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S-SUBGRADIENT PROJECTION ALGORITHM WITH INERTIAL
TECHNIQUE FOR NON-CONVEX SPLIT FEASIBILITY PROBLEMS
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In this paper, an inertial relazed S-subgradient projection algorithm is suggested
to seek the solution of non-convex split feasibility problems in finite dimensional spaces.
We obtain a convergence theorem for the sequence yielded by the proposed algorithm
under implemented conditions on the step-size which does not rely on the spectral radius
of the matriz.
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1. Introduction

In this research, we study the following split feasibility problem (abbr. SFP):
find z € C such that Az € Q, (1)

where C' C R™ and Q C R™ are non-empty closed convex subsets, A : R” — R™ is a matrix
(a bounded and linear operator).

The SFP was first studied in Euclidean spaces by Censor [8] in 1994 for modeling in-
verse problems which arise from medical imageology and in modeling of Intensity-Modulated
Radiation Therapy (IMRT) recently [3, 4, 5, 9], and extended to infinite dimensional spaces
afterwards [25].

Many iterative algorithms closely related to the SFP, fixed point and optimization
techniques have been investigated; please see, [4]-[44]. Byrne [4, 5], among them, employed
the classical C'Q) algorithm:

Tk+1 = PC (l’k — §kAT (I — PQ) Axk) 3 k} Z 1, (2)

where Pc and Py are the perpendicular projections onto C and @), respectively, and the
step-size ¢ € (0,2/€) with £ (substitute ¢ with || A||? equivalently) being the spectral radius
of matrix AT A. The subsets C' and @ in the formula (2) can be discussed in another form,
i.e., the level sets as follows:

Co={zx eR":¢(x) <0} and Qo = {y € R™ : ¢q(y) < 0}, (3)

where ¢ and ¢ are convex functions from R™ and R™ to R, respectively.

However, projections on non-empty closed convex sets and level sets have no closed
form, which immensely affects the operation of algorithm (2). Regarding this question,
Yang [26] presented relaxed CQ algorithm that the projections involved are on half-spaces
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containing the level sets instead of directly calculating the projections on the level sets. The
relaxed C'Q algorithm [26] is as follows:

w1 = Poy (wn — AT (I — Pgu) Azy), k> 1, (4)
with ¢ € (0,2/]4]%),

Cy={z € R": (z — p, d) + c(zy) < 0}
and

QF :={y e R™ : (y — Axy, 1) + q(Axy) < 0},

here ¢y € Oc(xy), wr € Oq(Axy), respectively.

Projections on the above two half-spaces have closed form, however, the step-size ¢
in (4) is depends on matrix norm [|A||, so, the algorithm suggested with such step-size is
of little actual application and maneuverability, see [13]. To overcome this problem, Lépez
[15] rewrote algorithm (4) as

Tr1 = Pop (= aV fi(zw)), k=1, (5)
with objection function
1
fi(@) = 5| Aw = Poy (Az)|® (6)

and its gradient V fj,(z) = AT (I - PQg) Az.
The step-size in algorithm (5) is defined by

Jr(zr)
IV fi(w )12

The convergence of algorithm (5) with step-size (7) is guaranteed under the computation of
metric projections onto half-spaces and not necessary to estimate the norm of matrix.

Recently, Dang [11] applied the inertial accelerated craftsmanship of Alvarez [1] to
Yang’s relaxed C'Q algorithm (4) and suggested inertial accelerated relaxed C'Q algorithm
to solve the SFP as follows:

Sk = Ak 0< A\ <2 (7)

wp1 = Pop (Up(zk + Ok (2 — 25-1))) (8)

where z1, 79 be chosen arbitrary, Uy = I — yF}, Fj, = AT(I — Por)A, v € (0,2/]|A[]?).

On the other hand, let G. and Gy, be two subgradient projectors associated with
(¢, 0) and (fx, 0), respectively, here the function ¢ appears in the above formula (3) and
the function f; is mentioned in (6). Then Guo [13] proposed the following subgradient
projection algorithm for solving the SFP,

Tp+1 = G (RAkfk (xk» (9)

where R)\kfk =1+ X\ (Gfk — I), A € (0, 2)

There is a natural question as follows:

Question: Can the algorithm (9) and its variants with inertial accelerated craftsmanship
be combined with the step-size is used in (7)?

Motivated by the works of Dang [11] and Guo [13], we suggest in the paper a new
form of subgradient projection algorithm to solve the SFP in which the step-size is used
in (7) and combine with the inertial accelerated craftsmanship. Moreover, the functions ¢
and ¢ in (3) we consider are both continuous, S-subdifferential (see Definition 2.2), locally
Lipschitzian, not necessarily convex instead of the original convex.
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2. Preliminaries

Let S C R™ be nonempty closed subset, denote by Pg the orthogonal (metric) pro-
jection from R"™ onto S; that is,

Ps(z) := argmin,cgllz —y|, = €R™

Definition 2.1 ([2]). Let f : R™ — R be a real function. Denote by Levf = {x € R™: f(z) < &}
the level set of f.

In order to define S-subgradient projector of a continuous function, we need to intro-
duce the definition of S-subdifferential.

Definition 2.2 ([13]). Given S C R"™ and ry > 0, a vector u € R"™ is said to be an
S-subgradient of function f:R"™ - R at x if
T T
(v —zu) + f(2) + S d5(2) < fly) + S d3(y), yeR™

The set of all S-subgradients of function f at x is called S-subdifferential of f at x and is
denoted by

Osr,f(@) = {ue R : (y—z.u) + f@) + Ldi(@) < f) + L), yer'} (0)
where dg(z) = infyegs ||z — y|| is the usual distance from the point x to the set S.

If r; = 0 in (10), the S-subdifferential is the following Fenchel subdifferential. So
does S = R".

Definition 2.3 ([2]). Given a not necessarily convex function f : R™ — R, define its Fenchel
subdifferential at x,

Of(x) ={ueR": (y—=z,u)+ f(z) < f(y), VyeR"}. (11)
When f is convex, Of (x) is the usual subdifferential.

To define S-subgradient projector of a continuous function, we also need the following
property.
Lemma 2.1 ([13]). Let S be closed and convex and Ce¢ = Levf be a non-empty set such

that C¢ €S CR™. Let f: R"™ — R be S-subdifferential on R™ with respect to S. Then there
exists a constant vy > 0 and for any x ¢ C¢ such that

sf(x) € Osy, f(x) = sp(x) # 0.
Next, we can define the S-subgradient projector.

Definition 2.4 ([13]). Assume that f : R™ — R is continuous and S-subdifferential on R™
with respect to S. Let S be closed and convex and C¢ = Levf be a non-empty set such that
Ce € S CR". Assume that Os,, f(x) is the S-subdifferential of f with respect to S and
sg(x) € Osy; f(x). The S-subgradient projector onto Ce related to (f,§) is

Gsy:R" —» R"

L x e Cf,
€T — —f(x

v+ G (@), @ ¢ Ce

Lemma 2.2 ([13]). Let S C R™ be closed and convex and f : R™ — R be S-subdifferential
on R™ with respect to S. There exists a constant ry > 0 such that

u € Osy, f(x) & uedf(x)+ri( — Ps)(x).
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Lemma 2.3 ([2]). Let a,b € R and z,y € R"™. It then follows that
laz + byl|* = a(a + b)||z[* + ba + b) yl|* — abllz — y|*.
Lemma 2.4 ([1]). Let {si} and {tx} be two nonnegative real sequences such that
Sk+1 — Sk < 0k(Sg — Sk—1) + t, Thoqtr < 00

where {0} C [0,0] with 0 < o < 1. Then the sequence {si} is convergent.

3. Split Feasibility Problem in Non-convex Case
3.1. Notions
We now consider the split feasibility problem in non-convex frames:
find z € Cy such that Az € Qo, (12)

where A : R” — R™, Cy and Qg are mentioned in (3), however, the functions ¢ and ¢
are both assumed to be continuous, S-subdifferential, locally Lipschitzian, not necessarily
convex instead of the original convex. Assume that the solution set I' := {z € C : Az € Qop}
of problem (12) is non-empty.
Some assumptions and conditions on problem (12) are listed as follows. Assume that
e S, CR" and S,, C R™ are two closed convex sets satisfying Cy C S,, and Qg C Sy,
respectively.
® OJs,r.c(x) and Os,,r,q(y) are the S-subdifferential of ¢ and ¢ with respect to S, and
Sm, respectively, where 7. > 0 and r4 > 0 are two constants.
e s5.(x) € Os,r.c(x) is the S-subgradient of c at € R"™; s4(y) € 0Os,,r,q(y) is the S-
subgradient of ¢ at y € R™.
From the assumptions and conditions mentioned above, by Definition 2.2, Definition 2.4 and
Lemma 2.1, we define the S-subgradient projector onto Cjy related to (c,0) as

Gs, .c:R" = R"
“ T e CO>

H —CclxT
' T+ WSC(Z‘L x ¢ Co.

Another S-subgradient projector Gg,, 4 : R™ — R™ is defined in the same way.
Moreover, according to s.(xx) € Os,r.c(zr) and sq(Axy) € Os,,r,q(Azy), we define
the following half-spaces

CF = {u € R™ : (u— ay, sc(xx)) + clay) <0}, k>1,
and
Qk={veR™: (v- Axy, sq(Axy)) + q(Azy) <0}, k>1.
Set
1 2 1 2
fr(z) = B H:z: — P (a:)” and gi(z) = 3 HA;z: — P (Ax)”
and can readily obtain that

Vfe(z) = 2 — Pox(x) and Vgi(z) = AT (Aac — Py (A;v)) .
Denote the subgradient projector related to (fx, 0) by Gy,, i.e.,
Gy :R" - R”

x, T € C(’;’ (13)
e — (@) 0
+iener V@), 2 ¢ G
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Similarly, denote the subgradient projector associated with (g, 0) by Gy, , i.e.,

ng :R" - R"”
{ x, Ar € QF, (14)
v _—gk(z) 0
v HVg:(x)H?ng(ﬁc), Az ¢ Q.

Before constructing the iterative algorithm for solving the non-convex split feasibility
problem (12), we mark

Ry po =1+ (G, — 1),
and

Rxpgr =1+ A (ng- 1),
where Mg, ux € (0,2) and {0k} C [0,0] with 0 < 0 < 1.

3.2. Convergence analysis

Next, we state an inertial relaxed S-subgradient projection algorithm below.
For given two initial points zg,x_1 € R™, compute the sequence {x}} by

Yk = Tk + o (Tp — Tp—1), (15)
Tp1 = Ry g (R)\kgk (yx)), k>1
We now give the convergence analysis of the algorithm (15) under the condition
Zl?;lgk”‘rk — xk_1||2 < 00. (16)

Theorem 3.1. The sequence {x,} iteratively generated by algorithm (15) converges to x* €
T provided A, uy, € (0,2).

Proof. Let 7 € T' and select s,(Axy) € 0s,,r,q(Azy). From the assumption Qo C Sy, we
obtain from (10) that

(AT — Awy, sq(Azp)) + q(Azk) < q(A7) + %ngm (Ar) — %ngm (Azg) <0

for any At € Q.
This shows that AT € QF, i.e., gr(7) = 0. In a similar vein, we have fx(7) = 0.
Taking into account (14), we consider two cases: Ay € QF and Ay, ¢ QF.
If Ay, € QF, we have

(Goi(yr) =7, Gy (yr) — yr) = (G (Yr) — 754k — yx) = 0.
If Ay ¢ QF, it follows from (10), (11), (14) and gi(7) = 0 that

_ gk(yw) - gi,k(yk)
(Gl =72 Con ) = 00) =g (e (7 90 VD H g, 2
*Wartgole ) ~ 9D T 15, e
=0.
Summarily,
<ng- (yk) - T, ng (yk) - yk> <0. (17)

Set wy = Ry, g, (yx). Following the similar arguments in (17), we conclude

<Gfk (wk) - T, Gfk (wk) - wk> <0, (18)
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By (17), we achieve
lwe =711 =llyr = 7II* + 27k (e — Gy (Wk), G (i) — v
+ 20 (G (yr) — 7, Gy (Yr) — Yr)
+ ARG () = il
<llyk = 7II* = A (2 = M) |Gl () — el
This together with (15) and (18), we get
|zsr = 7I* =lwk = 7* + 2 (wr — G, (wi), G, (wre) — wr)
+ 2pu (G (wi) — 7, G g (wi) — wp)
+ 43 |G, (wr) — wy ] (19)
<llyk = 71 = M2 = Ae) |Gl () — yilI®
— k(2 = ) |G g, (wi) — i
Now, by Lemma 2.3 that
ly = 7l =l (1 + on) (zx, — 7) = one(@—1 — 7)|°
=(1+op)llze — 7|* = orllee—1 — 77
+op(1 4 op)||zk — zp_1]?
<L +aw)zx — 7l = oxllen—1 — 7|
+ 20k ||k — 212
This together with (19) shows that
ks = 7II* = llow = 71* < owlllae = 7I° = llzk-1 = 7II*) + 20k]lk — 21l

Applying Lemma 2.4 in above inequality, we have the existence of limy_,oc ||zx — 7||. This
leads to the boundedness of {z} and therefore {y;} is bounded. Furthermore,

2 2
Me(2 = M) |G g, (i) — yrll” + 1x (2 — px) |G g, (wr) — wie|
<z — 711> = Nlzksr — 717 + on(llzr — 711> = lzr—1 — 7))
+ 20|z — $k—1||2,

which implies that

khm |Gy (Yr) — yell = lim |Gy, (wi) — wgl| = 0. (20)
— 00 k—o0
Note that
— gk (yr) 9k (Yr)
G, (yr) — ¥y :’y + 5 Vo (k) — Yk = 21
10 (we) = vl = {lon + 170 0o Y9 @) = 95| = gl @)
where

IV gk (i)l = IV gr(yr) = Vo) < A1y — 7.
We have that {Vgi(yr)} is bounded. Combining (20) and (21), we get

lim HAyk - PQS(Ayk)H ~0. (22)

On the other side, the locally boundedness of dq holds for the assumption of ¢, which
is locally Lipschitzian. Clearly, dq is bounded on bounded sets and so is I — Pg, .
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Using Lemma 2.2, we conclude that Jg,,,,q is bounded on bounded sets. Therefore,

a(Ayx) < <Ayk — Por (Ayg), Sq(Ayk)> <n HAyk — Por (Ayk)H (23)

with 1 > 0 satisfying ||sq(Ayx)|| < 7.
Since {x1} is bounded, there exists a subsequence {z, } C {zx} such that zy, — z*.
By (15) and (16), we have

lim ||yk — l’kH = lim O’kHLEk - Ik_1|| = 0,
k— o0 k— o0
which implies that yi, — 2*. The continuity assumption of function ¢ yields
q(Az") = lim q(Ay,) <0, (24)
1—> 00

which means that Ax* € Q.
Next, we show that * € Cy. By wy = R, 4, (yx) and (20), we have

=0, (25)

hm ||wki — Yk,
11— 00

which implies that wy, — x*.
According to (13), we need to consider two cases: wy,, € Cp* and wy, ¢ Chi.
If wy, € C¥i. ¢(x*) <0, ie., z* € Cp is obtained from the similar arguments of (23),
(24) and (25).
If wy,, ¢ Cf. Using the parallel discussions of (21), we have
hm Hwk7 — PC’” (wk7)
71— 00 0
The analogous analyses of (23), (24) and (25) yield z* € Cp.
Consequently, we find an element x* satisfying x* € Cy and Ax* € @Qy. The proof is
done. ]

’:0.

4. Conclusion

In this paper, we investigate the nonconvex SFP in finite dimensional spaces. We
suggest an inertial relaxed S-subgradient projection algorithm to seek the solution of non-
convex split feasibility problems in finite dimensional spaces. We obtain a convergence
theorem for the sequences yielded by the proposed algorithm under implemented conditions
on the step-size which does not rely on the spectral radius of the matrix.
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