By the similar argument that we apply in (8), we have a ·M −
φ(a)M = 0 and ⟨φ ⊗ φ,M⟩ = 1 as required. Hence by [4, Theorem 3.2] A is φ-Connes
amenable. �

Now we deduce the main result of this paper.

Theorem 4.1. Let I be a totally ordered set and let A be a unital dual Banach algebra with
∆wk∗(A) ̸= ∅. Then UP (I,A) is Connes amenable if and only if I is singleton and A is
Connes amenable.

Proof. Let UP (I,A) be Connes amenable. Then by [5, proposition 4.1], UP (I,A) has an
identity element. But every matrix algebra with unit must be finite dimensional. So in this
case I is a finite set.

Assume that I = {i1, ..., in} and ϕ ∈ ∆wk∗(A). We define a map ψ : UP (I,A) −→ C
by [ai,j ]i,j∈I 7−→ ϕ(ain,in) for every [ai,j ]i,j∈I ∈ UP (I,A).

Since ϕ is wk∗-continuous, ψ ∈ ∆wk∗(UP (I,A)). Now apply [4, Theorem 2.2], one
can see that UP (I,A) is ψ-Connes amenable. Using Proposition 4.1, there exists a bounded
net (uα) ⊆ UP (I,A)⊗̂UP (I,A) such that

a · ûα|σwc(UP (I,A)⊗̂UP (I,A))∗ − ψ(a)ûα|σwc(UP (I,A)⊗̂UP (I,A))∗
wk∗−→0 (a ∈ UP (I,A)) (9)

and

⟨uα, ψ ⊗ ψ⟩ −→ 1, (10)

where ψ ⊗ ψ ∈ σwc(UP (I,A)⊗̂UP (I,A))∗ and ψ ⊗ ψ(a ⊗ b) = ψ(a)ψ(b) for every a, b ∈
UP (I,A).

It is well known that the map πσwc : (σwc(UP (I,A)⊗̂UP (I,A))∗)∗ −→ UP (I,A) is
wk∗-continuous. So by (9) we have

a · πσwc(ûα|σwc(UP (I,A)⊗̂UP (I,A))∗)− ψ(a)πσwc(ûα|σwc(UP (I,A)⊗̂UP (I,A))∗)
wk∗−→0,

for every a ∈ UP (I,A). Let πσwc(ûα|σwc(UP (I,A)⊗̂UP (I,A))∗) = mα. Then (mα) is a net in

UP (I,A) that satisfies amα−ψ(a)mα
wk∗−→0 (a ∈ UP (I,A)). On the other hand for every

f ∈ UP (I,A)∗ we have

⟨f, πσwc(ûα|σwc(UP (I,A)⊗̂UP (I,A))∗)⟩ = ⟨π∗|UP (I,A)∗(f), ûα|σwc(UP (I,A)⊗̂UP (I,A))∗⟩
= ⟨π∗(f), ûα|σwc(UP (I,A)⊗̂UP (I,A))∗⟩
= ⟨π∗(f), ûα⟩ = ⟨uα, π∗(f)⟩ = ⟨π(uα), f⟩,

so

mα = πσwc(ûα|σwc(UP (I,A)⊗̂UP (I,A))∗) = π(uα). (11)
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Fixed α. Since uα ∈ UP (I,A)⊗̂UP (I,A), there are bαk and cαk in UP (I,A) such that

uα =
∞∑
k=1

bαk ⊗ cαk . So by (10), we have

ψ(π(uα)) = ψ(π(
∞∑
k=1

bαk ⊗ cαk )) = ψ(
∞∑
k=1

bαk c
α
k ) =

∞∑
k=1

ψ(bαk )ψ(c
α
k ) = ψ ⊗ ψ(uα) −→ 1,

therefore by (11), ψ(mα) −→ 1. Let L = {[ai,j ] ∈ UP (I,A) | ai,j = 0, ∀j ̸= in}. Since I is
a finite set, it is easy to see that L is a wk∗-closed ideal in UP (I,A). By definition of the
map ψ, we have ψ|L ̸= 0. So there exists λ ∈ L such that ψ(λ) ̸= 0, by replacing λ

ψ(λ) if

necessary, we may assume that ψ(λ) = 1. Let nα = mαλ. Then nα is a net in L. Since

lmα − ψ(l)mα
wk∗−→0 for any l ∈ L and since the multiplication in UP (I,A) is separately

wk∗-continuous [7, Exercise 4.4.1], we have

lnα − ψ(l)nα = (lmα − ψ(l)mα)λ
wk∗−→0, (12)

for every l ∈ L and also ψ(nα) = ψ(mα)ψ(λ) = ψ(mα) −→ 1. Now suppose that |I| > 1.

Set nα =

 0 · · · xα1
: · · · :
0 · · · xαn

, where xα1 , . . . , x
α
n ∈ A. Consider l =

 0 · · · l1
: · · · :
0 · · · ln

, where

l1, . . . , ln ∈ A and ϕ(l1) = . . . = ϕ(ln−1) = 1 but ψ(l) = ϕ(ln) = 0. So we have lnα = 0 · · · l1x
α
n

: · · · :
0 · · · lnx

α
n

. By (12), we have lnα
wk∗−→0. Since I is a finite set, it is easy to see that

l1x
α
n
wk∗−→0. Since ϕ is wk∗-continuous, ϕ(l1x

α
n) −→ 0. So ϕ(l1)ϕ(x

α
n) −→ 0. Since ϕ(l1) = 1,

ϕ(xαn) −→ 0, which is a contradiction with ϕ(xαn) = ψ(nα) −→ 1. Thus |I| = 1.
Converse is clear. �

5. Examples

Here we give two examples of ϕ-Connes amenable dual Banach algebras, which are
not Connes amenable.

Example 5.1. Let H be a Hilbert space with dimH > 1. Suppose that ϕ is a non-zero
linear functional on H with ∥ϕ∥ ≤ 1. Define a ∗ b = ϕ(a)b for every a, b ∈ H. One can
easily show that (H, ∗) is a Banach algebra and ∆(H) = {ϕ}. We claim that (H, ∗) is a
dual Banach algebra. By [7, Exercise 4.4.1], it is sufficient to show that the multiplication ∗
is separately wk∗-continuous. Let (aα)α∈I be a net in H such that aα

wk∗−−→ a and let b ∈ H.

So b ∗ aα = ϕ(b)aα
wk∗−−→ ϕ(b)a = b ∗ a. Since H∗∗ = H, aα(ϕ) −→ a(ϕ). So ϕ(aα) −→ ϕ(a).

Hence aα ∗ b = ϕ(aα)b −→ ϕ(a)b = a ∗ b. So aα ∗ b
wk∗−−→ a ∗ b. Thus (H, ∗) is a dual Banach

algebra. Already we have shown that ϕ is a wk∗-continuous character on H∗. Pick a0 in
H such that ϕ(a0) = 1. So a ∗ a0 = ϕ(a)a0 and ϕ(a0) = 1 for every a ∈ H. Thus H is
ϕ-amenable. Since H∗∗ = H is a normal dual Banach H-bimodule, by [6, Proposition 4.4],
σwc(H∗) = H∗ = H. So a0 ∈ (σwc(H∗))∗ such that a0(ϕ) = 1 and

a0(f · a) = f · a(a0) = f(a ∗ a0) = f(ϕ(a)a0) = ϕ(a)a0(f),

for every a ∈ H and f ∈ σwc(H∗). So H is ϕ-Connes amenable. We assume conversely
that H is Connes amenable. Then H has an identity, say E. So for every a ∈ H, ϕ(a)E =
a ∗ E = E ∗ a = a. It follows that a = ϕ(a)E for every a ∈ H. So dimH = 1, which is a
contradiction.
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Example 5.2. Set A =

(
C C
0 0

)
. With the usual matrix multiplication and ℓ1-norm, A is

a Banach algebra. Since C is a dual Banach algebra, A is a dual Banach algebra. We define a

map ϕ : A −→ C by ϕ

(
x y
0 0

)
= x. It is clear that ϕ is linear and multiplicative. Suppose

that Xα =

(
xα yα
0 0

)
and X =

(
x y
0 0

)
are elements in A such that Xα

wk∗−−→ X, it

is easy to see that xα → x, thus ϕ is wk∗-continuous and ϕ ∈ ∆wk∗(A). Now we show
that A is not Connes amenable. If A is Connes amenable, then by applying [5, Proposition

4.1], A has an identity say E =

(
x0 y0
0 0

)
, where x0, y0 ∈ C. Since ϕ is a multiplicative

functional, ϕ(E) = 1. So x0 = 1. For every a, b ∈ C, we have(
a b
0 0

)
=

(
a b
0 0

)(
1 y0
0 0

)
=

(
a ay0
0 0

)
, (13)

which implies that ay0 = b for every a, b ∈ C, which is a contradiction. Hence A is not

Connes amenable. Next we show that A is ϕ-Connes amenable. Let u =

(
1 1
0 0

)
⊗(

1 1
0 0

)
∈ A⊗̂A. Since A⊗̂A embeds in (σwc(A⊗̂A)∗)∗, we may assume that u is in

(σwc(A⊗̂A)∗)∗. Now for every a, b ∈ C, we have(
a b
0 0

)
· u =

(
a b
0 0

)(
1 1
0 0

)
⊗
(

1 1
0 0

)
=

(
a a
0 0

)
⊗
(

1 1
0 0

)
= a

(
1 1
0 0

)
⊗

(
1 1
0 0

)
= ϕ

(
a b
0 0

)(
1 1
0 0

)
⊗
(

1 1
0 0

)
= ϕ

(
a b
0 0

)
u.

and also

⟨u, ϕ⊗ ϕ⟩ = ϕ

(
1 1
0 0

)
ϕ

(
1 1
0 0

)
= 1× 1 = 1.

Now by Proposition 3.1, A is ϕ-Connes amenable.
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