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Lucrarea descrie mai multe tipuri de omogenitate definite ı̂n spaţiul OsckM .
Sunt prezentate ecuaţiile Euler-Lagrange pentru diverse tipuri de variabile, iar
legătura dintre Lagrangienii spaţiilor L(k)n şi Hamiltonienii spaţiilor H(k)n

este precizată. Ecuaţiile diferă semnificativ, funcţie de paritatea ordinului k.
Se arată că ı̂n Osc3M , doar E0

i şi E3
i sunt covectori. Se demonstrează că

ecuaţiile Euler-Lagrange au caracter invariant, şi se determină un nou câmp
scalar.

In OsckM , different kinds of homogeneity are defined, and properties of
homogeneous functions are pointed out. The Euler-Lagrange equations for
different types of variables in OsckM are given; they are coordinate invariant,
and have different forms for k = 2l and for k = 2l+1. The connection between
Lagrangians in the space L(k)n and Hamiltonians in H(k)n, is outlined. It is
shown that in Osc3M , only E0

i and E3
i are covectors, and one new scalar

field is determined.
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1. Different kinds of homogeneity. Euler’s equations

Let us denote by OsckM the k-th order tangent space of M . In some local
chart the point u ∈ OsckM has coordinates (xi = y0i, y1i, . . . , yki), i = 1, n,

yAi = dAy0i

dtA
, A = 0, k. The transformation group is well known ([1], [2], [3],

[4], etc). Some properties of Osc3M are given by (41)-(43).

Definition 1. The scalar function F (y0i, y1i, . . . , yki) is homogeneous of
first kind and order r (r ∈ Z) if

F (y0i, λy1i, λ2y2i, . . . , λkyki) = λrF (y0i, y1i, . . . , yki), λ > 0. (1)
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It is homogeneous of second kind and order r if

F (y0i, λy1i, λy2i, . . . , λyki) = λrF (y0i, y1i, . . . , yki). (2)

It is homogeneous of third kind and order r with respect to variable yAi, if

F (y0i, y1i, . . . , y(A−1)i, λyAi, y(A+1)i, . . . , yki) = λrF (y0i, y1i, . . . , yki). (3)

It is homogeneous of fourth kind and order r with respect to variable yAi if

F (y0i, y1i, . . . , y(A−1)i, λAyAi, y(A+1)i, . . . , yki) = (λA)rF (y0i, y1i, . . . , yki). (4)

Theorem 1. For the homogeneous function F (y0i, y1i, . . . , yki) of first kind
and order r the following Euler type equations are valid:

∂F

∂y1i
y1i +

∂F

∂y2i
2y2i + · · ·+ ∂F

∂yki
kyki = rF, r ≥ 0 (5)

∂2F

∂y1i∂y1j
y1iy1j +

∂2F

∂y2i∂y2j
2 · 2y2iy2j + · · ·+ ∂2F

∂yki∂ykj
k · kykiykj + (6)

2

[
∂2F

∂y1i∂y2j
1 · 2y1iy2j +

∂2F

∂y1i∂y3j
1 · 3y1iy3j + · · ·

+
∂2F

∂y1i∂ykj
1 · ky1iykj + · · ·+ ∂2F

∂y(k−1)i∂ykj
(k − 1)ky(k−1)iykj

]
+

∂F

∂y2i
2 · 1y2i +

∂F

∂y3i
3 · 2y3i + ·+ ∂F

∂yki
k(k − 1)yki = r(r − 1)F, r ≥ 1.

Proof. If we take the first derivative of (1) with respect to λ, we get

k∑

A=1

∂F

∂(λAyAi)
AλA−1yAi = rλr−1F. (7)

If we put λ = 1 in (7), we get (5). If we take the derivative of (7) with respect
to λ, we get

k∑

B=1

k∑

A=1

∂2F

∂(λAyAi)∂(λByBi)
AλA−1yAiBλB−1yBi + (8)

k∑

A=2

∂F

∂(λAyAi)
· A(A− 1)λA−2yAi = r(r − 1)λr−2F.

If we put λ = 1 in (8), we obtain (6). 2
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Theorem 2. For the homogeneous function F (y0i, y1i, . . . , yki) of second kind
and order r the following equations are valid:

∂F

∂y1i
y1i +

∂F

∂y2i
y2i + · · ·+ ∂F

∂yki
yki = rF, r ≥ 0 (9)

∂2F

∂y1i∂y1j
y1iy1j +

∂2F

∂y2i∂y2j
y2iy2j + · · ·+ ∂2F

∂yki∂ykj
ykiykj + (10)

2

[
∂2F

∂y1i∂y2j
y1iy2j + · · ·+ ∂2F

∂y1i∂ykj
y1iykj + · · ·+ ∂2F

∂y(k−1)i∂ykj
y(k−1)iykj

]
=

r(r − 1)F, r ≥ 1.

Proof. The first and second derivative of (2) with respect to λ give:

k∑

A=1

∂F

∂(λyAi)
yAi = rλr−1F (11)

k∑

B=1

k∑

A=1

∂2F

∂(λyAi)∂(λyBj)
yAiyBj = r(r − 1)F. (12)

For λ = 1 the explicit form of (11) and (12) are (9) and (10), respectively.
The higher order derivatives give more complicated formulae. 2

Theorem 3. If the function F (y0i, y1i, . . . , yAi, . . . , yki) is homogeneous of
third kind and order r with respect to the variable yAi, then

∂F

∂yAi
yAi = rF,

∂2F

∂yAi∂yAj
yAiyAj = r(r − 1)F, . . . , (13)

∂rF

∂yAi1∂yAi2 . . . yAir
yAi1yAi2 . . . yAir = r!F.

Proof. The proof is similar to the proof of previous Theorems. 2

Theorem 4. If the function F (y0i, y1i, . . . , yAi, . . . , yki) is homogeneous of
fourth kind and order r with respect to variable yAi, then

∂F

∂yAi
AyAi = rAF, A = 1, k (14)

∂2F

∂yAi∂yAj
A2yAiyAj +

∂F

∂yAi
A(A− 1)yAi = rA(rA− 1)F. (15)
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Proof. The first and second derivatives of (4) with respect to λ are

∂F

∂(λAyAi)
AλA−1yAi = rAλrA−1F (16)

∂2F

∂(λAyAi)∂(λAyAj)
(AλA−1)2yAiyAj + (17)

∂F

∂(λAyAi)
A(A− 1)λA−2yAi = rA(rA− 1)λrA−2F.

For λ = 1, (16) and (17) give (14) and (15) respectively. 2

Remark 1. For the scalar function on Osc1M , i.e. F = F (x, y) =
F (y0i, y1i) the definitions of first, second and third kinds of homogeneity co-
incide.

Example 1. The function

F (y0i, y1i, y2i) =
ai(x)y2i

bj(x)y1j
(y0i = xi)

is homogeneous of first kind and order 1, or of second kind and order 0,
namely

F (y0i, λy1i, λ2y2i) =
ai(x)λ2y2i

bj(x)λy1j
= λF (y0i, y1i, y2i)

F (y0i, λ1i, λy2i) = F (y0i, y1i, y2i).

For this function, the relations (5) and (9) give

− ai(x)y2i

bj(x)(y1j)2
· y1j +

ai(x)

bj(x)y1j
· 2y2i =

ai(x)y2i

bj(x)y1j

− ai(x)y2i

bj(x)(y1j)2
· y1j +

ai(x)

bj(x)y1j
· y2i = 0.

Example 2. The function

F (y0i, y1i, y2i) = ai(x)y2i + bij(x)y1iy1j +
ci(x)y3i

dj(x)y1j
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is homogeneous of first kind and order 2. For this example (5) and (6) reduce
to:

∂F

∂y1i
· y1i +

∂F

∂y2i
2y2i +

∂F

∂y3i
· 3y3i = 2F

∂2F

∂y1i∂y1j
· y1iy1j + 2

∂2F

∂y1i∂y3j
· 3y1iy3j +

∂F

∂y2i
· 2y2i +

∂F

∂y3i
· 6y3i = 2F.

Straightforward calculations lead to these equations,

Example 3. The function

F (x, y(1), y(2), y(3)) = aijk(x)y1i(y2j)3(y3k)2

is homogeneous of third kind and order 3 with respect to y(2) and
homogeneous of third kind and order 2 with respect to y(3), namely

F (x, y(1), λy(2), y(3)) = λ3F (x, y(1), y(2), y(3))

F (x, y(1), y(2), λy(3)) = λ2F (x, y(1), y(2), y(3)).

For this example, (13) has the form

∂F

∂y2i
y2i = 3F,

∂2F

∂y2i∂y2j
y2iy2j = 3 · 2F

∂F

∂y3i
y3i = 2F,

∂2F

∂y3i∂y3j
y3iy3j = 2 · 1F.

Example 4. The vector field [5]

z2i = y2i +
1

2
γ i

j ky
1jy1k

in L(2)n is homogeneous of first kind and order 2. The scalar functions:

α(x, y1, y2) = [aij(x)z2iz2j]1/2, β(x, y1, y2) = bi(x)z2i

are homogeneous of first kind and order 2. The fundamental functions

F (x, y(1), y(2)) = α + β (Randers metric)

F (x, y(1), y(2)) =
α2

β
(Kropina metric)

F (x, y(1), y(2)) =
α2

α− β
(Matsumoto metric)
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are homogeneous of first kind and order 2.

In the Lagrange space L(2)n = (M, L(x, y(1), y(2)) with

L(x, y(1), y(2)) = F 2(x, y(1), y(2)),

the metric tensor:

cij(x, y(1), y(2)) =
1

2

∂2L(x, y(1), y(2))

∂y2i∂y2j

is homogeneous of first kind and order 0, i.e.

cij(x, λy(1), λ2y(2)) = λ0cij(x, y(1), y(2)).

2. The Euler-Lagrange equations for functions of several higher
order variables

To obtain the general Euler-Lagrange equations for functions of several
higher order variables we shall restrict our attention to one special case. Let
us consider

I =

1∫

0

F (t, x, ẋ, ẍ, x(3), p, ṗ, p̈, p(3))dt, (18)

where x = x(t), p = p(t), ẋ = ẋ(t), ṗ = ṗ(t), . . . and δx(t), δẋ(t), δẍ(t), δp(t),
δṗ(t), δp̈(t) at t = 0 and t = 1 have value zero. Using the partial integration
and the property: d

dt
δx = δẋ, . . . , d

dt
δẍ = δx(3) (similarly for p), from (18) we

get the first variation of I [6]:

δI =

1∫

0

(
∂F

∂x
δx +

∂F

∂ẋ
δẋ +

∂F

∂ẍ
δẍ +

∂F

∂x(3)
δx(3)+

+
∂F

∂p
δp +

∂F

∂ṗ
δṗ +

∂F

∂p̈
δp̈ +

∂F

∂p(3)
δp(3)

)
dt

=

1∫

0

(
∂F

∂x
δx +

∂F

∂p
δp

)
dt +

1∫

0

d

dt

(
∂F

∂ẋ
δx +

∂F

∂ẍ
δẋ +

∂F

∂x(3)
δẍ

)
dt +

+

1∫

0

d

dt

(
∂F

∂ṗ
δp +

∂F

∂p̈
δṗ +

∂F

∂p(3)
δp̈

)
dt
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−
1∫

0

(
d

dt

∂F

∂ẋ
δx +

d

dt

∂F

∂ẍ
δẋ +

d

dt

∂F

∂x(3)
δẍ

)
dt

−
1∫

0

(
d

dt

∂F

∂ṗ
δp +

d

dt

∂F

∂p̈
δṗ +

d

dt

∂F

∂p(3)
δp̈

)
dt.

We have

1∫

0

d

dt

(
∂F

∂ẋ
δx +

∂F

∂ẍ
δẋ +

∂F

∂x(3)
δẍ

)
dt =

∂F

∂ẋ
δx

∣∣∣∣
1

0
+

∂F

∂ẍ
δẋ

∣∣∣∣
1

0
+

∂F

∂x(3)
δẍ

∣∣∣∣
1

0
= 0

because

δx(1) = δẋ(1) = δẍ(1) = 0, δx(0) = δẋ(0) = δẍ(0) = 0.

The same is true if in the above equation x is changed with p. Now we have

δI =
1∫

0

(
∂F

∂x
− d

dt

∂F

∂ẋ

)
δxdt +

1∫

0

(
∂F

∂p
− d

dt

∂F

∂ṗ

)
δpdt

−
1∫

0

d

dt

(
d

dt

∂F

∂ẍ
δx +

d

dt

∂F

∂x(3)
δẋ

)
dt +

1∫

0

(
d2

dt2
∂F

∂ẍ
δx +

d2

dt2
∂F

∂x(3)
δẋ

)
dt

−
1∫

0

d

dt

(
d

dt

∂F

∂p̈
δp +

d

dt

∂F

∂p(3)
δṗ

)
dt +

1∫

0

(
d2

dt2
∂F

∂p̈
δp +

d2

dt2
∂F

∂p(3)
δṗ

)
dt =

1∫

0

(
∂F

∂x
− d

dt

∂F

∂ẋ
+

d2

dt2
∂F

∂ẍ

)
δxdt +

1∫

0

(
∂F

∂p
− d

dt

∂F

∂p
+

d2

dt2
∂F

∂p̈

)
δpdt + A,

where

A =

1∫

0

(
d2

dt2
∂F

∂x(3)
δẋ +

d2

dt2
∂F

∂p(3)
δṗ

)
dt =

=

1∫

0

d

dt

(
d2

dt2
∂F

∂x(3)
δx +

d2

dt2
∂F

∂p(3)
δp

)
dt−

1∫

0

(
d3

dt3
∂F

∂x(3)
δx +

d3

dt3
∂F

∂p(3)
δp

)
dt.
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Using the same procedure as before we have

δI =

1∫

0

(
∂F

∂x
− d

dt

∂F

∂ẋ
+

d2

dt2
∂F

∂ẍ
− d3

dt3
∂F

∂x(3)

)
δxdt + (19)

1∫

0

(
∂F

∂p
− d

dt

∂F

∂ṗ
+

d2

dt2
∂F

∂p̈
− d3

dt3
∂F

∂p(3)

)
δpdt.

We shall use the notations x = x(0), ẋ = x(1), ẍ = x(2), . . . , d0

dt0
G = G.

From (19), using similar calculations, we obtain

Theorem 5. The extreme value of functional

I =

1∫

0

F (t, x(0), x(1), x(2), . . . , x(k), p(0), p(1), p(2), . . . , p(k))dt,

where x(l) = x(l)(t), p(l) = p(l)(t), l = 0, k and δx(l)(1) = 0, δx(l)(0) = 0,
δp(l)(1) = 0, δp(l)(0) = 0, l = 0, k, can be obtained, when

k∑

l=0

(−1)l dl

dtl
∂F

∂x(l)
= 0,

k∑

l=0

(−1)l dl

dtl
∂F

∂p(l)
= 0,

i.e.
∂F

∂x
− d

dt

∂F

∂x(1)
+

d2

dt2
∂F

∂x(2)
− · · ·+ (−1)k dk

dtk
F

∂x(k)
= 0 (20)

∂F

∂p
− d

dt

∂F

∂p(1)
+

d2

dt2
∂F

∂p(2)
− · · ·+ (−1)k dk

dtk
∂F

∂p(k)
= 0. (21)

The above equations are Euler-Lagrange equations. In the case when x
denotes (x1, x2, . . . , xn) = (xi) and p = (p1, p2, . . . , pn) = (pi), i.e. when x
and p are points in n-dimensional spaces, then the Euler-Lagrange equations
have the form:

∂F

∂x(0)i
− d

dt

∂F

∂x(1)i
+

d2

dt2
∂F

∂x(2)i
− · · ·+ (−1)k dk

dtk
∂F

∂x(k)i
= 0 (22)

∂F

∂p(0)i

− d

dt

∂F

∂p(1)i

+
d2

dt2
∂F

∂p(2)i

− · · ·+ (−1)k dk

dtk
∂F

∂p(k)i

= 0.
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In the recent literature it is more usual to use the notations:

x(l)i = y(l)i = yli, p(l)i = pli, x0i = xi, p0i = pi, l = 0, k, i = 1, n. (23)

3. The connection between Lagrangians and Hamiltonians of
higher order

Let L(t, y(0)(t), y(1)(t), . . . , y(k)(t)) be a regular Lagrangian in L(k)n and
H(t, p(0)(t), p(1)(t), . . . , p(k)(t)) the Hamiltonian in the H(k)n space. We shall
examine the variation of

F (t, y(0), y(1), . . . , y(k), p(0), p(1), . . . , p(k)) = (24)

H(t, p(0), p(1), . . . , p(k)) + L(t, y(0), y(1), . . . , y(k))

−y0ipki − y1ip(k−1)i − · · · − y(k−1)ip1i − ykip0i.

To obtain the general formula we shall similar to (18) first consider the
special form of F :

F = F (t, x, ẋ, ẍ, x(3), p, ṗ, p̈, p(3)) = (25)

H(t, pi, ṗi, p̈i, p
(3)
i ) + L(t, xi, ẋi, ẍi, x(3)i)−

−xip
(3)
i − ẋip̈i − ẍiṗi − x(3)ipi.

From (18) and (22) it follows that δI =
1∫
0

Fdt = 0 if

∂F

∂xi
− d

dt

∂F

∂ẋi
+

d2

dt2
∂F

∂ẍi
− d3

dt3
∂F

∂x(3)i
= 0, i = 1, n,

∂F

∂pi

− d

dt

∂F

∂ṗi

+
d2

dt2
∂F

∂p̈i

− d3

dt3
∂F

∂p
(3)
i

= 0, i = 1, n.

From the above we get

∂L

∂xi
− p

(3)
i − d

dt

(
∂L

∂ẋi
− p̈i

)
+

d2

dt2

(
∂L

∂ẍi
− ṗi

)
− d3

dt3

(
∂L

∂x(3)i
− pi

)
= 0

∂H

∂pi

− x(3)i − d

dt

(
∂H

∂ṗi

− ẍi

)
+

d2

dt2

(
∂H

∂p̈i

− ẋi

)
− d3

dt3

(
∂H

∂p
(3)
i

− xi

)
= 0.
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As ṗi = d
dt

pi, ẋ
i = d

dt
xi, . . ., we have

∂L

∂xi
− d

dt

∂L

∂ẋi
+

d2

dt2
∂L

∂ẍi
− d3

dt3
∂L

∂x(3)i
= 0 (26)

∂H

∂pi

− d

dt

∂H

∂ṗi

+
d2

dt2
∂H

∂p̈i

− d3

dt3
∂H

∂p
(3)
i

= 0. (27)

The Euler-Lagrange equation of F given by (25) are (26) and (27). From (25)
we get

dF =

(
∂H

∂t
+

∂L

∂t

)
dt +

(
∂L

∂xi
− p

(3)
i

)
dxi +

(
∂L

∂ẋi
− p̈i

)
dẋi + (28)

(
∂L

∂ẍi
− ṗi

)
dẍi +

(
∂L

∂x(3)i
− pi

)
dx(3)i +

(
∂H

∂pi

− x(3)i

)
dpi +

(
∂H

∂ṗi

− ẍi

)
dṗi +

(
∂H

∂p̈i

− ẋi

)
dp̈i +

(
∂H

∂p
(3)
i

− x

)
dp

(3)
i = 0.

As the variables are independent, from (28) it follows, that dF = 0 is
equivalent to the following relations

∂L

∂t
= −∂H

∂t

∂L

∂xi
= p

(3)
i

∂L

∂ẋi
= p̈i

∂L

∂ẍi
= ṗi

∂L

∂x(3)i
= pi (29)

∂H

∂pi

= x(3)i ∂H

∂ṗi

= ẍi ∂H

∂p̈i

= ẋi ∂H

∂p
(3)
i

= xi.

If we replace equations (29) into (26) and (27) we obtain 0 = 0. For the
function

F (t, x, ẋ, ẍ, p, ṗ, p̈) = H(t, p, ṗ, p̈) +

L(t, x, ẋ, ẍ)− xip̈i − ẋiṗi − ẍipi,

the Euler-Lagrange equations (26) and (27) have the form:

∂L

∂xi
− d

dt

∂L

∂ẋi
+

d2

dt2
∂L

∂ẍi
− p̈i = 0 (30)
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∂H

∂pi

− d

dt

∂H

∂ṗi

+
d2

dt2
∂H

∂p̈i

− ẍi = 0 (31)

and equation (29) have the form

∂L

∂t
= −∂H

∂t

∂L

∂xi
= p̈i

∂L

∂ẋi
= ṗi

∂L

∂ẍi
= pi (32)

∂H

∂pi

= ẍi ∂H

∂ṗi

= ẋi ∂H

∂p̈i

= xi.

If we substitute (32) into (30) and (31) we obtain 0 = 0, i.e. (32) satisfy (30)
and (31). From the above it follows:

Theorem 6. The Euler-Lagrange equations for the function F determined
by (24) are:

(a) for k = 2l + 1

A =
∂L

∂y0i
− d

dt

∂L

∂y1i
+

d2

dt2
∂L

∂y2i
− d3

dt3
∂L

∂y3i
+ · · ·+ (−1)k dk

dtk
∂L

∂yki
= 0 (33)

B =
∂H

∂p0i

− d

dt

∂H

∂p1i

+
d2

dt2
∂H

∂p2i

− d3

dt3
∂H

∂p3i

+ · · ·+ (−1)k dk

dtk
∂H

∂pki

= 0 (34)

(b) for k = 2l the Euler-Lagrange equations have the form:

A− pki = 0, B − yki = 0 (35)

where pki = dkpi

dtk
, yki = dkxi

dtk
. The equations which give relations between L

and H for both cases (a) and (b) have the form

∂L

∂t
= −∂H

∂t
,

∂L

∂y0i
= pki,

∂L

∂y1i
= p(k−1)i, (36)

∂L

∂y2i
= p(k−2)i, . . . ,

∂L

∂yki
= p0i = pi

∂H

∂p0i
= yki,

∂H

∂p1i
= y(k−1)i, . . . ,

∂H

∂p(k−1)i
= y1i,

∂H

∂pki
= y0i.

Theorem 7. If L(t, y(0), y(1), . . . , y(k)) and H(t, p(0), p(1), . . . , p(k)) are homo-
geneous functions of first kind and order k, i.e.

L(t, y(0), λy(1), . . . , λkyk) = λkL(t, y(0), y(1), . . . , y(k)), (37)
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H(t, p(0), λp(1), . . . , λ
kp(k)) = λkH(t, p(0), p(1), . . . , p(k)), (38)

then the function F (t, y(0), y(1), . . . , y(k), p(0), p(1), . . . , p(k)) defined by (24) is
also homogeneous of first kind and order k, i.e.

F (t, y(0), λy(1), . . . , λky(k), p(0), λp(1), . . . , λ
kp(k)) =

λkF (t, y(0), y(1), . . . , y(k), p(0), p(1), . . . , p(k)).

If we suppose that L(t, y(0), . . . , y(k)) with the property (37) is the
fundamental function in the Finsler space of order k(F (k)n), then the metric
tensor in this space can be defined by

gij(t, y
(0), . . . , y(k)) =

∂2L2(t, y(0), . . . , y(k))

∂yki∂ykj
. (39)

If H(t, p(0), p(1), . . . , p(k)) with the property (38) is the fundamental function
in the Cartan space of order k (C(k)n), then the metric tensor in this space
can be determined by

cij(t, p(0), p(1), . . . , p(k)) =
∂2H2(t, p(0), p(1), . . . , p(k))

∂pki∂pkj

. (40)

Both metric tensors gij and cij given by (39) and (40) respectively are ho-
mogeneous of first kind and order zero. The former statements can be very
useful in the investigation of F (k)n and C(k)n spaces recently introduced. The
connection between the function F in (24) and energies of higher order can
be investigated.

4. Invariant form of Euler-Lagrange equations

We want to show that Euler-Lagrange equations of type (20) are
coordinate invariant. For that reason we restrict k to k = 3, and let
F = L(t, y0i, y1i, y2i, y3i) be a regular Lagrangian in Osc3M .

We shall use the notations

∂li =
∂

∂yli
, dl

t =
dl

dtl
, l = 0, 3.

In Osc3M the allowable transformations are: ([1], [7], [2], [3], [4], etc)

y0i′ = y0i′(y0i), y0i = xi (41)
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y1i′ = (∂0iy
0i′)y1i = Bi′

i y1i

y2i′ = (d1
t B

i′
i )y1i + Bi′

i y2i

y3i′ = (d2
t B

i′
i )y1i + 2(d1

t B
i′
i )y2i + Bi′

i y3i.

The transformations of the form (41) form a group. The natural basis of
T (Osc3M) is {∂0i, ∂1i, ∂2i, ∂3i} and it is transforming as follows:

∂0i = (∂0iy
0i′)∂0i′ + (∂0iy

1i′)∂1i′ + (∂0iy
2i′)∂2i′ + (∂0iy

3i′)∂3i′

∂1i = (∂1iy
1i′)∂1i′ + (∂1iy

2i′)∂2i′ + (∂1iy
3i′)∂3i′

∂2i = (∂2iy
2i′)∂2i′ + (∂2iy

3i′)∂3i′

∂3i = (∂3iy
3i′)∂3i′ .

(42)

It is known that ([8], [1], [9], [7], [2], [3], [4])

∂0iy
0i′ = ∂1iy

1i′ = ∂2iy
2i′ = ∂3iy

3i′ , (43)

∂0iy
1i′ =

1
2
∂1iy

2i′ =
1
3
∂2iy

3i′ , ∂0iy
2i′ =

1
3
∂1iy

3i′ , . . . (∂0iy
si′ =

1(r+s
r

)∂riy
(r+s)i′),

d1
t ∂0iy

0i′ = ∂0iy
1i′ , d2

t ∂0iy
0i′ = ∂0iy

2i′ , d1
t ∂0iy

1i′ = ∂0iy
2i′ , d1

t ∂0iy
2i′ = ∂0iy

3i′ .

Let us denote

δxi = εvi(t) = εv0i, δẋi = εd1
t v

i = εv1i, δẍ = εd2
t v

i = εv2i, δx(3) = εd3
t v

i = εv3i.

Using the similar procedure as in (19) (only the initial conditions are not

substituted), we obtain for I =
1∫
0

Ldt:

δI

ε
=

1∫

0

[v0i(∂0iL) + v1i(∂1iL) + v2i(∂2iL) + v3i(∂3iL)]dt. (44)

Using the notations

E0
i = ∂0i − d1

t ∂1i + d2
t ∂2i − d3

t ∂3i (45)

E1
i = ∂1i − d1

t ∂2i + d2
t ∂3i

E2
i = ∂2i − d1

t ∂3i

E3
i = ∂3i
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(44) can be written in the form

δI

ε
=

1∫

0

{v0i(E0
i L) + d1

t [v
0i(E1

i L) + v1i(E2
i L) + v2i(E3

i L)]}dt. (46)

The comparison of (44) and (46) gives

(v0i∂0i + v1i∂1i + v2i∂2i + v3i∂3i)L = (47)

v0i(E0
i L) + d1

t [v
0i(E1

i L) + v1i(E2
i L) + v2i(E3

i L).

From (45), it follows that

E0
i + d1

t E
1
i = ∂0i, E1

i + d1
t E

2
i = ∂1i, (48)

E2
i + d1

t E
3
i = ∂2i, E3

i = ∂3i.

If we use the condition that v0i(t), v1i(t) and v2i(t) vanish for t = 0 and t = 1,
then from (46), we get

δI

ε
=

1∫

0

v0i(E0
i L)dt. (49)

Lemma 8. Under the transformation (41), E0
1 is covariant vector field, i.e.

([8], [3], [4])
E0

i = (∂0iy
0i′)E0

i′ = Bi′
i E0

i′ . (50)

Proof. Using (42) and (43), we have

E0
i = (∂0iy

0i′)∂0i′ + (∂0iy
1i′)∂1i′ + (∂0iy

2i′)∂2i′ + (∂0iy
3i′)∂3i′

−d1
t [(∂0iy

0i′)∂1i′ + 2(∂0iy
1i′)∂2i′ + 3(∂0iy

2i′)∂3i′ ]

+d2
t [(∂0iy

0i′)∂2i′ + 3(∂0iy
1i′)∂3i′ ]− d3

t [(∂0iy
0i′)∂3i′ ] =

(∂0iy
0i′)∂0i′ + [(∂0iy

1i′)− (∂0iy
1i′)]∂1i′

+[(∂0iy
2i′)− 2(∂0iy

2i′) + (∂0iy
2i′)]∂2i′

+[(∂0iy
3i′)− 3(∂0iy

3i′) + 3(∂0iy
3i′)− (∂0iy

3i′)]∂3i′

−(∂0iy
0i′)d1

t ∂1i′ + (∂0iy
0i′)d2

t ∂2i′ − (∂0iy
0i′)d3

t ∂3i′
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+(∂0iy
1i′)[−2d1

t ∂2i′ + 2d1
t ∂2i′ ]

+(∂0iy
2i′)[−3d1

t ∂3i′ + 6d1
t ∂3i′ − 3d1

t ∂3i′ ]

+(∂0iy
1i′)[−3d2

t ∂3i + 3d2
t ∂3i′ ] =

(∂0iy
0i′)[∂0i′ − d1

t ∂1i′ + d2
t ∂2i′ − d3

t ∂3i′ ] = Bi′
i E0

i .

In the above the Leibniz rule of differentiation was used. 2

Theorem 9. The Euler-Lagrange equation (v0iE0
i )L = 0 is coordinate

invariant if v0i = Bi
i′v

0i′, i.e. if vi = v0i is a contravariant vector field.

Proof. From (50), we get

v0iE0
i = v0iBj′

i E0
j′ = v0j′E0

j′ (51)

i.e., v0j′ = v0iBj′
i . The fields E1

i , E2
i , E3

i defined by (45) are transforming in
the following way:

E1
i = (∂0iy

0i′)E1
i′ + (∂0iy

1i′)E2
i′ + (∂0iy

2i′)E3
i′ (52)

E2
i = (∂0iy

0i′)E2
i′ + 2(∂0iy

1i′)E3
i′ , E3

i = (∂0iy
0i′)E3

i′ .

From (50) and (52) it is clear, that only E0
i and E3

i are covector fields. 2

Theorem 10. The expression v0iE0
i + d1

t B, which appears in (46) is coordi-
nate invariant, where

B = v0iE1
i + v1iE2

i + v2iE3
i . (53)

Proof. From (51), we have v0iE0
i = v0i′E0

i′ . Further:

B = (∂0j′y
0i)v0j′ [(∂0iy

0i′)E1
i′ + (∂0iy

1i′)E2
i′ + (∂0iy

2i′)E3
i′ ] + (54)

[(∂0j′y
1i)v0j′ + (∂0j′y

0i)v1j′ ][(∂0iy
0i′)E2

i′ + 2(∂0iy
1i′)E3

i′ ] +

[(∂0j′y
2i′)v0j′ + 2(∂0j′y

1i)v1j′ + (∂0j′y
0i)v2j′ ](∂0iy

0i′)E3
i′ .

Using the relations

y1i′ = Bi′
h y1h, y1i = Bi

h′y
1h′ , y2i′ = B i′

h ky
1hy1k + Bi′

h y2h,

y2i = B i
h′ k′y

1h′y1k′ + Bi
h′y

2h′ ,

∂0iy
1h = 0, ∂0iy

2h = 0, ∂0i′y
1h′ = 0, ∂0i′y

2h′ = 0
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obtained from (41) and (42), and

(∂0j′y
0i)(∂0iy

0i′) = Bi
j′B

i′
i = δi′

j′ , B i
j′ k′B

i′
i + Bi

j′B
i′

i kB
k
k′ = 0,

Bi
j′k′h′B

i′
i + B i

j′ k′B
i′

i hB
h
h′ + B i

j′ h′B
i′

i kB
k
k′ + Bi

j′B
i′
ihkB

h
h′B

k
k′ + Bi

j′B
i′

i kB
k

k′ h′ = 0

and similar type relations obtained from Bi
j′B

j′
j = δi

j, after longer calculations,
we get

B = v0i′E1
i′ + v1i′E2

i′ + v2i′E3
i′ . (55)

The other coefficients besides v0j′E2
i′ , v0j′E3

i′ , v1j′E3
i′ in (54) are equal to zero.

Using (55), (51) and (53), we get

[v0iE0
i + d1

t (v
0iE1

i + v1iE2
i + v2iE3

i )]L = (56)

[v0i′E0
i′ + d1

t (v
0i′E1

i′ + v1i′E2
i′ + v3i′E3

i′)]L.

From (53) and (55), we obtain that B defined by (53) is a scalar field. 2
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