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A METHOD TO IDENTIFY SYSTEMS BASED ON RANDOM 
BINARY EVENTS 

Petre JUNIE1, Mihai TERTIŞCO2, Cristian EREMIA3, Gabriel ENE4 

Prezenta lucrare prezintă rezultatele cercetării ştiinţifice personale privind 
modelarea şi identificarea experimentală a sistemelor cu evenimente binare 
aleatoare (EBA). Structura modelelor acestor sisteme este de tipul regresiilor 
logistice. Pentru identificare se propune utilizarea criteriului verosimilităţii maxime 
[4]. În vederea estimării parametrilor modelului a fost concepută şi testată o 
metodă de tip Monte – Carlo. Caracteristicile statistice ale estimaţiilor  
parametrilor  modelului  sunt  precizate. 

The present paper presents results of personal scientific research on 
modeling and experimental identification of systems with Random Binary 
Events .Models of these systems is the type of logistic regression. For identification 
we propose to use maximum likelihood criterion [4]. In order to estimate the model 
parameters was designed and tested a method of Monte – Carlo. Statistical analysis 
is of model parameters estimates are given. 

Keywords: Modeling, identification, Logistic Regression Model, Monte Carlo 
method,  maximum log likelihood criterion 

1. Introduction 

Classical methods of systems identification primarily refer to processes 
whose dynamic behavior is described by either differential equations or difference 
equations. The most elaborate methods of identification aim at constant parameter 
linear systems that satisfy the requirements imposed by the applications specific 
to the domain of industrial processes automation described by such models [1]   
For systems with discrete events characterized by discrete streams of operations 
and discrete activities accompanied by phenomena of blocking, non-
synchronization and conflicts new modeling formalisms have been developed [2] 
Classic models covered by conventional identification methods describe the 
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dynamic behavior of a single object from a collection of similar objects in which 
processes that are subject to physical and chemical laws occur. In the present 
paper we are concerned with models of systems with binary independent random 
events. Unlike traditional models, this particular type of models describes a 
homogeneous lot M of cardinality N consisting of two distinct entities. These 
entities can be separated into two classes. Each entity in this population is 
characterized by a dependent variable Y (output) and one or more independent 
variables (input) x. Variable Y can take only logical values: 1 or 0, yes or no, sick 
or healthy, etc. The independent variable can take logic values or can take values 
in the set of real numbers. In most applications encountered in the literature of 
expertise these independent variables take logic values, 1 or 0. Based on 
experimental testing of each entity (from the N, of set M) entities can be divided 
into two classes: entities class with Y = 1 and entities class with Y = 0. The model 
in which we have only one independent variable x is called the logistic model 
SISO (single - input - single - output). In the case of several independent variables 
the model is called MISO model (MULTY - input - single - output). For 
simplicity we refer in particular to the type SISO logistic models. 

Table 1 
Data on the analysis of a probable cause of the Challenger shuttle disaster 

x 

Temperature 

Y 

Defect 

X 

Temperature 

Y 

Defect 

x 

Temperature 

Y 

Defect 

66 

70 

69 

68 

67 

72 

73 

70 

 

0 

1 

0 

0 

0 

0 

0 

0 

57 

63 

70 

78 

67 

53 

67 

75 

1 

1 

1 

0 

0 

1 

0 

0 

70 

81 

76 

79 

75 

76 

58 

0 

0 

0 

0 

1 

0 

1 

 
In the case of the identification theory, the model that expresses the 

probabilistic interdependence between the dependent variable Y, binary type, and 
one or more independent variables x, is called logistic regression. For example, 
the experimental data are disclosed in Table 1 regarding the analysis of probable 
causes of the Challenger space shuttle disaster (1986) which shows the various 
temperatures at which the damage of a specific mechanical bond along the N = 23 
tests occurred or not. In this case, the set of entities consists of the N trials of the 
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shuttle that are divided into two classes: the trials class which results in the 
occurrence of the defect Y = 1 and the trials class in which the defect does not 
occur Y = 0. Given the results of these N trials of the shuttle, we could build a 
logistic model that would help us answer the question: "what is the probability 
that the defects should occur (Y = 1) at a given temperature x?" In this example 
the class of events Y = 1 contains the following six categories of random events 
caused by independent variable values x: 
 

Y=1, x=75); (Y=1, x=70); (Y=1, x=63); (Y=1, x=58); (Y=1, x=58); (Y=1, x=57) 

2. Logistic Regression  

The regression equation obtained in this case is of a type different from 
other known regressions, such as continuous, single dimensional, 
multidimensional, linear and nonlinear etc. Tree variants of the logistic model 
structure for a SISO (single input single output), found in the literature of 
expertise [3]. In the first variant the continuous size “p” is a nonlinear function of 
x and of two unknown parameters: 0β  and 1β . If the event Y = 1, then this event’s 
occurrence takes place with the probability P(Y=1|x) = p. This type of regression 
provides information about the importance of variables x in the differentiation of 
classes, and about the classification of one observation into one of the classes. 
Unlike classical linear regression, in the case of logistic regression, instead of 
dependent variable Y, which may take the binary value Y = 1  “success” or Y = 
0  "failure", it is used a continuous variable p, which takes values ranging from 
0 to 1. A value of p is interpreted as the probability of obtaining a "success" (Y = 
1), subject to the independent variable value x. Then the opposite event Y = 0 has 
a probability of occurrence P (Y = 0) = 1-p. 

The SISO logistic regression model is [3]:  
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3. Log likelihood function for SISO logistic system 

In order to identify a SISO type logistic process there are used the n pairs 
of input – output data experimentally obtained. These data are direct successive 
observations of that particular set of n entities in which each entity i is 
characterized by the pair of values (Yi and xi). 
 Based on these n pairs of experimental data those values of vector parameters θ  
need to be determined so that the model obtained can best describe the 
experimental data and to ensure a high level of generality, in the sense of being 
able to correctly describe the specific logistics process behavior in other points too 
(y, x), which are not part of the original set of n points of the experimental data. 
Among these points from the experimental data set there are some in which Y = 1 
and others in which Y = 0. Since the output of  the  process is a logistic variable 
which within the experiment takes the values Y1, Y2 ,..., Yn then the output of the 
model in the n experimental points is expressed by the probabilities sequence, 
(p (Yi = 1 | xi) or p (Yi = 0 | xi) = 1 - p (Yi = 1 | xi)). The probabilistic description 
of the entire set of n independent random events of logistic type is expressed by 
the product of n random probabilities related to observed binary random events: 

∏
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                                                       (3) 

Within this product there are two types of terms: terms corresponding events for 
which Yi = 1, pi = p = Pr (Yi = 1, xi, parameters) and terms related to the events 
for which Yi = 0, pi = 1-p. Under these conditions the relation (3) becomes:  
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In [5], the probability function (4) is marked L (data, parameters) and is called the 
likelihood function [3] of SISO logistic regression. The likelihood function 
depends on the logistic regression parameters and experimental data with the 
following expression for the logistic model for the binary random events SISO 
type: 
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If the case of logistics processes identification the problem is to find those values 
for model parameters that will ensure the maximum likelihood function. These 
values, in the case of a SISO model logistics are noted: 

0 1şi ββ
∧∧

and constitute 
the so-called model parameter estimates for the purposes of maximum likelihood. 
The problem of maximum likelihood estimates for a   logistic SISO regression 
model is: 
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ββθ =  is the  parameters estimation vector of the SISO. 

logistic model .  

 
Fig.1. Graphic image of the surface described by the logarithmic likelihood function when 

experimental data logistics table 1 
 
Applying the natural logarithm of the likelihood function (6) events results in the 
function log likelihood (LL) binary logistic model with random shit. This function 
denoted LL (βo, β1) has the expression: 
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The functions L ((βo, β1) and LL (βo, β1) were maximum in the plane parameters 
βo, β1, at the same point coordinates: which is the maximum likelihood estimates 
of logistic SISO model parameters estimate. 
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Fig. 2. Izolevel contour lines of the log likelihood function surface shown in Fig. 1 and SFB 
(Search Field Borders) 

 
In order to solve the problem of maximum value we have available a set of 

n pairs of experimental data, observations input - output, 

Yn)} (Xn, ..., Y2), (X2, Y1), {(X1,  data =                          (8)  

which, for example, for the specific case of Table 1 these data are: 

1)}  Y23 76,  (X23 ..., 1),  Y2 70  (X2 0),  Y1 66  {(X1  data =======        (9) 
Using these data there has been developed a MATLAB program that built 

the graphic in Fig.1 of the logarithmic likelihood function (6) for the example in 
Using these data there has been developed a MATLAB program that built the 
graphic in Fig.1 of the logarithmic likelihood function (7) for the example in 
Table 1. The plateau in the extreme area of the surface can be seen in Fig.1, which 
makes it more difficult to find the point of coordinates ∧∧

10 ββ and  of the plane of 
the model parameters, corresponding to maximum function (7). This maximum 
point was also highlighted Fig.2 containing the image of the izolevel lines of the 
same log likelihood function. These contour lines were drawn using the same 
MATLAB program mentioned above. Given the issues mentioned on the log 
likelihood surface geometry for experimental data, we used a Monte Carlo method 
for searching the maximum point [5]. 
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4. Experimental Determination of the Search Field Borders (SFB) 

Classical Monte-Carlo algorithm(CMCA) is random testing  of the Log 
Likelihood  surface, using two test sequences of random numbers S1 and S0 of 
finite length, (one sequence for each parameter 1β  and 0β ). These sequences are 
cut from infinite strings of random numbers uniform probability distribution in the 
band- plan under investigation in the two parameters area. 

 
The two random sequences obtained from two random number generators 

in Matlab CMCA algorithm of random search of the maximum log likelihood   LL 
(βo, β1) simulation, in the SISO case, involves the execution of three steps[5] 
described in Fig.3 The three steps described above are performed within SFB 
represented in fig.2. The condition to put to a stop the CMCA is expressed either 
by setting the maximum number Kmax test or by imposing a successful 
consecutive number of Ks steps in the search area experimentally delineated. 
Limit values of the parameters (b0min, b0max, b1min, b1max) determines SFB. 
These limits are settled by means of pre explorations of the LLF values, made in a 
9-node network shown in Fig. 4. 

Step 1: Generate a pair of random numbers [S0 (k = 1), S1 (k = 1)] with these 
values and existing experimental data (12) is calculated  

log Likelihood(1)=LL(1) and is stored in  memory M:  
 

                                      LL (S0 (1), S1 (1),) = LL (1) M  
 

Step 2: increment by one count variable k = k +1 a number of tests and 
generates a new pair of random numbers that are calculated 

 
                                    LL (S0 (k), S1 (k), data) = LL (k) 

 
Step 3: Compare the L (k) with M from the previous step: 

 
                              IF, 

                          LL (k)> M 
                               THEN 

 replaced the old content is  LL (k) M and return to Step 2  
                               OTHERWISE 

return to Step 2, M preserving the previous value. 
 

Fig. 3. CMCA for random search of the maximum log likelihood in logical SISO model case. 
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Fig.4. Experimental determination of the SFB: 21,ΔΔ -limits of variation of parameters in the 

search process; 0010 ,ββ  - SFB center coordinates in the plane parameters 

 
The node from the network centre coincides with the SFB center only if 

LLF values in the 8 peripheral nodes are lower than the LLF values in the centre 
of the network. In the opposite case, when in one of peripheral nodes the SFB 
value is greater than the value of SFB in the center then the network is moved 
placing the node in the center in the point with the highest value of LLF. The 
search continues in the same manner until the greatest value of LLF is in center 
network. In the case study shown in table 1 the parameters variation limits 

5.1 =Δ  respectiv 22 =Δ and the initial coordinates dorm the centre of the 
network )0,0(),( 0010 =ββ are arbitrary (Fig. 2). 

5. The CMCA test results 

CMCA Testing was performed for various N lengths of sequences of 
random numbers N: N = 50, N = 500, N = 1000 N = 1500 N = 10000. These 
variants were with CMCA. CMCA applying shown in Fig.3 for the two variants 
presented above, the results of the maximum LLF search process, shown in Fig. 6 
were obtained. Furthermore there are presented two main observations, drawn 
from the analysis of experimental test results stated above. 
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Fig. 5. Evolution of the maximum LLF search process in a choice N = 50 and N = 500 

• Remarkable observation # 1 related to the modification of search efficiency depending on the 
length N sequence search 

 
CMCA application results in case 1 Fig. 5 (for N = 50 steps for searching 

and data in Fig. 1) illustrates how the maximum LLF point in the parameters 
plane (point coordinates, β0 =- 0.10127, β1 =- 3.043 ') was found after only 20 
practical steps. And in the second case for N = 500, the coordinates point, β0 =- 
0.103, 3.003 =- β1 was found after 25 steps. To assess the CMCA efficiency in all 
these cases, an indicator called "The Success Rate" was introduced, equal to the 
ratio between the number of successful steps and the total number of steps N.  
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Fig. 6. Topography of the 15 search points by applying maximum LLF CMCA. 

• Remarkable observation # 2 regarding the random character of the segments topography of finite 
length random numbers 

If the sequence of 1500 random numbers can be imagined as consisting of 
100 consecutive segments of the same length N = 15 random numbers. Each of 
these segments can be used for repeated searching of he maximum LLF with 
CMCA. 

Fig. 6 shows both the positioning of the steps to be taken within the search 
(topography) and parameter values in the case of the first four sequences out of 
the 100 in which the string of 1,500 random numbers has been segmented. The 
apparent random nature of the topography as well as of the estimates can be 
noticed in all 100 cases:  
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whereε  - random-noise with zero average value and dispersion εσ. . 
These  observations lead us to the simple idea that instead of applying the CMCA 
only once on a long string of N random numbers we should apply CMCA by N 
repeatedly, = N / No of times on shorter sequences formed of No random 
numbers. Then, based on the results (10) we determinate the parameter estimates 
through mediation. In the case of a MISO type logistics model with n+1 
parameters and Nr, we have short sequences repetitions: 
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where i = 0,1,2 ,..., n  
From (11) result, 
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where M is mathematical expectancy operator and iσ  is the dispersion estimates 

of the parameters. For N, >10 the noise dispersion can be approximated by the 
following relation: 
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If samples of length n from a population are extracted, then for values of n> 10 
the sample averages are distributed (approximately) normally (according to the 
central limit theorem [6]). Given (11) it results that the distribution of random 

values probabilities of the estimates i

^
β  are asymptotically Gaussian. Thus, you 

can apply the well known rule of the "three sigma" for determining the estimate 
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From (14) results that the probability value is very close to one, for the inequality 
to be fulfilled,    

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
<−

r
ii N

iε
σ

ββ 3||
^

                                                   (15) 

 
6. Conclusions  
 
The paper highlights the models of logistic processes particularities with 

random binary events and presents a technique for identifying these processes. In 
order to estimate the logistic model parameters, it is necessary to apply the 
statistical criterion maximum likelihood. Original Contributions: 
1) A Monte Carlo method is put forward in order to estimate logistic model 
parameters using the maximum log likelihood criterion; 
2) Statistical analysis of parameters estimate. The estimates of parameters, thus 
obtained, are not deviated and the estimates variances can be approximated by 
(15). In conclusion we consider that the theory of systems modeling and 
identification [3] should be extended to the field of random binary events systems. 
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