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ON THE ELECTRODYNAMICAL RELATIVITY  

F. MANEA, E. CAZACU ∗ 

Pentru două sisteme neinerţiale aflate în mişcare relativă unul faţă de 
celălalt (unul inductor şi altul indus), matricile Lorentz rezultă prin transformarea  
mărimilor specifice câmpului electromagnetic şi a operatorilor de derivare de la un 
sistem la celălalt. Folosind expresia maticială pentru valorile componentelor 
paralelă şi normală a vitezei relative, se pot obţine în formă explicită, ecuaţiile 
covariant tensoriale. Pentru mişcare uniformă a unui sistem inerţial, folosind bune 
aproximaţii ale mărimilor câmpului electromagnetic este stabilită o formă distinctă 
a transformării cinematice Galilei respectiv “anti-Galilei”. Relaţiile cinematice 
dintre operatorii spaţio-temporari de derivare rezultă ca subordonaţi proprietăţilor 
câmpului electromagnetic. 

For a pair of non-inertial systems (inductor and induced) in relative non-
uniform movement or relative rest of each system, Lorentz matrices result by 
transition from own electromagnetic values and space–time derivative operators of 
one system to another. Using the matrix expressions for the values of the parallel 
and normal components to the relative velocity intrinsecal, manifest covariant 
tensorial equations are obtained. For uniform movement of the inertial systems, 
using some good approximations of the electromagnetic quantities is established a 
peculiar form of the kinematic transformation Galilei or “anti-Galilei”. The 
kinematic relations between the time-space derivative operators result as 
subordinated to the electromagnetic field properties. 
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Introduction 

The relativity theory of Einstein and Minkowski, based on the principle of 
inertial systems equivalence and Lorentz’s kinematic transformation, was born 
from the necessity of agreement between the theory of moving mediums and 
experimental observations. 

Although Lorentz’s transformation was found in electrodynamics [1], later 
the electrodynamic phenomena were explained by kinematic relations [2, 3]. But 
relativistic aspects of pre-relativistic electrodynamics were rendered manifest 
without kinematical relations [4, 5], Lorentz’s transformation resulting from the 
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covariance of a differential equation obtained through time-space derivative 
operators. 

In the following we use the principle of electromagnetic state dependence 
of reference systems attached to the bodies on their relative motion, each system 
being able to be considered either as fixed or in relative movement. 

Faraday’s experiences rendered manifest the importance of the relative 
movement between the inductor and the induced system, this phenomenon is well 
known today from the theory and practice of electrical machines. 

Using the components of vector state physical values parallel and normal 
to the speed vector for passing from the electromagnetic field values and also 
from the suitable space-time derivative operators associated to a system to the 
quantities of the other system, we have obtained Lorentz matrices without any 
restrictive hypotheses  regarding the space-time dependence of the relative speed. 

The tensorial state and evolution equations of Maxwell-Minkowski are 
presented as matrices in intrinsic, intuitive and manifest covariant form; in this 
way we have avoided the abstract symbolism with indices, elegant but unfriendly 
[6], considered also a “mathematical trick” [7]. 

 For the inertial systems in the relativistic electrodynamics, taking the 
magnetic flux density and electric displacement as absolute magnitudes the Galilei 
transformation results (absolut time) if the constitutive relation are not used. 

If the constitutive relations are used in the hypothesis of absolute magnetic 
flux density and relative electric displacement, a kinematic transformation “anti-
Galilei“ is obtained (absolute space and relative time), so that is justified the 
subordination of the kinematic properties to the electrodynamic ones, and not 
vice-versa. 

1. Relativistic transformation of electromagnetic physical values 

Let be a pair of referential systems S and S0 attached to the moving bodies 
in relative movement (“reciprocal systems”): the system S is moving with the 
speed v relative to the system S0, and system S0 is moving with the speed v0 = –v 
relative to the system S. 

Decomposing the electric and magnetic field vectors into parallel 
component (index p) and normal component (index n) to the speed vector 
(generally non constant), for the non-inertial systems we will have the following 
classical equations: 
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If after a motion of system S with the speed v relative to S0 is considered 
also a motion of the system S0 with the speed v0 = –v relative to the system S, the 
initial state must be re-established and so the above mentioned matrices must be 
in an inversion relation. This means that their multiplication must be equal to the 
unit matrix. Since ( ) 0

n
200

n
20 FvvFvv cc ≡××− , because 00

n
00

n =−= FvFv , 
a factor different of unit is obtained. 

( ) .
10
01

1

10
01

1
1

1
1

20

20

20

20

0
2

⎥
⎦

⎤
⎢
⎣

⎡
×+=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×+
×+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×−
×

⎥
⎦

⎤
⎢
⎣

⎡
×−

×

c

c
c

cc

vv

vv
vv

v
v

v
v

  (4) 

For removing this factor 2202220 111 cvcvc −=−=+ vv , 

symmetrically is attached to each matrix a norming factor 
21

2201
−
⎟
⎠
⎞

⎜
⎝
⎛ −=γ cv , 

specific to the Lorentz matrix. 
Instead of matrices from relations (2) and (3), that contain vector products 

of speeds, it can be used a matrix with algebraic values of the speed in order to 
transform some bi-tensors of the electromagnetic field as follows:  
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Here i is the unit vector of the speed orientation v = iv = –iv0 . 
Similar equations can be obtained also for other physical values 

(polarization vector P and magnetization M), between which are similar relations. 
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The tensor relations (5) and (6) written above in an intrinsic form, are 
identical with the equations between the essential components of electromagnetic 
field  tensors grouped explicitly in matrices with bi-vector properties [5].   

Similar transformation matrices result also for the bi-vector components 
[Jn  ρ] of the current density quadri-vector  J = Jn + Jp and electric charge 
density ρ [5]. 
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2. The relativistic transformation of the derivatives and space-time 
differential operators 

This transformation is obtained by imposing the covariance property to a 
space-time differential equation, from electrodynamics.  

The expression of electric charge conservation law 
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nn ∇=∇ , after the substutition of  bi-vector  

[ ]ρnJ  components from (7), it results the following equation: 
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The equations (9) and (10) are covariant if we associate to each referential 

system own operators of space-time derivatives according the following relations: 
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The differential transformation results after imposing the total diferential‘s 

invariance of any scalar function: 
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Further on, for inertial systems (v = const.) the equations become: 
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By integration in null initial conditions and for the origin of coordinates 

the special Lorentz transformations of the time and space coordinates result: 
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The same transformation matrix was obtained previously (5, 6) in more 

general conditions of non-uniform relative speed (non-inertial systems) for 
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3. The equations of electromagnetic field and their covariance 

For the analyse of the state and evolution equations covariance of the 
electromagnetic field, these are grouped in pairs of homogeneous and 
inhomogenous equations: 
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By decomposing the different physical values and operators in parallel and 
normal components towards the relative speed (v = iv = –v0 = –iv0), they may be 
obtained the following equations. 
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3.1. Implicit intrinsic equations 
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3.2. Intrinsic explicit tensor equations 
Let F be an arbitrary vector with normal component Fn and parallel 

component Fp = iFx to the speed vector v = ivx, with spatial derivative operator 
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With these relations, the implicit intrinsic equations (16) can be explicitly 

expressed using matrices as follow:   
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These equations are manifest covariant because in relations (17) we have 
produced terms with inverse matrix transformations: 



On the electrodynamic relativity 67

              

,
1

1

,
1

1

2

00

2

00

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂

∂

∂
−γ=⎥⎦

⎤
⎢⎣
⎡

∂
∂

∂
∂

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

∂

∂

∂

∂
γ=⎥⎦

⎤
⎢⎣
⎡

∂
∂

∂
∂

v
cv

xtxt

v
cv

xtxt
                         (18) 

 

,
1

1
0
n

0
n

2

n

n

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−γ=⎥

⎦

⎤
⎢
⎣

⎡
× Ei

B
Ei

B

v
cv  ,

1
1

0
n

0
n

2

n

n

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
γ=⎥

⎦

⎤
⎢
⎣

⎡
× Hi

D
Hi

D

v
cv  

and added terms are manifest covariant 
                .; 00

nn
00

nn xxxx HHEE iiii ×−∇=×∇−×∇=×∇  
In equations (17’) the added terms have the same tranformation matrix 

,
1

1
0
n

0
n

2
n

n

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ×
⎥
⎦

⎤
⎢
⎣

⎡
γ=⎥

⎦

⎤
⎢
⎣

⎡ ×

B
iE

B
iE

cv
v

  ,
1

1
2

n

n
⎥
⎦

⎤
⎢
⎣

⎡
−

−
γ=⎥

⎦

⎤
⎢
⎣

⎡ ×
cv

v
D

iH
            (19) 

 
and for inertial systems (v = const). 
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4. Relativistic aspects of pre-relativistic electrodynamics 

In pre-relativistic electrodynamics theory of moving bodies [8] four vector 
physical values of electromagnetic field were used E, B, H, D, without 
constitutive relationship between them. Hertz condidered magnetic flux density B, 
and electric displacement D as absolute physical values (B = B0 for homogenous 
equations and D = D0  for non homogenous equations). In these hypotheses for 
inertial systems a kinematic transformation with absolute time and relative space 
is obtained (Galilei). 

If the constitutive relationship is considered B = μH, absolute B implies 
absolute H (H = H0) and from non homogenous equations for inertial systems it 
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results a kinematic transformation with absolute space (x = x0) and relative time 
( )200 cvxtt −= , complementary to Galilei transformation. 

 
5.1. Galilei kinematic transformation   
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The same operation 02 =cv  and γ = 1 must be performed to the 
transformation matrix of space-time derivative operators for preserving the 
covariance of equations. 

But the transformation of  operators is also valid for non-inertial systems  
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and for inertial systems and null initial condition, is added a space–time 
equation (kinematic) with absolute time and relative space (Galilei). 
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5.2. Complementary kinematic transformation   
For common values of magnetic flux density and magnetic strength in air 

( )0μ= BH , and for electric displacement and electric strength ( )0ε= DE , the 
movement in magnetic field has major electric field effects, and the movement in 
electric field has minor magnetic field effects [9]. 

Therefore in applications (in technique) is very important the value of 
absolute magnetic flux density ( )0BB ≅  and as a consequence the absolute value 

of magnetic field strength ( )0HH ≅  for non-homogeneous equations. 
In this case in tensor equations (6) the substitutions v = 0 and γ = 1 must be 

made. So:    
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For inertial systems and null space-time initial conditions a kinematic 
equation with absolute space and relative time is obtained, in fact a 
complementary transformation matrix to Galilei transformation 
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As a consequence, the properties of electromagnetic field are prior to the 
kinematic properties. That is because the kinematic properties result as a 
consequence (not as a premise), what justifies the name of electodynamic 
relativity given to the theory of relativity based on the objective properties of the 
electromagnetic field. 

Conclusions 

1. The physical values attached to the electromagnetic state expressed in 
the intrinsic form, with normal and parallel components to the relative speed 
vector, of non-inertial reference systems attached to the bodies and the field were 
grouped as bi-tensors and bi-vectors, with matrix special Lorentz transformation 
relations. 

2. Using covariance of a differential space-time equation from 
electrodynamics similar transformations were resulted for space-time derivatives 
and differential operators. 

3. At the integration of kinematic relations of differential equations 
attached to the inertial systems with null space-time initial conditions, the special 
Lorentz kinematic relations  were obtained. 

4. Using bi-tensors and bi-vectors attached to the electromagnetic field 
quantities and space-time derivative operators, intuitive matrix equations manifest 
covariant for state and evolution equations of electromagnetic field are obtained. 

5. In the practical hypothesis (advantageous for technical applications) 
considering the magnetic flux density as an absolute quantity (independent of the 
reference system in the relative inertial movement), a kinematic Galilei 
transformation results. 

Using the same practical hypothesis to the magnetic strength, according to 
the constitutive relation, a complementary kinematic transformation results 
(named anti-Galilei). This additional fact justifies the name of electrodynamics 
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relativity given to the relativity theory based on the objective properties of the 
electromagnetic state. 
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