

S-SUBGRADIENT PROJECTION ALGORITHM WITH INERTIAL TECHNIQUE FOR NON-CONVEX SPLIT FEASIBILITY PROBLEMS

Jinzu Chen¹, Kun Chen², Tzu-Chien Yin³

In this paper, an inertial relaxed S-subgradient projection algorithm is suggested to seek the solution of non-convex split feasibility problems in finite dimensional spaces. We obtain a convergence theorem for the sequence yielded by the proposed algorithm under implemented conditions on the step-size which does not rely on the spectral radius of the matrix.

Keywords: nonconvex split feasibility problems, inertial technique, S-subdifferentiable, S-subgradient projection.

MSC2020: 47H09, 47H05, 47J25.

1. Introduction

In this research, we study the following split feasibility problem (abbr. SFP):

$$\text{find } x \in C \text{ such that } Ax \in Q, \quad (1)$$

where $C \subset \mathbb{R}^n$ and $Q \subset \mathbb{R}^m$ are non-empty closed convex subsets, $A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a matrix (a bounded and linear operator).

The SFP was first studied in Euclidean spaces by Censor [8] in 1994 for modeling inverse problems which arise from medical imageology and in modeling of Intensity-Modulated Radiation Therapy (IMRT) recently [3, 4, 5, 9], and extended to infinite dimensional spaces afterwards [25].

Many iterative algorithms closely related to the SFP, fixed point and optimization techniques have been investigated; please see, [4]-[44]. Byrne [4, 5], among them, employed the classical CQ algorithm:

$$x_{k+1} = P_C (x_k - \varsigma_k A^T (I - P_Q) Ax_k), \quad k \geq 1, \quad (2)$$

where P_C and P_Q are the perpendicular projections onto C and Q , respectively, and the step-size $\varsigma_k \in (0, 2/\xi)$ with ξ (substitute ξ with $\|A\|^2$ equivalently) being the spectral radius of matrix $A^T A$. The subsets C and Q in the formula (2) can be discussed in another form, i.e., the level sets as follows:

$$C_0 = \{x \in \mathbb{R}^n : c(x) \leq 0\} \text{ and } Q_0 = \{y \in \mathbb{R}^m : q(y) \leq 0\}, \quad (3)$$

where c and q are convex functions from \mathbb{R}^n and \mathbb{R}^m to \mathbb{R} , respectively.

However, projections on non-empty closed convex sets and level sets have no closed form, which immensely affects the operation of algorithm (2). Regarding this question, Yang [26] presented relaxed CQ algorithm that the projections involved are on half-spaces

¹School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, China, e-mail: chanjanegeger@hotmail.com

²Computer Center, Taizhou Hospital of Zhejiang Province, Linhai, China, e-mail: chenkun0576@163.com

³Corresponding author. Research Center for Interneuronal Computing, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, e-mail: yintzuchien@mail.cmuh.org.tw

containing the level sets instead of directly calculating the projections on the level sets. The relaxed CQ algorithm [26] is as follows:

$$x_{k+1} = P_{C_0^k}(x_k - \varsigma_k A^T(I - P_{Q_0^k})Ax_k), \quad k \geq 1, \quad (4)$$

with $\varsigma_k \in (0, 2/\|A\|^2)$,

$$C_0^k := \{x \in \mathbb{R}^n : \langle x - x_k, \phi_k \rangle + c(x_k) \leq 0\}$$

and

$$Q_0^k := \{y \in \mathbb{R}^m : \langle y - Ax_k, \varphi_k \rangle + q(Ax_k) \leq 0\},$$

here $\phi_k \in \partial c(x_k)$, $\varphi_k \in \partial q(Ax_k)$, respectively.

Projections on the above two half-spaces have closed form, however, the step-size ς_k in (4) is depends on matrix norm $\|A\|$, so, the algorithm suggested with such step-size is of little actual application and maneuverability, see [13]. To overcome this problem, López [15] rewrote algorithm (4) as

$$x_{k+1} = P_{C_0^k}(x_k - \varsigma_k \nabla f_k(x_k)), \quad k \geq 1, \quad (5)$$

with objection function

$$f_k(x) = \frac{1}{2} \|Ax - P_{Q_0^k}(Ax)\|^2 \quad (6)$$

and its gradient $\nabla f_k(x) = A^T(I - P_{Q_0^k})Ax$.

The step-size in algorithm (5) is defined by

$$\varsigma_k := \lambda_k \frac{f_k(x_k)}{\|\nabla f_k(x_k)\|^2}, \quad 0 < \lambda_k < 2. \quad (7)$$

The convergence of algorithm (5) with step-size (7) is guaranteed under the computation of metric projections onto half-spaces and not necessary to estimate the norm of matrix.

Recently, Dang [11] applied the inertial accelerated craftsmanship of Alvarez [1] to Yang's relaxed CQ algorithm (4) and suggested inertial accelerated relaxed CQ algorithm to solve the SFP as follows:

$$x_{k+1} = P_{C_0^k}(U_k(x_k + \theta_k(x_k - x_{k-1}))), \quad (8)$$

where x_1, x_2 be chosen arbitrary, $U_k = I - \gamma F_k$, $F_k = A^T(I - P_{Q_0^k})A$, $\gamma \in (0, 2/\|A\|^2)$.

On the other hand, let G_c and G_{f_k} be two subgradient projectors associated with $(c, 0)$ and $(f_k, 0)$, respectively, here the function c appears in the above formula (3) and the function f_k is mentioned in (6). Then Guo [13] proposed the following subgradient projection algorithm for solving the SFP,

$$x_{k+1} = G_c(R_{\lambda_k f_k}(x_k)) \quad (9)$$

where $R_{\lambda_k f_k} = I + \lambda_k(G_{f_k} - I)$, $\lambda_k \in (0, 2)$.

There is a natural question as follows:

Question: Can the algorithm (9) and its variants with inertial accelerated craftsmanship be combined with the step-size is used in (7)?

Motivated by the works of Dang [11] and Guo [13], we suggest in the paper a new form of subgradient projection algorithm to solve the SFP in which the step-size is used in (7) and combine with the inertial accelerated craftsmanship. Moreover, the functions c and q in (3) we consider are both continuous, S -subdifferential (see Definition 2.2), locally Lipschitzian, not necessarily convex instead of the original convex.

2. Preliminaries

Let $S \subseteq \mathbb{R}^n$ be nonempty closed subset, denote by P_S the orthogonal (metric) projection from \mathbb{R}^n onto S ; that is,

$$P_S(x) := \operatorname{argmin}_{y \in S} \|x - y\|, \quad x \in \mathbb{R}^n.$$

Definition 2.1 ([2]). *Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a real function. Denote by $\operatorname{Lev} f = \{x \in \mathbb{R}^n : f(x) \leq \xi\}$ the level set of f .*

In order to define S -subgradient projector of a continuous function, we need to introduce the definition of S -subdifferential.

Definition 2.2 ([13]). *Given $S \subseteq \mathbb{R}^n$ and $r_f > 0$, a vector $u \in \mathbb{R}^n$ is said to be an S -subgradient of function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ at x if*

$$\langle y - x, u \rangle + f(x) + \frac{r_f}{2} d_S^2(x) \leq f(y) + \frac{r_f}{2} d_S^2(y), \quad y \in \mathbb{R}^n.$$

The set of all S -subgradients of function f at x is called S -subdifferential of f at x and is denoted by

$$\partial_{S, r_f} f(x) = \left\{ u \in \mathbb{R}^n : \langle y - x, u \rangle + f(x) + \frac{r_f}{2} d_S^2(x) \leq f(y) + \frac{r_f}{2} d_S^2(y), \quad y \in \mathbb{R}^n \right\} \quad (10)$$

where $d_S(x) = \inf_{y \in S} \|x - y\|$ is the usual distance from the point x to the set S .

If $r_f = 0$ in (10), the S -subdifferential is the following Fenchel subdifferential. So does $S = \mathbb{R}^n$.

Definition 2.3 ([2]). *Given a not necessarily convex function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, define its Fenchel subdifferential at x ,*

$$\partial f(x) := \{u \in \mathbb{R}^n : \langle y - x, u \rangle + f(x) \leq f(y), \quad \forall y \in \mathbb{R}^n\}. \quad (11)$$

When f is convex, $\partial f(x)$ is the usual subdifferential.

To define S -subgradient projector of a continuous function, we also need the following property.

Lemma 2.1 ([13]). *Let S be closed and convex and $C_\xi = \operatorname{Lev} f$ be a non-empty set such that $C_\xi \subseteq S \subseteq \mathbb{R}^n$. Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be S -subdifferential on \mathbb{R}^n with respect to S . Then there exists a constant $r_f > 0$ and for any $x \notin C_\xi$ such that*

$$s_f(x) \in \partial_{S, r_f} f(x) \Rightarrow s_f(x) \neq 0.$$

Next, we can define the S -subgradient projector.

Definition 2.4 ([13]). *Assume that $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is continuous and S -subdifferential on \mathbb{R}^n with respect to S . Let S be closed and convex and $C_\xi = \operatorname{Lev} f$ be a non-empty set such that $C_\xi \subseteq S \subseteq \mathbb{R}^n$. Assume that $\partial_{S, r_f} f(x)$ is the S -subdifferential of f with respect to S and $s_f(x) \in \partial_{S, r_f} f(x)$. The S -subgradient projector onto C_ξ related to (f, ξ) is*

$$G_{S, f} : \mathbb{R}^n \rightarrow \mathbb{R}^n$$

$$x \mapsto \begin{cases} x, & x \in C_\xi, \\ x + \frac{\xi - f(x)}{\|s_f(x)\|^2} s_f(x), & x \notin C_\xi. \end{cases}$$

Lemma 2.2 ([13]). *Let $S \subseteq \mathbb{R}^n$ be closed and convex and $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be S -subdifferential on \mathbb{R}^n with respect to S . There exists a constant $r_f > 0$ such that*

$$u \in \partial_{S, r_f} f(x) \Leftrightarrow u \in \partial f(x) + r_f(I - P_S)(x).$$

Lemma 2.3 ([2]). *Let $a, b \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$. It then follows that*

$$\|ax + by\|^2 = a(a + b)\|x\|^2 + b(a + b)\|y\|^2 - ab\|x - y\|^2.$$

Lemma 2.4 ([1]). *Let $\{s_k\}$ and $\{t_k\}$ be two nonnegative real sequences such that*

$$s_{k+1} - s_k \leq \sigma_k(s_k - s_{k-1}) + t_k, \quad \sum_{k=1}^{\infty} t_k < \infty$$

where $\{\sigma_k\} \subset [0, \sigma]$ with $0 < \sigma < 1$. Then the sequence $\{s_k\}$ is convergent.

3. Split Feasibility Problem in Non-convex Case

3.1. Notions

We now consider the split feasibility problem in non-convex frames:

$$\text{find } x \in C_0 \text{ such that } Ax \in Q_0, \quad (12)$$

where $A : \mathbb{R}^n \rightarrow \mathbb{R}^m$, C_0 and Q_0 are mentioned in (3), however, the functions c and q are both assumed to be continuous, S -subdifferential, locally Lipschitzian, not necessarily convex instead of the original convex. Assume that the solution set $\Gamma := \{x \in C_0 : Ax \in Q_0\}$ of problem (12) is non-empty.

Some assumptions and conditions on problem (12) are listed as follows. Assume that

- $S_n \subseteq \mathbb{R}^n$ and $S_m \subseteq \mathbb{R}^m$ are two closed convex sets satisfying $C_0 \subseteq S_n$ and $Q_0 \subseteq S_m$, respectively.
- $\partial_{S_n r_c} c(x)$ and $\partial_{S_m r_q} q(y)$ are the S -subdifferential of c and q with respect to S_n and S_m , respectively, where $r_c > 0$ and $r_q > 0$ are two constants.
- $s_c(x) \in \partial_{S_n r_c} c(x)$ is the S -subgradient of c at $x \in \mathbb{R}^n$; $s_q(y) \in \partial_{S_m r_q} q(y)$ is the S -subgradient of q at $y \in \mathbb{R}^m$.

From the assumptions and conditions mentioned above, by Definition 2.2, Definition 2.4 and Lemma 2.1, we define the S -subgradient projector onto C_0 related to $(c, 0)$ as

$$G_{S_n, c} : \mathbb{R}^n \rightarrow \mathbb{R}^n$$

$$x \mapsto \begin{cases} x, & x \in C_0, \\ x + \frac{-c(x)}{\|s_c(x)\|^2} s_c(x), & x \notin C_0. \end{cases}$$

Another S -subgradient projector $G_{S_m, q} : \mathbb{R}^m \rightarrow \mathbb{R}^m$ is defined in the same way.

Moreover, according to $s_c(x_k) \in \partial_{S_n r_c} c(x_k)$ and $s_q(Ax_k) \in \partial_{S_m r_q} q(Ax_k)$, we define the following half-spaces

$$C_0^k = \{u \in \mathbb{R}^n : \langle u - x_k, s_c(x_k) \rangle + c(x_k) \leq 0\}, \quad k \geq 1,$$

and

$$Q_0^k = \{v \in \mathbb{R}^m : \langle v - Ax_k, s_q(Ax_k) \rangle + q(Ax_k) \leq 0\}, \quad k \geq 1.$$

Set

$$f_k(x) = \frac{1}{2} \|x - P_{C_0^k}(x)\|^2 \text{ and } g_k(x) = \frac{1}{2} \|Ax - P_{Q_0^k}(Ax)\|^2$$

and can readily obtain that

$$\nabla f_k(x) = x - P_{C_0^k}(x) \text{ and } \nabla g_k(x) = A^T (Ax - P_{Q_0^k}(Ax)).$$

Denote the subgradient projector related to $(f_k, 0)$ by G_{f_k} , i.e.,

$$G_{f_k} : \mathbb{R}^n \rightarrow \mathbb{R}^n$$

$$x \mapsto \begin{cases} x, & x \in C_0^k, \\ x + \frac{-f_k(x)}{\|\nabla f_k(x)\|^2} \nabla f_k(x), & x \notin C_0^k. \end{cases} \quad (13)$$

Similarly, denote the subgradient projector associated with $(g_k, 0)$ by G_{g_k} , i.e.,

$$G_{g_k} : \mathbb{R}^n \rightarrow \mathbb{R}^n$$

$$x \mapsto \begin{cases} x, & Ax \in Q_0^k, \\ x + \frac{-g_k(x)}{\|\nabla g_k(x)\|^2} \nabla g_k(x), & Ax \notin Q_0^k. \end{cases} \quad (14)$$

Before constructing the iterative algorithm for solving the non-convex split feasibility problem (12), we mark

$$R_{\mu_k f_k} = I + \mu_k (G_{f_k} - I),$$

and

$$R_{\lambda_k g_k} = I + \lambda_k (G_{g_k} - I),$$

where $\lambda_k, \mu_k \in (0, 2)$ and $\{\sigma_k\} \subset [0, \sigma]$ with $0 < \sigma < 1$.

3.2. Convergence analysis

Next, we state an inertial relaxed S -subgradient projection algorithm below.

For given two initial points $x_0, x_{-1} \in \mathbb{R}^n$, compute the sequence $\{x_k\}$ by

$$\begin{cases} y_k = x_k + \sigma_k(x_k - x_{k-1}), \\ x_{k+1} = R_{\mu_k f_k}(R_{\lambda_k g_k}(y_k)), \quad k \geq 1. \end{cases} \quad (15)$$

We now give the convergence analysis of the algorithm (15) under the condition

$$\sum_{k=1}^{\infty} \sigma_k \|x_k - x_{k-1}\|^2 < \infty. \quad (16)$$

Theorem 3.1. *The sequence $\{x_n\}$ iteratively generated by algorithm (15) converges to $x^* \in \Gamma$ provided $\lambda_k, \mu_k \in (0, 2)$.*

Proof. Let $\tau \in \Gamma$ and select $s_q(Ax_k) \in \partial_{S_m r_q} q(Ax_k)$. From the assumption $Q_0 \subseteq S_m$, we obtain from (10) that

$$\langle A\tau - Ax_k, s_q(Ax_k) \rangle + q(Ax_k) \leq q(A\tau) + \frac{r_q}{2} d_{S_m}^2(A\tau) - \frac{r_q}{2} d_{S_m}^2(Ax_k) \leq 0$$

for any $A\tau \in Q_0$.

This shows that $A\tau \in Q_0^k$, i.e., $g_k(\tau) = 0$. In a similar vein, we have $f_k(\tau) = 0$.

Taking into account (14), we consider two cases: $Ay_k \in Q_0^k$ and $Ay_k \notin Q_0^k$.

If $Ay_k \in Q_0^k$, we have

$$\langle G_{g_k}(y_k) - \tau, G_{g_k}(y_k) - y_k \rangle = \langle G_{g_k}(y_k) - \tau, y_k - y_k \rangle = 0.$$

If $Ay_k \notin Q_0^k$, it follows from (10), (11), (14) and $g_k(\tau) = 0$ that

$$\begin{aligned} \langle G_{g_k}(y_k) - \tau, G_{g_k}(y_k) - y_k \rangle &= \frac{g_k(y_k)}{\|\nabla g_k(y_k)\|^2} \langle \tau - y_k, \nabla g_k(y_k) \rangle + \frac{g_{q,k}^2(y_k)}{\|\nabla g_k(y_k)\|^2} \\ &\leq \frac{g_k(y_k)}{\|\nabla g_k(y_k)\|^2} (g_k(\tau) - g_k(y_k)) + \frac{g_{q,k}^2(y_k)}{\|\nabla g_k(y_k)\|^2} \\ &= 0. \end{aligned}$$

Summarily,

$$\langle G_{g_k}(y_k) - \tau, G_{g_k}(y_k) - y_k \rangle \leq 0. \quad (17)$$

Set $w_k = R_{\lambda_k g_k}(y_k)$. Following the similar arguments in (17), we conclude

$$\langle G_{f_k}(w_k) - \tau, G_{f_k}(w_k) - w_k \rangle \leq 0, \quad (18)$$

By (17), we achieve

$$\begin{aligned}\|w_k - \tau\|^2 &= \|y_k - \tau\|^2 + 2\lambda_k \langle y_k - G_{g_k}(y_k), G_{g_k}(y_k) - y_k \rangle \\ &\quad + 2\lambda_k \langle G_{g_k}(y_k) - \tau, G_{g_k}(y_k) - y_k \rangle \\ &\quad + \lambda_k^2 \|G_{g_k}(y_k) - y_k\|^2 \\ &\leq \|y_k - \tau\|^2 - \lambda_k(2 - \lambda_k) \|G_{g_k}(y_k) - y_k\|^2.\end{aligned}$$

This together with (15) and (18), we get

$$\begin{aligned}\|x_{k+1} - \tau\|^2 &= \|w_k - \tau\|^2 + 2\mu_k \langle w_k - G_{f_k}(w_k), G_{f_k}(w_k) - w_k \rangle \\ &\quad + 2\mu_k \langle G_{f_k}(w_k) - \tau, G_{f_k}(w_k) - w_k \rangle \\ &\quad + \mu_k^2 \|G_{f_k}(w_k) - w_k\|^2 \\ &\leq \|y_k - \tau\|^2 - \lambda_k(2 - \lambda_k) \|G_{g_k}(y_k) - y_k\|^2 \\ &\quad - \mu_k(2 - \mu_k) \|G_{f_k}(w_k) - w_k\|^2.\end{aligned}\tag{19}$$

Now, by Lemma 2.3 that

$$\begin{aligned}\|y_k - \tau\|^2 &= \|(1 + \sigma_k)(x_k - \tau) - \sigma_k(x_{k-1} - \tau)\|^2 \\ &= (1 + \sigma_k) \|x_k - \tau\|^2 - \sigma_k \|x_{k-1} - \tau\|^2 \\ &\quad + \sigma_k (1 + \sigma_k) \|x_k - x_{k-1}\|^2 \\ &\leq (1 + \sigma_k) \|x_k - \tau\|^2 - \sigma_k \|x_{k-1} - \tau\|^2 \\ &\quad + 2\sigma_k \|x_k - x_{k-1}\|^2.\end{aligned}$$

This together with (19) shows that

$$\|x_{k+1} - \tau\|^2 - \|x_k - \tau\|^2 \leq \sigma_k (\|x_k - \tau\|^2 - \|x_{k-1} - \tau\|^2) + 2\sigma_k \|x_k - x_{k-1}\|^2.$$

Applying Lemma 2.4 in above inequality, we have the existence of $\lim_{k \rightarrow \infty} \|x_k - \tau\|$. This leads to the boundedness of $\{x_k\}$ and therefore $\{y_k\}$ is bounded. Furthermore,

$$\begin{aligned}\lambda_k(2 - \lambda_k) \|G_{g_k}(y_k) - y_k\|^2 + \mu_k(2 - \mu_k) \|G_{f_k}(w_k) - w_k\|^2 \\ \leq \|x_k - \tau\|^2 - \|x_{k+1} - \tau\|^2 + \sigma_k (\|x_k - \tau\|^2 - \|x_{k-1} - \tau\|^2) \\ + 2\sigma_k \|x_k - x_{k-1}\|^2,\end{aligned}$$

which implies that

$$\lim_{k \rightarrow \infty} \|G_{g_k}(y_k) - y_k\| = \lim_{k \rightarrow \infty} \|G_{f_k}(w_k) - w_k\| = 0.\tag{20}$$

Note that

$$\|G_{g_k}(y_k) - y_k\| = \left\| y_k + \frac{-g_k(y_k)}{\|\nabla g_k(y_k)\|^2} \nabla g_k(y_k) - y_k \right\| = \frac{g_k(y_k)}{\|\nabla g_k(y_k)\|},\tag{21}$$

where

$$\|\nabla g_k(y_k)\| = \|\nabla g_k(y_k) - \nabla g_k(\tau)\| \leq \|A\|^2 \|y_k - \tau\|.$$

We have that $\{\nabla g_k(y_k)\}$ is bounded. Combining (20) and (21), we get

$$\lim_{k \rightarrow \infty} \|Ay_k - P_{Q_0^k}(Ay_k)\| = 0.\tag{22}$$

On the other side, the locally boundedness of ∂q holds for the assumption of q , which is locally Lipschitzian. Clearly, ∂q is bounded on bounded sets and so is $I - P_{S_m}$.

Using Lemma 2.2, we conclude that $\partial_{S_m r_q} q$ is bounded on bounded sets. Therefore,

$$q(Ay_k) \leq \langle Ay_k - P_{Q_0^k}(Ay_k), s_q(Ay_k) \rangle \leq \eta \|Ay_k - P_{Q_0^k}(Ay_k)\| \quad (23)$$

with $\eta > 0$ satisfying $\|s_q(Ay_k)\| \leq \eta$.

Since $\{x_k\}$ is bounded, there exists a subsequence $\{x_{k_i}\} \subset \{x_k\}$ such that $x_{k_i} \rightarrow x^*$. By (15) and (16), we have

$$\lim_{k \rightarrow \infty} \|y_k - x_k\| = \lim_{k \rightarrow \infty} \sigma_k \|x_k - x_{k-1}\| = 0,$$

which implies that $y_{k_i} \rightarrow x^*$. The continuity assumption of function q yields

$$q(Ax^*) = \lim_{i \rightarrow \infty} q(Ay_{k_i}) \leq 0, \quad (24)$$

which means that $Ax^* \in Q_0$.

Next, we show that $x^* \in C_0$. By $w_k = R_{\lambda_k g_k}(y_k)$ and (20), we have

$$\lim_{i \rightarrow \infty} \|w_{k_i} - y_{k_i}\| = 0, \quad (25)$$

which implies that $w_{k_i} \rightarrow x^*$.

According to (13), we need to consider two cases: $w_{k_i} \in C_0^{k_i}$ and $w_{k_i} \notin C_0^{k_i}$.

If $w_{k_i} \in C_0^{k_i}$. $c(x^*) \leq 0$, i.e., $x^* \in C_0$ is obtained from the similar arguments of (23), (24) and (25).

If $w_{k_i} \notin C_0^{k_i}$. Using the parallel discussions of (21), we have

$$\lim_{i \rightarrow \infty} \|w_{k_i} - P_{C_0^{k_i}}(w_{k_i})\| = 0.$$

The analogous analyses of (23), (24) and (25) yield $x^* \in C_0$.

Consequently, we find an element x^* satisfying $x^* \in C_0$ and $Ax^* \in Q_0$. The proof is done. \square

4. Conclusion

In this paper, we investigate the nonconvex SFP in finite dimensional spaces. We suggest an inertial relaxed S -subgradient projection algorithm to seek the solution of non-convex split feasibility problems in finite dimensional spaces. We obtain a convergence theorem for the sequences yielded by the proposed algorithm under implemented conditions on the step-size which does not rely on the spectral radius of the matrix.

Acknowledgment

This work was supported by the Ph.D. research startup foundation of Lingnan Normal University (ZL1919).

REFERENCES

- [1] F. Alvarez and H. Attouch, *An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping*, Set-Valued Anal., **9**(2001), 3–11.
- [2] H. Bauschke and P. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer: New York, NY, USA, **2011**.
- [3] M. Brooke, Y. Censor and A. Gibali, *Dynamic string-averaging CQ-methods for the split feasibility problem with percentage violation constraints arising in radiation therapy treatment planning*, Intl. Trans. in Op. Res., DOI: 10.1111/itor.12929.

[4] C. Byrne, *Iterative oblique projection onto convex subsets and the split feasibility problem*, Inverse Probl., **18**(2002), 441–453.

[5] C. Byrne, *A unified treatment of some iterative algorithm in signal processing and image reconstruction*, Inverse Probl., **20**(2004), 103–120.

[6] L.C. Ceng, A. Petrusel, J.C. Yao and Y. Yao, *Hybrid viscosity extragradient method for systems of variational inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in Banach spaces*, Fixed Point Theory, **19**(2018), 487–502.

[7] L.C. Ceng, A. Petrusel, J.C. Yao and Y. Yao, *Systems of variational inequalities with hierarchical variational inequality constraints for Lipschitzian pseudocontractions*, Fixed Point Theory, **20**(2019), 113–133.

[8] Y. Censor and T. Elfving, *A multiprojection algorithm using Bregman projections in a product space*, Numer. Algorithms, **8**(1994), 221–239.

[9] Y. Censor, J. Galvin, X. Ying and M. Langer, *Linear and nonlinear models and algorithms in intensity-modulated radiation therapy (IMRT)*, Linear Algebra Appl., **428**(2008), 1203–1206.

[10] S.Y. Cho, X. Qin, J.C. Yao and Y. Yao, *Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces*, J. Nonlinear Convex Anal., **19**(2018), 251–264.

[11] Y. Dang, J. Sun and H. Xu, *Inertial accelerated algorithms for solving a split feasibility problem*, Optim., **13**(2017), 1383–1394.

[12] Q.L. Dong, Y. Peng and Y. Yao, *Alternated inertial projection methods for the split equality problem*, J. Nonlinear Convex Anal., **22**(2021), 53–67.

[13] Y. Guo, CQ Algorithms: Theory, Computations and Nonconvex Extensions. Master's Thesis, University of British Columbia, Vancouver, BC, Canada, **2014**.

[14] J. Hendrickx and A. Olshevsky, *Matrix p -norms are NP-hard to approximate if $P \neq 1, 2, \infty$* , J. Matrix Anal. Appl., **31**(2010), 2802–2812.

[15] G. López, V. Martín, F. Wang and H. Xu, *Solving the split feasibility problem without prior knowledge of matrix norms*, Inverse Probl., **28**(2012), Art. ID 085004.

[16] S. Reich, M. Truong and T. Mai, *The split feasibility problem with multiple output sets in Hilbert spaces*, Optim. Lett., **2020**, doi:10.1007/s11590-020-01555-6.

[17] D.R. Sahu, A. Petrușel and M. Verma, *A new iteration technique for nonlinear operators as concerns convex programming and feasibility problems*, Numer. Algor., **83**(2020), 421–449.

[18] Y. Shehu and A. Gibali, *New inertial relaxed method for solving split feasibilities*, Optim. Lett., **2020**, doi:10.1007/s11590-020-01603-1.

[19] B.S. Thakur, D. Thakur and M. Postolache, *A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings*, Appl. Math. Comput., **275**(2016), 147–155.

[20] B.S. Thakur, D. Thakur and M. Postolache, *A new iteration scheme for approximating fixed points of nonexpansive mappings*, Filomat, **30**(2016), 2711–2720.

[21] D. Thakur, B.S. Thakur and M. Postolache, *New iteration scheme for numerical reckoning fixed points of nonexpansive mappings*, J. Inequal. Appl., **2014**(2014), Art. No. 328.

[22] G.I. Uşurelu, *Split feasibility handled by a single-projection three-step iteration with comparative analysis*, J. Nonlinear Convex Anal., **22**(2021), 544–558.

[23] G.I. Uşurelu and M. Postolache, *Algorithm for generalized hybrid operators with numerical analysis and applications*, J Nonlinear Var. Anal., in press.

[24] F. Wang and H. Yu, *An inertial relaxed CQ algorithm with an application to the LASSO and elastic net*, Optim., **70**(2021), 1101–1119.

[25] H. Xu, *Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces*, Inverse Probl., **26**(2010), Art. ID 105018.

[26] Q. Yang, *The relaxed CQ algorithm solving the split feasibility problem*, Inverse Probl., **20**(2004), 1261–1266.

[27] Y. Yao, L. Leng, M. Postolache and X. Zheng, *Mann-type iteration method for solving the split common fixed point problem*, J. Nonlinear Convex Anal., **18**(2017), 875–882.

[28] Y. Yao, H. Li and M. Postolache, *Iterative algorithms for split equilibrium problems of monotone operators and fixed point problems of pseudo-contractions*, Optim., in press, DOI: 10.1080/02331934.2020.1857757.

[29] Y. Yao, Y.C. Liou and M. Postolache, *Self-adaptive algorithms for the split problem of the demicontractive operators*, Optim., **67**(2018), 1309–1319.

[30] Y. Yao, Y.C. Liou and J.C. Yao, *Split common fixed point problem for two quasi-pseudo-contractive operators and its algorithm construction*, Fixed Point Theory Appl., **2015**(2015), Article ID 127.

[31] Y. Yao, Y.C. Liou and J.C. Yao, *Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations*, J. Nonlinear Sci. Appl., **10**(2017), 843–854.

[32] Y. Yao, M. Postolache and Y.C. Liou, *Strong convergence of a self-adaptive method for the split feasibility problem*, Fixed Point Theory Appl., **2013**(2013), Art. No. 201.

[33] Y. Yao, M. Postolache, Y.C. Liou and Z. Yao, *Construction algorithms for a class of monotone variational inequalities*, Optim. Lett., **10**(2016), 1519–1528.

[34] Y. Yao, M. Postolache and J.C. Yao, *Iterative algorithms for the generalized variational inequalities*, U.P.B. Sci. Bull., Series A, **81**(2019), 3–16.

[35] Y. Yao, M. Postolache and J.C. Yao, *An iterative algorithm for solving the generalized variational inequalities and fixed points problems*, Mathematics, **7**(2019), Art. No. 61.

[36] Y. Yao, M. Postolache and J.C. Yao, *Strong convergence of an extragradient algorithm for variational inequality and fixed point problems*, U.P.B. Sci. Bull., Series A, **82**(1)(2020), 3–12.

[37] Y. Yao, M. Postolache and Z. Zhu, *Gradient methods with selection technique for the multiple-sets split feasibility problem*, Optim., **69**(2020), 269–281.

[38] Y. Yao, X. Qin and J.C. Yao, *Projection methods for firmly type nonexpansive operators*, J. Nonlinear Convex Anal., **19**(2018), 407–415.

[39] Y. Yao, J.C. Yao, Y.C. Liou and M. Postolache, *Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms*, Carpathian J. Math., **34**(2018), 459–466.

- [40] C. Zhang, Z. Zhu, Y. Yao and Q. Liu, *Homotopy method for solving mathematical programs with bounded box-constrained variational inequalities*, Optim., **68**(2019), 2293–2312.
- [41] X. Zhao, M.A. Kobis, Y. Yao and J.C. Yao, *A projected subgradient method for nondifferentiable quasiconvex multiobjective optimization problem*, J. Optim. Theory Appl., **190**(2021), 82–107.
- [42] X. Zhao, J.C. Yao and Y. Yao, *A proximal algorithm for solving split monotone variational inclusions*, U.P.B. Sci. Bull., Series A, **82**(3)(2020), 43–52.
- [43] X. Zhao and Y. Yao, *Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems*, Optim., **69**(2020), 1987–2002.
- [44] L.J. Zhu, Y. Yao and M. Postolache, *Projection methods with linesearch technique for pseudomonotone equilibrium problems and fixed point problems*, U.P.B. Sci. Bull., Series A, **83**(1)(2021), 3–14.