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SOME INVARIANTS CONNECTED WITH
EULER-LAGRANGE EQUATIONS

IRENA COMIC*

Lucrarea descrie mai multe tipuri de omogenitate definite in spatiul Osc* M.
Sunt prezentate ecuatiile Fuler-Lagrange pentru diverse tipuri de variabile, iar
legdtura dintre Lagrangiendi spatiilor L™ si Hamiltonienii spatiilor H®)™
este precizata. Ecuatiile difera semnificativ, functie de paritatea ordinului k.
Se aratd cd in Osc®*M, doar E? si E3 sunt covectori. Se demonstreazd cd
ecuatitle Euler-Lagrange au caracter invariant, si se determindg un now camp
scalar.

In Osc* M, different kinds of homogeneity are defined, and properties of
homogeneous functions are pointed out. The Fuler-Lagrange equations for
different types of variables in Osc* M are given; they are coordinate invariant,
and have different forms for k = 2l and for k = 21+1. The connection between
Lagrangians in the space L™ and Hamiltonians in H®)™, is outlined. It is
shown that in Osc3M, only EY and E} are covectors, and one new scalar

field is determined.

Keywords: Homogeneity, Euler-Lagrange equations, Lagrangians and
Hamiltonians of higher order, Legendre transformation.
AMS Subject Classification: 53B40, 53C60.

1. Different kinds of homogeneity. Euler’s equations

Let us denote by Osc¥M the k-th order tangent space of M. In some local
chart the point u € Osc*M has coordinates (z* = y*,y",...,y*), i = I,n
YAl = %, A = 0,k. The transformation group is well known ([1], [2], [3]

[4], etc). Some properties of Osc® M are given by (41)-(43).

Y
b

Definition 1. The scalar function F(y%, ¢, ... y*") is homogeneous of
first kind and order r (r € Z) if

F(in,/\yli,)\2y2i,~-;)\kyki> — ATF(in,yli,---,yki)7 > 0. (1)
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It is homogeneous of second kind and order r if
F(y® Mgt M2, ) = NE@% gL, (2)
It is homogeneous of third kind and order r with respect to variable y4?, if
Py, gl Ly AmDi \y AT (D3 kY TR0 gl kY (3)
It is homogeneous of fourth kind and order  with respect to variable y4? if
Fy%, gl oy A=DE NAyAL (ARDEkiy QA (08 gl k) (g

Theorem 1. For the homogeneous function F(y", y', ... y*) of first kind
and order r the following Euler type equations are valid:

or .  O0F _ ., F o
-yt + —2y"" 4+ -+ —=ky" =rF >0 5
aylzy + ay2z yo + 8yk1 Yy re, Tz ( )
PE O*F e O*F .y
N 4~ 1 ¢ ] 72 * 2 2Z 2] A 7k * k kl kj 6
8ylzaylgy yo+ 8y218y2j yyr+ + @ykzayk’] yrye £ ( )
O*F .y O*F .
12yt ——— 1 3yt
aylzayQJ vy + 8ylzay3] vy +
_1_827]:1 Eytighi 4. ¢ O°F (k—1)k (k—=1)ip ki | 4
By Lidyki U By - Digyki Yy Yy
or 2, OF 3i or ki
Proof. 1f we take the first derivative of (1) with respect to A\, we get
k
OF .
T AN = X (7)
A§::1 (NAyAT)

If we put A = 11in (7), we get (5). If we take the derivative of (7) with respect
to A, we get

b r aQF A/\A_l Az'B)\B—l Bi 8
32;1 2= O(MyA)D(AByBi) Y yo ot (8)
ko OF ‘
—  CAA = DM = (r — 1)NT2F
AEZ:Q ) ( ) ( )

If we put A =1 in (8), we obtain (6). O
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Theorem 2. For the homogeneous function F(y*, y*, ... y*) of second kind
and order r the following equations are valid:
OF |, OF OF
ay” yl + 8:1/27' y2 +---+ 8:[/]% yk = TF) r 2 0 (9)
2 2
o0°F 14, 15 y21 2j+‘_ + oO°F ‘kz k]+ (10)

ayu@yljy Yy +3y2iay2j

OF (k=1)i, kj

L 92F .. .
29 o4 =%  ligkjo oo 7
Yy yr et oo sy Yt +ay(k—1)iaykjy

2 yligyi
r(r—1)F, r> 1

Proof. The first and second derivative of (2) with respect to A give:

k
Ai r—1
—yt =1\ F (11)
2 0]
ko k 2
0°F ey
. —y*y? =r(r—1)F (12)
2 2 000
For A = 1 the explicit form of (11) and (12) are (9) and (10), respectively.
The higher order derivatives give more complicated formulae. O

Theorem 3. If the function F(y*,y", ...,y ..., y*) is homogeneous of
third kind and order r with respect to the variable y*, then

oF 4 Pr Aj
ay"“y =rF, 3yAiaijy yV =r(r—1)F,..., (13)
OF Aiy Ai Ai
) 7 ir )
6yAi18yAi2...yA”y 1?J 2y —T.F.
Proof. The proof is similar to the proof of previous Theorems. O

Theorem 4. If the function F(y°, y*, ...,y ... y*) is homogeneous of
fourth kind and order r with respect to variable y**, then

Ja . —
88yAi Ay =rAF, A=10k (14)
2F ) . I3 .
TL ity O g4y o raga-pE (1)

Oy AigyAi Oy
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Proof. The first and second derivatives of (4) with respect to A are

OF

a()\AyAi>14)\1471?/41' — TA)\TAle

0*F
Ay A)O(AyH)
OF

D0AgA) )\AyAi>A(A — DAY = rA(rA — HNATPF

(A)\A—l)QyAiij +

For A =1, (16) and (17) give (14) and (15) respectively.

(16)

(17)

O

Remark 1. For the scalar function on Osc'!M, ie. F = F(x,y) =
F(y", y') the definitions of first, second and third kinds of homogeneity co-

incide.
Example 1. The function

2
F(% 2 :ai@)?/_ 0i _ i
(TN by (@) (y™ = a")
is homogeneous of first kind and order 1, or of second kind and order 0,
namely
o ‘ (2) A2y o
F 0z )\ 17 )\2 21 — (IZ(ZE) : I)\F 0z , 1¢ 2%
(v Ay, Ay™) b (2)hyT Wy y™)

F(y* A" %) = F(y™,y", y™).

For this function, the relations (5) and (9) give

G@P 5 aln) o (@)
b2 Y oy Y T byt
ai(z)y* 1j a;() 2i
b2 Y Ty Y T

Example 2. The function

ci(z)y®

dj(z)y'

F(in,yli,yQi) — ai(x)y% + bij(:t:)y“ylj 4
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is homogeneous of first kind and order 2. For this example (5) and (6) reduce

to:

oF ,, OF ., OF
T -2y~ S3y3 = 2F
aylz Yy 8y21 Y o ay3z y
OPF ... . O°F OF _ ., OF
- . e 13 3] 22 .
ayliaylj vy + 2ay1iay3] 3 o5 a 21 2y a 9,30 6y =2F.

Straightforward calculations lead to these equations,

Example 3. The function
F(a,y™, y®, y®) = agi()y" (v7)* (y*")

is homogeneous of third kind and order 3 with respect to y® and
homogeneous of third kind and order 2 with respect to y®, namely

F(x,yY, Ay(z), y ) = NF(z,y",y?, y®¥)
F(z,yW, ¢y, 2y®) = X F(2,yD, y?, y@).

For this example, (13) has the form

OF *r 2j
aym‘y = 3L, aymayzgy 'y =3-2F

OF i _op, O s _gp

ay:siy T ayazayzﬁy y

Example 4. The vector field [5]
2 _ o2 L i 1j ik
2=yt oy

in L®®" is homogeneous of first kind and order 2. The scalar functions:
a(z,y,y?) = lai(2)2 292, B,y y?) = bi(z)2?
are homogeneous of first kind and order 2. The fundamental functions

Fla,y,y®) =a+p (Randers metric)

Fz,yM,y?) = Oé (Kropina metric)

Oé2

F(z,yW,y®?) = (Matsumoto metric)

o —
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are homogeneous of first kind and order 2.
In the Lagrange space L™ = (M, L(z,y™V), y®) with
L(z,yW,y®) = F2(x,yW,y®),
the metric tensor:

~19°L(x,yW,y?)
9 Qy2iy%

Cij(% y(1)7 y(g))

is homogeneous of first kind and order 0, i.e.

Cij (.’L’, )‘y(l)v )\2y(2)> = )\Ocij (l’, y(1)7 y(2))

2. The Euler-Lagrange equations for functions of several higher

order variables

To obtain the general Euler-Lagrange equations for functions of several
higher order variables we shall restrict our attention to one special case. Let

us consider

1
I= / F(t,a,i,& 2% p,p,p,p@)dt,
0

where © = z(t),p = p(t), & = &(t),p = p(t), ... and dx(t),0x(t), dz(t), op(t),
dp(t), 0p(t) at t = 0 and ¢ = 1 have value zero. Using the partial integration
453 = §23) (similarly for p), from (18) we

and the property: %51: =0x,...
get the first variation of I [6]:

> dt

5 = 4 —— i — i+ Y ANE

Oz ot 0% 0z)

/1 <8F OF OF OF
0

+ 6—F§p + aiép + 8—}.7513 + 6—F§p(3> dt
D % b op®

1

0% 0%

1
_ /<8Fax+aFap) dt+/d (aFaﬁaFaﬂ
0 v p

dt
0

oF
0zx®)

(18)

5i> dt +



Some invariants connected with Euler-Lagrange equations

1
d OF d OF d OF .
_0/ (dt@é aa—é t8$(3)5x> dt

1
d OF d OF d OF
— ———0p+ ——=0p —o0p | dt.
0/ (dt oY Tt T G op® p)
We have
Fd (9F . OF OF oF |1 P 1 oF !
0/dt<85m 9% 5m+a()51‘)dt:a$5m0+%51‘ ax()éaz =0
because
dx(l) =d&(1l) = 62(1) =0, dz(0) = d2(0) = §z(0) = 0.

The same is true if in the above equation x is changed with p. Now we have

1
OF  dOF OF  dOF
5 = /( - 25 >5dt+/< dtap)(spdt

ox
1
d (doF d 8F d? 8F d2 OF
— | 2\ 5 579¢ dt s | dt
O/dt <dt ok dt 0z > +/ (dt2 O dt2 EE) x)
1
d (doF d 8F d2 8F 2 oF
_/@ (dtaﬁé dt op® )d +/ (dtQ o5 dt?ap@(m> "
/ doF  d®OF [ (0F dOF  d® oF
Z 9 T - == — A
o/<8“" dta"ﬁdﬂ‘%)éxd”o/(ap dt dop dt2aﬁ>5pdt+ ’

where

1
d d2 oF
4 = /(dﬂ 520t 2 oy 3>5p>d
0

Fd [ d® OF & OF | P B OF
= / — | = 0T + — / T+ —— dt.
dt \ dt? 0z dt? (9p(3) / e 8:6 dt3 op®)




10 Irena Comié

Using the same procedure as before we have

1
OF doF d*90F d* OF
5]:/ —— ——t ——— — ———— | dxdt 1
J (ax &0 dEoE  dP ax<3>> vt (19)
[ (OF  dOF &20F d OF
) Op dtop dt20p  dt3 op®
We shall use the notations z = 20, & = 2M & = 2@ .., %G = G.

From (19), using similar calculations, we obtain

Theorem 5. The extreme value of functional
1
]:/F(t’w(0)7x(1)7$(2)7'"7l'(k)’p(0)7p(1)’p(2)7‘"7p(k))dt7
0

where 20 = 20 (), p® = pO(t), 1 = 0,k and 6zD(1) = 0, 2V (0) = 0,

spW(1) = 0,5pM(0) =0, 1=0,k, can be obtained, when
k d OF k d OF
2V gm0 2D gm =0
1.€. , .
OF d OF  d* OF LA F
- _ = .. — — — 2
ox  dt oz + dt? 0z(2) +(=1) dtk Ok (20)
OF d 9F & OF L d* OF
- e b (1) s = 0, 21
Op  dtop® + dt? op@) +(=1) dtk Op(k) 0 (21)

The above equations are Euler-Lagrange equations. In the case when x
denotes (z!,2%,...,2") = (z°) and p = (p1,p2,...,Pn) = (p;), i.e. when x
and p are points in n-dimensional spaces, then the Euler-Lagrange equations
have the form:

9007~ @on T apagen T ) GEgam =0 (22)
OF d OF  d&* OF pdt OF

- _|_ - — -
Opoyi  dt Opay  dt? Opeyi dt* Op iy
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In the recent literature it is more usual to use the notations:

‘r(l)l = y(l)Z = yli7 p(l)z = D, in = xiv DPoi = Pis [ = 07 ka L= 17n' (23>

3. The connection between Lagrangians and Hamiltonians of

higher order

Let L(t,y @),y (t),...,y*(¢)) be a regular Lagrangian in L®*™ and
H(t,po)(t),pay(t), ..., pw(t)) the Hamiltonian in the H®" space. We shall

examine the variation of

F(ta y(0)7 y(1)7 s Jy(k)ap(O)vp(l)a v 7p(k)) = (24‘)
H(t,poys Pays - - - pay) + Lty @y W,y
~y i — Y 1y — - — vV — yFpor.

To obtain the general formula we shall similar to (18) first consider the

special form of F"

F=F(t,x,i& 2% pppp®) = (25)

H(tapzapzapzaprES)) + L(t, {L’i, i’i’ 1‘17 x(S)Z) _

—a'p{® — @', — i'p; — 2p;.

1
From (18) and (22) it follows that 01 = [ Fdt = 0 if
0

aF_iaFeriaF_diaF_ T
ort  dtoirt  dt29it A3 oz T Y

3F_13F+d7237}7_d738}7

Y

, M.

From the above we get

OL @ _d (0L .\ & (0L N & (0L 1\
oun U T \ow ) Taz \ow ) T @ \oa®i ) T

OH i _d (OH 5\, & (0H .\ _ & (0H
o at\op ) Tae\op ) T ap\g® )T
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As p; = 4p;, it = Sa7, .. we have

OL dOoL d&* oL d* OL

A e ) 2%
Oui  dtoi | dro i 9z (26)
OH doH & 0H d& OH

e T L (27)

The Euler-Lagrange equation of F' given by (25) are (26) and (27). From (25)
we get

_ (OH 0L oL 3) ; oL . i
dFF = <8t+0t>dt+<8asi Di )dx +<8j;i pz>dx+ (28)
oL , oL .
2= dyt =, (3)i
<8ii pz> dz" + (8x(3)i p2> dz*" +
H . H )
0 — 23 dp; + 0 — —2' | dp; +
Op; op;

(ap_i — T > dp; + <8p(3) — x) dp;” = 0.

[

As the variables are independent, from (28) it follows, that dFF = 0 is
equivalent to the following relations

oL _ _oH oL 5 OL . OL_ . OL _ (29)
ot ot owi P gpi TP g TP o@D
OH @) OH o 87[{ .,  o0H ;

Op; Op; Op; opt?)

If we replace equations (29) into (26) and (27) we obtain 0 = 0. For the
function

F(t7 x?'i? ‘f:i:7p7p7]b.) - H(t7p7p7p) +
the Euler-Lagrange equations (26) and (27) have the form:

0L d oL & 9L
Ou'  dtoi | di? OF

—p;i =0 (30)
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OH dOoH d* 0H

and equation (29) have the form
oL oH oL . OL . OL (32)
ot — ot o P ooy P ogw P
aH—a’i'i 8]—!_:&2. 8H_xi
pi pi opi

If we substitute (32) into (30) and (31) we obtain 0 = 0, i.e. (32) satisfy (30)
and (31). From the above it follows:

Theorem 6. The Euler-Lagrange equations for the function F' determined

by (24) are:
(a) for k =20+ 1

oL d OL d*> oL d® oL d* OL
= =t — ——— .. (-1)f'———— =0 (33)
oy dt oyl dt? oy*  dt3 Oy dtk Oyk
OH dOoH d* 0H d® OH d* OH
- - ‘f‘izi—ig +"'+(—1)k7 =0 (34)
Opoi  dtOpy  dt* Opy  dl® Ops; dt* Opy
(b) for k = 2l the Euler-Lagrange equations have the form:
A—pi=0, B—y"=0 (35)
where p; = %,yki = %. The equations which give relations between L
and H for both cases (a) and (b) have the form
oL O0H OL oL
ot ot W = Dki;s @ = P(k—1)i> (36)
oL oL
@ :p(k72)i7"-7w = Poi = DPi
OH 4, OH 4y OH 4 OH _
opoi 0 opu Y ’“"329(1@—1%‘_?/ op

Theorem 7. If L(t,y @,y ..., y®) and H(t, ), pa), - - -, Pa)) are homo-
geneous functions of first kind and order k, i.e.

L(t, y(o), )\y(l), . )\kyk) = )\kL(t, y(o), y(l), o ,y(k)), (37)
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H<t7p(0)7 )\p(l)7 ceey )\kp(k)) = )\kH<t7p(0)7p(1)7 s 7p(k))7 (38>
then the function F(t,y @, yW . .y® po),pay,...,puw) defined by (24) is
also homogeneous of first kind and order k, i.e.

F(t7 y(0)7 )‘y(l)7 R )\ky(k)ap(())u Ap(l)u R Akp(k)) =
)\kF(t7 y(O)a y(1)7 s ay(k)vp(O)vp(l)a s 7p(k))

If we suppose that L(t,®,... y*) with the property (37) is the
fundamental function in the Finsler space of order k(F®)™), then the metric
tensor in this space can be defined by

O?LA(t, y©O ,y(k))
- aykiaykj

(0)

If H(t,pw),pa),--->Pr)) with the property (38) is the fundamental function
in the Cartan space of order k& (C®)™), then the metric tensor in this space

can be determined by

_ 62H2(t,p(o),p(1)7 . 719(19))
OPriOpr;

cij(tap(0)7p(1)7 SR ap(k:)) . (40)

Both metric tensors g;; and ¢” given by (39) and (40) respectively are ho-
mogeneous of first kind and order zero. The former statements can be very
useful in the investigation of F*)" and C®)" spaces recently introduced. The
connection between the function F' in (24) and energies of higher order can
be investigated.

4. Invariant form of Euler-Lagrange equations

We want to show that FEuler-Lagrange equations of type (20) are
coordinate invariant. For that reason we restrict k£ to £k = 3, and let
F = L(t,y", 4", y*,y%) be a regular Lagrangian in Osc3M.

We shall use the notations

0
Oyl

dl
@7

O = d = 1=0,3.

In Osc*M the allowable transformations are: ([1], [7], [2], [3], [4], etc)

g =y ("), Y =2 (41)
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yli/ — (80iy0’i/)yli — Blzlyll
v = (dB))y" + Bl y*
y* = (B )y" + 2(di B )y* + B] y*".

The transformations of the form (41) form a group. The natural basis of
T(Osc®M) is {0y, O1s, Oa;, O3 and it is transforming as follows:

B = (0000 + (Ooy' )0 + (Ouy* )0 + (O0iy>)Osi
O = 0uy' o+ (01y* )0 +  (0uy® )05 (12)
Oy = (02iy* )02+ (Doi® )Osi
O3 = (D33 ) D3
It is known that ([8], [1], [9], [7], [2], [3], [4])
Boiy”" = Ouy"" = Oniy®” = O™, (43)
iyt = % By = % Dot Doy = % ouy™ .. (Boy™ = (Hi_s) By ),

d;o0iy™ = doiy"", ;oo™ = doiy®”, didoiy™ = O™, didoiy® = doiy®.
Let us denote
o' = ev'(t) = ev", 02" = ed}v’ = ev', 67 = ed?v’ = ev¥, 62O = eddv’ = ev™.
Using the similar procedure as in (19) (only the initial conditions are not

1
substituted), we obtain for [ = [ Ldt:
0

1
651 = [0 @L) + 01 (BriL) + 0¥ (OL) + 0¥ (O L)l (44)
0

Using the notations
EY = 0y — d} Oy + d20o; — d}0s; (45)
Bl =01 — d} 0y + d?0s;
E? = 0y — d; 03

E} = 05



16 Irena Comié

(44) can be written in the form

1
5; - / {"(E}L) + i [v"(E} L) + " (E} L) + v*(EL)] }dt.

0

The comparison of (44) and (46) gives
(V*"0; + v 0y + v¥ 0y + v¥03;) L =
v (E)L) + di (B} L) + v (E}L) + v*(E}L).
From (45), it follows that
E} + dE} = 0y, E} + d; E} = 0y,

E? 4+ dlE? = 0y, EP = 0.

(46)

(47)

(48)

If we use the condition that v (), v'*(¢) and v*'(¢) vanish for t =0 and t = 1,

then from (46), we get

1
ol .
? = /UOZ(EZ()L)dt
0

(49)

Lemma 8. Under the transformation (41), EY is covariant vector field, i.e.

(9, 13 14) L
E} = (00" )E}) = B} Ej.

Proof. Using (42) and (43), we have
E} = (3000 + (Doiy™)Ohir + (B0:y™ ) Dor + (Doiy™ )Osir
—d} [(Doiy)® ) Drir + 2(Boiy™ ) Dair + 3(B0iy™ ) Osir]
+d; [(D0iy™ ) Do + 3(Doiy™ ) Dsr] — d[(Doiy)™ )Dsr] =
(Doi®" )00 + [(D0iy™™) — (Doiy™ ) O
+H(B0iy™) = 2(00i™) + (Doiy™" )] O
H(G0iy™) = 3(00iy™) + 3(D0it)®) — (Doiy)*"))Osr

—(30iym,)di Ovir + (80,~y0i/)df Oir — (amyml)d?asy

(50)
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+(Ooiy™ ) [—2d} Oir + 2d} Do)
+(0oiy™ ) [—3d} D3y + 64} sy — 3d, s
+(Doiy™" ) [—3d7 03 + 3d; Dsir] =
(o™ ) Oor = dy 0110 + d}Onir — O] = B E.
In the above the Leibniz rule of differentiation was used. O

Theorem 9. The Euler-Lagrange equation (vV'EY)L = 0 is coordinate
invariant if v = Bio® | d.e. if v' = v is a contravariant vector field.

Proof. From (50), we get
0i 70 _ ,0i i 1m0 _ .05 170
v'E =0 Bij,—vJEj, (51)

ie., v% = YBI' The fields E!, E2?, E? defined by (45) are transforming in
the following way:
E} = (Qoy™ ) By + (Do) E} + (0™ ) B (52)
E? = (00" )E}; + 200y ) S, E? = (9™ ) E3.

From (50) and (52) it is clear, that only E? and E? are covector fields. O

Theorem 10. The expression v E? + d} B, which appears in (46) is coordi-
nate tnvariant, where

B =v"E}! + v"E} + v*E}. (53)
Proof. From (51), we have v”E? = v* EY. Further:
B = (" )0 [(Boy™ ) By + (O0iy™ ) BZ + (Doiy™ ) E}] + (54)
[(D0yry™)0™" + By 0 ][(Boiy™ ) B + 2(00iy™ ) ER) +
[(30j'y2i/)1)0j/ + 2(30j'y1i)vlj/ + (an'ym)Uzjl](30iy0i/)Ei3f-
Using the relations
gl = BIyh gyl = Bl 20— g thylk gl o
B = B,y oy 4 By

80iylh =0, 502‘?/% =0, 801"?/1” =0, 801"?/%, =0
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obtained from (41) and (42), and
(an/in)(aol’in/) == B;/BZ/ == 5;/, Bj/ik/BZ;/ + B;/BZ l];B]]j/ — O,
Bgi'/k'h/Bf, + By 11 B; "Bl + B,y B, "Bl + B;’BZ;LkBi}zL’Bl];’ + B;"Bii/kBk’kh’ =0

and similar type relations obtained from B;-,B;l = 5;, after longer calculations,

we get . ' .
B=v"E, +v" E: +v*" E3. (55)

The other coefficients besides v*' E2, v%' E3, vV’ E3 in (54) are equal to zero.
Using (55), (51) and (53), we get

WU EY + d (WY E! + v E? 4+ 0¥ B3] = (56)
[0 Ep + d (V" ) + 0" B+ 0¥ ED)]L.

From (53) and (55), we obtain that B defined by (53) is a scalar field. O
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