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ON THE ELECTRODYNAMICAL RELATIVITY

F. MANEA, E. CAZACU "

Pentru doud sisteme neinertiale aflate in miscare relativa unul fata de
celalalt (unul inductor si altul indus), matricile Lorentz rezultd prin transformarea
marimilor specifice cdmpului electromagnetic si a operatorilor de derivare de la un
sistem la celalalt. Folosind expresia maticiald pentru valorile componentelor
paralela si normald a vitezei relative, se pot obtine in forma explicitd, ecuatiile
covariant tensoriale. Pentru miscare uniformd a unui sistem inertial, folosind bune
aproximatii ale marimilor cdmpului electromagnetic este stabilitd o forma distincta
a transformarii cinematice Galilei respectiv “anti-Galilei”. Relatiile cinematice
dintre operatorii spatio-temporari de derivare rezultd ca subordonati proprietatilor
campului electromagnetic.

For a pair of non-inertial systems (inductor and induced) in relative non-
uniform movement or relative rest of each system, Lorentz matrices result by
transition from own electromagnetic values and space—time derivative operators of
one system to another. Using the matrix expressions for the values of the parallel
and normal components to the relative velocity intrinsecal, manifest covariant
tensorial equations are obtained. For uniform movement of the inertial systems,
using some good approximations of the electromagnetic quantities is established a
peculiar form of the kinematic transformation Galilei or “anti-Galilei”. The
kinematic relations between the time-space derivative operators result as
subordinated to the electromagnetic field properties.
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Introduction

The relativity theory of Einstein and Minkowski, based on the principle of
inertial systems equivalence and Lorentz’s kinematic transformation, was born
from the necessity of agreement between the theory of moving mediums and
experimental observations.

Although Lorentz’s transformation was found in electrodynamics [1], later
the electrodynamic phenomena were explained by kinematic relations [2, 3]. But
relativistic aspects of pre-relativistic electrodynamics were rendered manifest
without kinematical relations [4, 5], Lorentz’s transformation resulting from the
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covariance of a differential equation obtained through time-space derivative
operators.

In the following we use the principle of electromagnetic state dependence
of reference systems attached to the bodies on their relative motion, each system
being able to be considered either as fixed or in relative movement.

Faraday’s experiences rendered manifest the importance of the relative
movement between the inductor and the induced system, this phenomenon is well
known today from the theory and practice of electrical machines.

Using the components of vector state physical values parallel and normal
to the speed vector for passing from the electromagnetic field values and also
from the suitable space-time derivative operators associated to a system to the
quantities of the other system, we have obtained Lorentz matrices without any
restrictive hypotheses regarding the space-time dependence of the relative speed.

The tensorial state and evolution equations of Maxwell-Minkowski are
presented as matrices in intrinsic, intuitive and manifest covariant form; in this
way we have avoided the abstract symbolism with indices, elegant but unfriendly
[6], considered also a “mathematical trick” [7].

For the inertial systems in the relativistic electrodynamics, taking the
magnetic flux density and electric displacement as absolute magnitudes the Galilei
transformation results (absolut time) if the constitutive relation are not used.

If the constitutive relations are used in the hypothesis of absolute magnetic
flux density and relative electric displacement, a kinematic transformation “anti-
Galilei“ is obtained (absolute space and relative time), so that is justified the
subordination of the kinematic properties to the electrodynamic ones, and not
vice-versa.

1. Relativistic transformation of electromagnetic physical values

Let be a pair of referential systems S and S” attached to the moving bodies
in relative movement (“reciprocal systems”): the system S is moving with the
speed v relative to the system Sp, and system S° is moving with the speed v° = —v
relative to the system S.

Decomposing the electric and magnetic field vectors into parallel
component (index p) and normal component (index n) to the speed vector
(generally non constant), for the non-inertial systems we will have the following
classical equations:
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If after a motion of system S with the speed v relative to S” is considered
also a motion of the system S” with the speed v’ = —v relative to the system S, the
initial state must be re-established and so the above mentioned matrices must be
in an inversion relation. This means that their multiplication must be equal to the
unit matrix. Since (— VX vo/cz)x FI? = Vvo/c2 Fr(l), because VFI(l) = —VOFI? =0,
a factor different of unit is obtained.

{ 1 VX} 1 V0><=1+VV0/02>< 0 _
—v/e?x 1 VOt x 1 0 1+w?/c? x @

_ (1+VV0/02 x)[(l) 0}.

1
2
For removing this factor 1+VV0/c2 :1—\)2/02 =1-" /02 ,
) -1/2
symmetrically is attached to each matrix a norming factor y = (l—vo / czj ,

specific to the Lorentz matrix.

Instead of matrices from relations (2) and (3), that contain vector products
of speeds, it can be used a matrix with algebraic values of the speed in order to
transform some bi-tensors of the electromagnetic field as follows:

E. | [ 1 V][ E° Hy, T [ 1 =v]| H® 5
ixB, _yv/cz 1 ing ’ ixD, _Y—v/c2 1 ing > 6
ixEp|_ [ U —vlixEy | [IxHa|_ [ 1 v]lixHR|
B, o Bg " | Dy _YV/C2 1 Dg - ©

Here i is the unit vector of the speed orientation v = iv = —iv’ .
Similar equations can be obtained also for other physical values
(polarization vector P and magnetization M), between which are similar relations.
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The tensor relations (5) and (6) written above in an intrinsic form, are
identical with the equations between the essential components of electromagnetic
field tensors grouped explicitly in matrices with bi-vector properties [5].

Similar transformation matrices result also for the bi-vector components
[Jn p] of the current density quadri-vector J = Jn + Jp and electric charge
density p [5].

ot [l o S} B U0 o

2. The relativistic transformation of the derivatives and space-time
differential operators

This transformation is obtained by imposing the covariance property to a
space-time differential equation, from electrodynamics.
The expression of electric charge conservation law
op

VI+—=0, 8
Py ®)
with the operatorV =V, +V, =V, + ii is written in matrix form as
ox
J
2 2l v, =0 )
ox ot]|l p
Because J, = Jg and V= Vg , after the substutition of bi-vector
[Jn p] components from (7), it results the following equation:
1 _ 0
R T e R T (10)
ox o] -v/et 1 ]]p°

The equations (9) and (10) are covariant if we associate to each referential
system own operators of space-time derivatives according the following relations:

0o 0 1 Y 0 0
{a aH_v/cz lHa—o at—o}- (1

The differential transformation results after imposing the total diferential‘s
invariance of any scalar function:
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Further on, for inertial systems (v = const.) the equations become:

[dx dt]={dx0 dtOHI _V{Cq,

-V
dx B 1 —v || dx°
dt - v/ 1 dl |

By integration in null initial conditions and for the origin of coordinates
the special Lorentz transformations of the time and space coordinates result:

X 1 —v] x9 y 1 0] 0
=7 2 s = yO . (14)
t —v/c 1| ¢ z 0 1|;
The same transformation matrix was obtained previously (5, 6) in more
general conditions of non-uniform relative speed (non-inertial systems) for

xE, H, .
and | . respectively.
ixD,

(13)

i
bi-tensors {

n

3. The equations of electromagnetic field and their covariance

For the analyse of the state and evolution equations covariance of the
electromagnetic field, these are grouped in pairs of homogeneous and
inhomogenous equations:

VxE+§:O, VxH—@zJ,
ot ot (15)
VB =0, VD =p.
By decomposing the different physical values and operators in parallel and
normal components towards the relative speed (v = iv=—v’ =—iv"), they may be
obtained the following equations.
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3.1. Implicit intrinsic equations

oB oD
[VxE], + atﬂ:o, [VxH]n—a—tann,
oB oD
[VXE]p+a—tp=0, [VxH]p—a—tp=Jp, (16)

VuBn +VpB, =0, VD, +V,D, =p.

3.2. Intrinsic explicit tensor equations
Let F be an arbitrary vector with normal component Fn and parallel
component Fp = iFx to the speed vector v = iv,, with spatial derivative operator

V=V,+V, :Vn+i£ , we have:
ox

(VxF)n =V, xF, +Vp xFy =anin+%(ian);
(VXF)p =V xFy; i(anFn):Vn(FnXi); (16)

VE=V . F, +2F,.
Oox

With these relations, the implicit intrinsic equations (16) can be explicitly
expressed using matrices as follow:

B D, |
P 3} 1 +V,xIE, =0, [_a a] BV xiH, =3, (17)
ot ox||IxE o ox]|IxH |

0 0|
E,xi 5 s H,xi _5 nes ,
vn[ . }r in_o, vn[ o. |*] & De=|" | (17°)
Oox Ox

These equations are manifest covariant because in relations (17) we have
produced terms with inverse matrix transformations:
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(18)
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and added terms are manifest covariant
V, xiE, =VYxiEY;, —v, xiH, =-vIxiH?.
In equations (17°) the added terms have the same tranformation matrix

[E;: i}zymz THEQO i} {H XI} LV/C lv} (19)

and for inertial systems (v = const).

0 0 0 _ 0
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4. Relativistic aspects of pre-relativistic electrodynamics

In pre-relativistic electrodynamics theory of moving bodies [8] four vector
physical values of electromagnetic field were used E, B, H, D, without
constitutive relationship between them. Hertz condidered magnetic flux density B,
and electric displacement D as absolute physical values (B = B for homogenous
equations and D =D’ for non homogenous equations). In these hypotheses for
inertial systems a kinematic transformation with absolute time and relative space
is obtained (Galilei).

If the constitutive relationship is considered B = pH, absolute B implies
absolute H (H =H") and from non homogenous equations for inertial systems it
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results a kinematic transformation with absolute space (x =x0) and relative time

(t =19 —x0 v/ c? ), complementary to Galilei transformation.

5.1. Galilei kinematic transformation

Considering as absolute induction and displacement (B, = Bg and

D,= Dg) in tensor equations (5) and (6) we have v/ ¢?=0 and y=1

E, 1 [t v][ ixH, | [T v][ixH
|:i><Bn:|_|:O l}lingzl, [ Dy }_{0 J{ Dg :l o

The same operation v/ ¢?=0 and y=1 must be performed to the

transformation matrix of space-time derivative operators for preserving the
covariance of equations.
But the transformation of operators is also valid for non-inertial systems

0 9

~ 1 0 0

%C - {v 1} a)é @2)
5 6t0

and for inertial systems and null initial condition, is added a space—time
equation (kinematic) with absolute time and relative space (Galilei).

X 1 —v xO
= ) 23
M {0 I Hto} )
5.2. Complementary kinematic transformation

For common values of magnetic flux density and magnetic strength in air
(H=B/ug), and for electric displacement and electric strength (E =D/g ), the

movement in magnetic field has major electric field effects, and the movement in
electric field has minor magnetic field effects [9].
Therefore in applications (in technique) is very important the value of

absolute magnetic flux density \B = BO) and as a consequence the absolute value

of magnetic field strength (H = HO) for non-homogeneous equations.

In this case in tensor equations (6) the substitutions v =0 and y = 1 must be
made. So:
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For inertial systems and null space-time initial conditions a kinematic
equation with absolute space and relative time is obtained, in fact a
complementary transformation matrix to Galilei transformation

m i [— v} 2 ﬂ tcg ] (25)

As a consequence, the properties of electromagnetic field are prior to the
kinematic properties. That is because the kinematic properties result as a
consequence (not as a premise), what justifies the name of electodynamic
relativity given to the theory of relativity based on the objective properties of the
electromagnetic field.

Conclusions

1. The physical values attached to the electromagnetic state expressed in
the intrinsic form, with normal and parallel components to the relative speed
vector, of non-inertial reference systems attached to the bodies and the field were
grouped as bi-tensors and bi-vectors, with matrix special Lorentz transformation
relations.

2. Using covariance of a differential space-time equation from
electrodynamics similar transformations were resulted for space-time derivatives
and differential operators.

3. At the integration of kinematic relations of differential equations
attached to the inertial systems with null space-time initial conditions, the special
Lorentz kinematic relations were obtained.

4. Using bi-tensors and bi-vectors attached to the electromagnetic field
quantities and space-time derivative operators, intuitive matrix equations manifest
covariant for state and evolution equations of electromagnetic field are obtained.

5. In the practical hypothesis (advantageous for technical applications)
considering the magnetic flux density as an absolute quantity (independent of the
reference system in the relative inertial movement), a kinematic Galilei
transformation results.

Using the same practical hypothesis to the magnetic strength, according to
the constitutive relation, a complementary kinematic transformation results
(named anti-Galilei). This additional fact justifies the name of electrodynamics
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relativity given to the relativity theory based on the objective properties of the
electromagnetic state.
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