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TECHNIQUE FOR NON-CONVEX SPLIT FEASIBILITY PROBLEMS
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In this paper, an inertial relaxed S-subgradient projection algorithm is suggested

to seek the solution of non-convex split feasibility problems in finite dimensional spaces.

We obtain a convergence theorem for the sequence yielded by the proposed algorithm

under implemented conditions on the step-size which does not rely on the spectral radius

of the matrix.
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1. Introduction

In this research, we study the following split feasibility problem (abbr. SFP):

find x ∈ C such that Ax ∈ Q, (1)

where C ⊂ Rn and Q ⊂ Rm are non-empty closed convex subsets, A : Rn → Rm is a matrix

(a bounded and linear operator).

The SFP was first studied in Euclidean spaces by Censor [8] in 1994 for modeling in-

verse problems which arise from medical imageology and in modeling of Intensity-Modulated

Radiation Therapy (IMRT) recently [3, 4, 5, 9], and extended to infinite dimensional spaces

afterwards [25].

Many iterative algorithms closely related to the SFP, fixed point and optimization

techniques have been investigated; please see, [4]-[44]. Byrne [4, 5], among them, employed

the classical CQ algorithm:

xk+1 = PC
(
xk − ςkAT (I − PQ)Axk

)
, k ≥ 1, (2)

where PC and PQ are the perpendicular projections onto C and Q, respectively, and the

step-size ςk ∈ (0, 2/ξ) with ξ (substitute ξ with ‖A‖2 equivalently) being the spectral radius

of matrix ATA. The subsets C and Q in the formula (2) can be discussed in another form,

i.e., the level sets as follows:

C0 = {x ∈ Rn : c(x) ≤ 0} and Q0 = {y ∈ Rm : q(y) ≤ 0}, (3)

where c and q are convex functions from Rn and Rm to R, respectively.

However, projections on non-empty closed convex sets and level sets have no closed

form, which immensely affects the operation of algorithm (2). Regarding this question,

Yang [26] presented relaxed CQ algorithm that the projections involved are on half-spaces
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containing the level sets instead of directly calculating the projections on the level sets. The

relaxed CQ algorithm [26] is as follows:

xk+1 = PCk
0
(xk − ςkAT (I − PQk

0
)Axk), k ≥ 1, (4)

with ςk ∈
(
0, 2/‖A‖2

)
,

Ck0 := {x ∈ Rn : 〈x− xk, φk〉+ c(xk) ≤ 0}

and

Qk0 := {y ∈ Rm : 〈y −Axk, ϕk〉+ q(Axk) ≤ 0} ,

here φk ∈ ∂c(xk), ϕk ∈ ∂q(Axk), respectively.

Projections on the above two half-spaces have closed form, however, the step-size ςk
in (4) is depends on matrix norm ‖A‖, so, the algorithm suggested with such step-size is

of little actual application and maneuverability, see [13]. To overcome this problem, López

[15] rewrote algorithm (4) as

xk+1 = PCk
0

(xk − ςk∇fk(xk)) , k ≥ 1, (5)

with objection function

fk(x) =
1

2
‖Ax− PQk

0
(Ax)‖2 (6)

and its gradient ∇fk(x) = AT
(
I − PQk

0

)
Ax.

The step-size in algorithm (5) is defined by

ςk := λk
fk(xk)

‖∇fk(xk)‖2
, 0 < λk < 2. (7)

The convergence of algorithm (5) with step-size (7) is guaranteed under the computation of

metric projections onto half-spaces and not necessary to estimate the norm of matrix.

Recently, Dang [11] applied the inertial accelerated craftsmanship of Alvarez [1] to

Yang’s relaxed CQ algorithm (4) and suggested inertial accelerated relaxed CQ algorithm

to solve the SFP as follows:

xk+1 = PCk
0

(Uk(xk + θk(xk − xk−1))) , (8)

where x1, x2 be chosen arbitrary, Uk = I − γFk, Fk = AT (I − PQk
0
)A, γ ∈

(
0, 2/‖A‖2

)
.

On the other hand, let Gc and Gfk be two subgradient projectors associated with

(c, 0) and (fk, 0), respectively, here the function c appears in the above formula (3) and

the function fk is mentioned in (6). Then Guo [13] proposed the following subgradient

projection algorithm for solving the SFP,

xk+1 = Gc (Rλkfk(xk)) (9)

where Rλkfk = I + λk (Gfk − I), λk ∈ (0, 2).

There is a natural question as follows:

Question: Can the algorithm (9) and its variants with inertial accelerated craftsmanship

be combined with the step-size is used in (7)?

Motivated by the works of Dang [11] and Guo [13], we suggest in the paper a new

form of subgradient projection algorithm to solve the SFP in which the step-size is used

in (7) and combine with the inertial accelerated craftsmanship. Moreover, the functions c

and q in (3) we consider are both continuous, S-subdifferential (see Definition 2.2), locally

Lipschitzian, not necessarily convex instead of the original convex.
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2. Preliminaries

Let S ⊆ Rn be nonempty closed subset, denote by PS the orthogonal (metric) pro-

jection from Rn onto S; that is,

PS(x) := argminy∈S‖x− y‖, x ∈ Rn.

Definition 2.1 ([2]). Let f : Rn → R be a real function. Denote by Levf = {x ∈ Rn : f(x) ≤ ξ}
the level set of f .

In order to define S-subgradient projector of a continuous function, we need to intro-

duce the definition of S-subdifferential.

Definition 2.2 ([13]). Given S ⊆ Rn and rf > 0, a vector u ∈ Rn is said to be an

S-subgradient of function f : Rn → R at x if

〈y − x, u〉+ f(x) +
rf
2
d2S(x) ≤ f(y) +

rf
2
d2S(y), y ∈ Rn.

The set of all S-subgradients of function f at x is called S-subdifferential of f at x and is

denoted by

∂Srf f(x) =
{
u ∈ Rn : 〈y − x, u〉+ f(x) +

rf
2
d2S(x) ≤ f(y) +

rf
2
d2S(y), y ∈ Rn

}
(10)

where dS(x) = infy∈S ‖x− y‖ is the usual distance from the point x to the set S.

If rf = 0 in (10), the S-subdifferential is the following Fenchel subdifferential. So

does S = Rn.

Definition 2.3 ([2]). Given a not necessarily convex function f : Rn → R, define its Fenchel

subdifferential at x,

∂f(x) := {u ∈ Rn : 〈y − x, u〉+ f(x) ≤ f(y), ∀y ∈ Rn} . (11)

When f is convex, ∂f(x) is the usual subdifferential.

To define S-subgradient projector of a continuous function, we also need the following

property.

Lemma 2.1 ([13]). Let S be closed and convex and Cξ = Levf be a non-empty set such

that Cξ ⊆ S ⊆ Rn. Let f : Rn → R be S-subdifferential on Rn with respect to S. Then there

exists a constant rf > 0 and for any x /∈ Cξ such that

sf (x) ∈ ∂Srf f(x)⇒ sf (x) 6= 0.

Next, we can define the S-subgradient projector.

Definition 2.4 ([13]). Assume that f : Rn → R is continuous and S-subdifferential on Rn
with respect to S. Let S be closed and convex and Cξ = Levf be a non-empty set such that

Cξ ⊆ S ⊆ Rn. Assume that ∂Srf f(x) is the S-subdifferential of f with respect to S and

sf (x) ∈ ∂Srf f(x). The S-subgradient projector onto Cξ related to (f, ξ) is

GS,f : Rn → Rn

x 7→

{
x, x ∈ Cξ,
x+ ξ−f(x)

‖sf (x)‖2 sf (x), x /∈ Cξ.

Lemma 2.2 ([13]). Let S ⊆ Rn be closed and convex and f : Rn → R be S-subdifferential

on Rn with respect to S. There exists a constant rf > 0 such that

u ∈ ∂Srf f(x)⇔ u ∈ ∂f(x) + rf (I − PS)(x).
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Lemma 2.3 ([2]). Let a, b ∈ R and x, y ∈ Rn. It then follows that

‖ax+ by‖2 = a(a+ b)‖x‖2 + b(a+ b)‖y‖2 − ab‖x− y‖2.

Lemma 2.4 ([1]). Let {sk} and {tk} be two nonnegative real sequences such that

sk+1 − sk ≤ σk(sk − sk−1) + tk, Σ∞k=1tk <∞

where {σk} ⊂ [0, σ] with 0 < σ < 1. Then the sequence {sk} is convergent.

3. Split Feasibility Problem in Non-convex Case

3.1. Notions

We now consider the split feasibility problem in non-convex frames:

find x ∈ C0 such that Ax ∈ Q0, (12)

where A : Rn → Rm, C0 and Q0 are mentioned in (3), however, the functions c and q

are both assumed to be continuous, S-subdifferential, locally Lipschitzian, not necessarily

convex instead of the original convex. Assume that the solution set Γ := {x ∈ C0 : Ax ∈ Q0}
of problem (12) is non-empty.

Some assumptions and conditions on problem (12) are listed as follows. Assume that

• Sn ⊆ Rn and Sm ⊆ Rm are two closed convex sets satisfying C0 ⊆ Sn and Q0 ⊆ Sm,

respectively.

• ∂Snrcc(x) and ∂Smrqq(y) are the S-subdifferential of c and q with respect to Sn and

Sm, respectively, where rc > 0 and rq > 0 are two constants.

• sc(x) ∈ ∂Snrcc(x) is the S-subgradient of c at x ∈ Rn; sq(y) ∈ ∂Smrqq(y) is the S-

subgradient of q at y ∈ Rm.

From the assumptions and conditions mentioned above, by Definition 2.2, Definition 2.4 and

Lemma 2.1, we define the S-subgradient projector onto C0 related to (c, 0) as

GSn,c : Rn → Rn

x 7→

{
x, x ∈ C0,

x+ −c(x)
‖sc(x)‖2 sc(x), x /∈ C0.

Another S-subgradient projector GSm,q : Rm → Rm is defined in the same way.

Moreover, according to sc(xk) ∈ ∂Snrcc(xk) and sq(Axk) ∈ ∂Smrqq(Axk), we define

the following half-spaces

Ck0 = {u ∈ Rn : 〈u− xk, sc(xk)〉+ c(xk) ≤ 0} , k ≥ 1,

and

Qk0 = {v ∈ Rm : 〈v −Axk, sq(Axk)〉+ q(Axk) ≤ 0} , k ≥ 1.

Set

fk(x) =
1

2

∥∥∥x− PCk
0
(x)
∥∥∥2 and gk(x) =

1

2

∥∥∥Ax− PQk
0
(Ax)

∥∥∥2
and can readily obtain that

∇fk(x) = x− PCk
0
(x) and ∇gk(x) = AT

(
Ax− PQk

0
(Ax)

)
.

Denote the subgradient projector related to (fk, 0) by Gfk , i.e.,

Gfk : Rn → Rn

x 7→

{
x, x ∈ Ck0 ,
x+ −fk(x)

‖∇fk(x)‖2
∇fk(x), x /∈ Ck0 .

(13)
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Similarly, denote the subgradient projector associated with (gk, 0) by Ggk , i.e.,

Ggk : Rn → Rn

x 7→

{
x, Ax ∈ Qk0 ,
x+ −gk(x)

‖∇gk(x)‖2
∇gk(x), Ax /∈ Qk0 .

(14)

Before constructing the iterative algorithm for solving the non-convex split feasibility

problem (12), we mark

Rµkfk = I + µk (Gfk − I) ,

and

Rλkgk = I + λk (Ggk − I) ,

where λk, µk ∈ (0, 2) and {σk} ⊂ [0, σ] with 0 < σ < 1.

3.2. Convergence analysis

Next, we state an inertial relaxed S-subgradient projection algorithm below.

For given two initial points x0, x−1 ∈ Rn, compute the sequence {xk} by{
yk = xk + σk(xk − xk−1),

xk+1 = Rµkfk (Rλkgk(yk)) , k ≥ 1.
(15)

We now give the convergence analysis of the algorithm (15) under the condition

Σ∞k=1σk‖xk − xk−1‖2 <∞. (16)

Theorem 3.1. The sequence {xn} iteratively generated by algorithm (15) converges to x∗ ∈
Γ provided λk, µk ∈ (0, 2).

Proof. Let τ ∈ Γ and select sq(Axk) ∈ ∂Smrqq(Axk). From the assumption Q0 ⊆ Sm, we

obtain from (10) that

〈Aτ −Axk, sq(Axk)〉+ q(Axk) ≤ q(Aτ) +
rq
2
d2Sm

(Aτ)− rq
2
d2Sm

(Axk) ≤ 0

for any Aτ ∈ Q0.

This shows that Aτ ∈ Qk0 , i.e., gk(τ) = 0. In a similar vein, we have fk(τ) = 0.

Taking into account (14), we consider two cases: Ayk ∈ Qk0 and Ayk /∈ Qk0 .

If Ayk ∈ Qk0 , we have

〈Ggk(yk)− τ,Ggk(yk)− yk〉 = 〈Ggk(yk)− τ, yk − yk〉 = 0.

If Ayk /∈ Qk0 , it follows from (10), (11), (14) and gk(τ) = 0 that

〈Ggk(yk)− τ,Ggk(yk)− yk〉 =
gk(yk)

‖∇gk(yk)‖2
〈τ − yk,∇gk(yk)〉+

g2q,k(yk)

‖∇gk(yk)‖2

≤ gk(yk)

‖∇gk(yk)‖2
(gk(τ)− gk(yk)) +

g2q,k(yk)

‖∇gk(yk)‖2
=0.

Summarily,

〈Ggk(yk)− τ,Ggk(yk)− yk〉 ≤ 0. (17)

Set wk = Rλkgk(yk). Following the similar arguments in (17), we conclude

〈Gfk(wk)− τ,Gfk(wk)− wk〉 ≤ 0, (18)
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By (17), we achieve

‖wk − τ‖2 =‖yk − τ‖2 + 2λk 〈yk −Ggk(yk), Ggk(yk)− yk〉
+ 2λk 〈Ggk(yk)− τ,Ggk(yk)− yk〉

+ λ2k ‖Ggk(yk)− yk‖2

≤‖yk − τ‖2 − λk(2− λk) ‖Ggk(yk)− yk‖2 .

This together with (15) and (18), we get

‖xk+1 − τ‖2 =‖wk − τ‖2 + 2µk 〈wk −Gfk(wk), Gfk(wk)− wk〉
+ 2µk 〈Gfk(wk)− τ,Gfk(wk)− wk〉

+ µ2
k ‖Gfk(wk)− wk‖2

≤‖yk − τ‖2 − λk(2− λk) ‖Ggk(yk)− yk‖2

− µk(2− µk) ‖Gfk(wk)− wk‖2 .

(19)

Now, by Lemma 2.3 that

‖yk − τ‖2 =‖(1 + σk)(xk − τ)− σk(xk−1 − τ)‖2

=(1 + σk)‖xk − τ‖2 − σk‖xk−1 − τ‖2

+ σk(1 + σk)‖xk − xk−1‖2

≤(1 + σk)‖xk − τ‖2 − σk‖xk−1 − τ‖2

+ 2σk‖xk − xk−1‖2.

This together with (19) shows that

‖xk+1 − τ‖2 − ‖xk − τ‖2 ≤ σk(‖xk − τ‖2 − ‖xk−1 − τ‖2) + 2σk‖xk − xk−1‖2.

Applying Lemma 2.4 in above inequality, we have the existence of limk→∞ ‖xk − τ‖. This

leads to the boundedness of {xk} and therefore {yk} is bounded. Furthermore,

λk(2− λk) ‖Ggk(yk)− yk‖2 + µk(2− µk) ‖Gfk(wk)− wk‖2

≤‖xk − τ‖2 − ‖xk+1 − τ‖2 + σk(‖xk − τ‖2 − ‖xk−1 − τ‖2)

+ 2σk‖xk − xk−1‖2,

which implies that

lim
k→∞

‖Ggk(yk)− yk‖ = lim
k→∞

‖Gfk(wk)− wk‖ = 0. (20)

Note that

‖Ggk(yk)− yk‖ =

∥∥∥∥yk +
−gk(yk)

‖∇gk(yk)‖2
∇gk(yk)− yk

∥∥∥∥ =
gk(yk)

‖∇gk(yk)‖
, (21)

where

‖∇gk(yk)‖ = ‖∇gk(yk)−∇gk(τ)‖ ≤ ‖A‖2‖yk − τ‖.

We have that {∇gk(yk)} is bounded. Combining (20) and (21), we get

lim
k→∞

∥∥∥Ayk − PQk
0
(Ayk)

∥∥∥ = 0. (22)

On the other side, the locally boundedness of ∂q holds for the assumption of q, which

is locally Lipschitzian. Clearly, ∂q is bounded on bounded sets and so is I − PSm
.
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Using Lemma 2.2, we conclude that ∂Smrqq is bounded on bounded sets. Therefore,

q(Ayk) ≤
〈
Ayk − PQk

0
(Ayk), sq(Ayk)

〉
≤ η

∥∥∥Ayk − PQk
0
(Ayk)

∥∥∥ (23)

with η > 0 satisfying ‖sq(Ayk)‖ ≤ η.

Since {xk} is bounded, there exists a subsequence {xki} ⊂ {xk} such that xki → x∗.

By (15) and (16), we have

lim
k→∞

‖yk − xk‖ = lim
k→∞

σk‖xk − xk−1‖ = 0,

which implies that yki → x∗. The continuity assumption of function q yields

q(Ax∗) = lim
i→∞

q(Ayki) ≤ 0, (24)

which means that Ax∗ ∈ Q0.

Next, we show that x∗ ∈ C0. By wk = Rλkgk(yk) and (20), we have

lim
i→∞

‖wki − yki‖ = 0, (25)

which implies that wki → x∗.

According to (13), we need to consider two cases: wki ∈ C
ki
0 and wki /∈ C

ki
0 .

If wki ∈ C
ki
0 . c(x∗) ≤ 0, i.e., x∗ ∈ C0 is obtained from the similar arguments of (23),

(24) and (25).

If wki /∈ C
ki
0 . Using the parallel discussions of (21), we have

lim
i→∞

∥∥∥wki − PCki
0

(wki)
∥∥∥ = 0.

The analogous analyses of (23), (24) and (25) yield x∗ ∈ C0.

Consequently, we find an element x∗ satisfying x∗ ∈ C0 and Ax∗ ∈ Q0. The proof is

done. �

4. Conclusion

In this paper, we investigate the nonconvex SFP in finite dimensional spaces. We

suggest an inertial relaxed S-subgradient projection algorithm to seek the solution of non-

convex split feasibility problems in finite dimensional spaces. We obtain a convergence

theorem for the sequences yielded by the proposed algorithm under implemented conditions

on the step-size which does not rely on the spectral radius of the matrix.
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