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In the software testing process, in order to complete the verification of 

software credibility and improve the efficiency of software testing, this paper 

proposes a software testing method that combines software credibility with software 

test case automatic generation technology. First, a credible behavior declaration for 

the software under test is generated as a standard for verifying software credibility 
and algorithm initial values. Then, in the selection of test case generation algorithm, 

this paper proposes an improved particle swarm optimization algorithm 

(DACSPSO). The experimental results show that the automatic generation model of 

credible test cases based on behavior declaration can verify the credibility of the 

software, and at the same time improve the efficiency of software testing. 
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swarm optimization 

1. Introduction 

Regarding the research on software credibility, Academician Shen 

Changxiang of China gave a detailed introduction and analysis of trusted 

computing in the literature [1]. Guo and others have built a credible framework 

for testing hardware and software that enables credibility verification of third-

party vendor projects [2]. Anurag and others conducted credibility studies on 

crowdsourcing software development and analyzed the factors and risks that can 

impact the credibility of crowdsourced software [3]. Wu and others have proposed 

a framework for assessing the credibility of cloud services, and their decision 

support can be customized [4]. At the same time, because the scale and 

complexity of software systems are gradually increasing, we need an efficient and 

fast testing technology [5]. In the research of automatic generation of test cases, 

Particle Swarm Optimization (PSO) has the characteristics of fast convergence 

and strong versatility compared with most evolutionary optimization algorithms 

[6][7]. However, in practical applications, PSO has problems such as lack of 

diversity of particles in the late stage of the algorithm, reduced search accuracy, 
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and poor local search ability. In view of the shortcomings of particle swarm 

optimization, Micael Couceiro and others introduced the fractional algorithm into 

the particle swarm optimization algorithm, which improved the local search 

ability of the algorithm [8]. Li and others made precise adjustments to the fitness 

value of the particle swarm optimization algorithm, which improved the 

convergence efficiency of the algorithm [9]. Zheng and others introduced 

improved genetic algorithms in the particle swarm optimization algorithm, which 

enabled the population to obtain the characteristics of genetic variation and 

enhanced the performance of the algorithm [10]. Through the above analysis, this 

paper proposes an automatic generation method of test cases based on credible 

behavior declaration. 

2. Test case generation model based on behavior declaration 

The test case automatic generation model proposed in this study mainly 

includes three parts, namely test environment construction module based on 

behavior declaration, algorithm implementation module and test run module, as 

shown in Fig. 1. 

 
 
Fig. 1. Automatic generation model of test cases based on behavior declaration 
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3. Construct a test environment based on behavior declaration 

3.1 Credible behavior declaration 

A credible behavior declaration describes a collection of all behaviors 

related to credibility in the software, describing only the expected behavior of the 

software. The behavior of the software can be described more accurately and more 

fully through the declaration of credible behavior.  

Credible behavior declaration can be defined in a variety of styles for 

different types and platforms of software. However, the behavior in all styles 

should include the action name, unique ID, action content, trigger condition, 

constraint parameters, expected results, and security level. The generic credible 

behavior declaration structure is shown in Fig. 2 (a).  
 

 
 

Fig. 2 (a) Structure of a generic credible behavior declaration (a) 

 

This paper defines the generic credible behavior declaration by means of 

XML, as shown in Fig. 2 (b). 
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Fig. 2 (b). Structure of a generic credible behavior declaration 

3.2 Analysis of behavior declaration 

In a behavior declaration, a rule entry represents a constraint on a specific 

operation, and each rule entry has a security level rule subkey. Validating the 

software through behavior declaration file ensures that the initial values of the 

generated algorithms are credible. Through the definition of the behavior 

declaration, the logical structure analysis of the path of the program under test, 

you can get the path structure based on the behavior declaration, as shown in Fig. 

3. 

 
 

Fig. 3. Schematic diagram of the path structure based on the behavior declaration 
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In Fig. 3, 1, 2, ..., S, N represent all path nodes in the program under test, 

each node has a corresponding rule entry, and the direction of path execution is 

determined according to the content defined in the rule entry.  

3.3 Equivalence class 

After obtaining the path structure based on the behavior declaration, in 

order to make the designed test case cover all the paths, the equivalence class is 

introduced as a parameter filling. This paper implements the equivalence class 

generation algorithm, which is based on the predicate expression of the branch 

node and generates the equivalence class through the key sentence coverage 

criterion. Where b is the branch predicate,    is the key sentence,    is the 

predicate clause set,    is the true value set, and    is the generated equivalence 

class set. The specific algorithm steps are shown in Algorithm 1. 

 
Algorithm 1: Equivalence class generation algorithm 

Begin 

Input:   ,    ,     

Set:                        ,                          

For (b in predicate set   ) 

   For (   in truth set    ,    in truth set    ) 

      if (                         ) 

        if       

             add to     

        if       

             add to    

Output:    

End 

 

According to the above algorithm, taking the geolocation operation as an 

example, an equivalence class of the path node can be obtained, as shown in Table 

1. 
Table 1 

Analysis results of the path equivalence class 

Number Rule entry Security Level 

Effective 

equivalence 

class 

Invalid 

equivalence class 

1 LocationAccuracy Suspicious behavior -- 100 meters 

2 LocationFrequency Safe behavior No limit -- 

3 LocationCoding Dangerous behavior -- Unable to locate 
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3.4 Fitness function and program instrumentation 

The fitness function is the only interface that connects the particle swarm 

algorithm to the actual problem [11]. Since the branches in the program under test 

have different coverage difficulty and different test priorities, the branch weight 

   is introduced. The fitness function is obtained by the formula (1). 
 

                      
                                      (1) 

 

In the formula (1), N is the total number of branches,      is the branch 

distance function of the i-th branch, and    is the weight of the i-th branch, and 

   
 
     . The value of branch weight    is obtained by branch nesting and 

branch predicate. First, the implementation of branch coverage becomes more and 

more difficult as the branch nesting level increases, so the branch nesting weight 

    is introduced. Let    be the level of the current branch, and      and      be 

the largest and smallest branch levels in the tested program. Then use the formula 

           
       

          to obtain the branch nesting weight. Then, at the branch 

node, several conditions are connected as branch predicates by the relational 

operators. Since the weights of the operators are different, the branch predicate 

weight     is introduced. Let the weight of the basic condition be   . If the 

current relational operator is “and”, the predicate weight acquisition formula is 

        
 
   . If the current relational operator is “or”, the predicate weight 

acquisition formula is            . Finally, the branch weight of the branch i 

is calculated by the formula                 . 

Program instrumentation refers to the collection of dynamic information 

about program execution by inserting branch functions into the program under test 

[12]. To perform the instrumentation operation, you first need to specify the 

information to be obtained and select the insertion position of the branch function. 

Then insert the branch function in front of the selected branch judgment 

statement. Finally, insert the fitness function of the current target path into the end 

of the program. 

4. Improvement of test case generation algorithm 

4.1 Basic particle swarm optimization 

The running process of particle swarm optimization algorithm is as 

follows, the corresponding flowchart is shown in Fig. 4. 

(1) Initialize the particle swarm optimization algorithm to randomly 

initialize the speed and position of each particle in the population; 
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(2) After the initialization is successful, the fitness of the particles, the 

individual optimal value    and the global optimal value    in the population are 

calculated; 

(3) Calculate the latest speed and position of the particles through the 

speed and position update formula; 

(4) Adjust according to the fitness value of the particles. If the fitness 

value of the selected particle is better than the individual optimal value    in the 

population, the fitness value of the particle is assigned to   . If the fitness value of 

the selected particle is better than the global optimal value    of the population, 

then the fitness value of the particle is assigned to   ; 

(5) If the number of iterations of the population has reached the maximum 

value or the optimal value found by the population meets the requirements, step 

(6) is performed, otherwise step (3) is performed; 

(6) End the algorithm and output the global optimal value of the 

population at this time. 

 
Fig. 4. Basic particle swarm optimization flowchart 

4.2 Improved particle swarm optimization 

For the automatic generation of test cases, although particle swarm 

optimization has advantages over other optimization algorithms, such as fast 

convergence and strong versatility. However, particle swarm optimization also 

has some shortcomings, such as lack of diversity in the late stage of the algorithm, 

reduced search accuracy, and poor local search capabilities. In view of the 

shortcomings of particle swarm optimization, this article uses an improved 
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version of particle swarm optimization algorithm I proposed before, which is 

based on dynamic adaptive and chaotic search, see the literature [13] for details. 

The specific flow of the algorithm is shown in the figure below: 

 
Fig. 5. Improved particle swarm optimization flowchart 

 

5. Experiment and result analysis 

5.1 Experimental purpose and experimental steps 

Experimental purpose: In order to verify the credible test case generation 

model proposed in this paper, the efficiency of software test can be improved 

while verifying the credibility of the software. In this paper, the iOS application 

software is used as the program to be tested, and the general function of the tested 

software is selected as an example to verify the model.  
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Experimental steps: First step, upload the test program source file and 

behavior declaration file to the model proposed in this paper. The model analyzes 

the sequence of program tuning through the behavior declaration file to obtain a 

collection of sensitive behaviors of each functional module. Then check the 

behavior name, trigger condition and constraint indicator of the current behavior 

of each function. Then, in order for the designed test case to cover all the paths, 

the corresponding equivalence class is populated as a parameter into the current 

behavior sub-item. Finally, the improved particle swarm algorithm is used to 

generate the credible test cases automatically, and the test cases are analyzed to 

obtain experimental conclusions. 

5.2 Experimental results and experimental analysis 

By analyzing the program under test and selecting its various functional 

modules as objects to generate credible test cases, the relevant test cases are 

generated by the model proposed in this paper, as shown below. 

Table 2 

Test case generation results of image reading and writing function 

Serial 

number 
File Type 

File 

Number 
File Size expected results actual results 

001 
The most accurate 

positioning 
3 6.7 MB 

Not credible 

behavior 

Consistent with 

expectations 

002 
Range of 

kilometer error 
1 18.2 MB 

Not credible 

behavior 

Consistent with 

expectations 

003 
The most accurate 

positioning 
1 52 KB 

Not credible 

behavior 

Consistent with 

expectations 

004 
Range of hundred 

meters error 
1 2.1 MB 

Credible 

behavior 

Consistent with 

expectations 

 

Table 3 

Test case generation results for geolocation 

Serial 

number 

Location 

Accuracy 

Location 

Frequency 

Location 

Coding 

expected 

results 
actual results 

001 
The most accurate 

positioning 

400 

meters 

Unable to 

locate 

Not credible 

behavior 

Consistent with 

expectations 

002 
Range of 

kilometer error 
No limit 

Positioning 

successful 

Not credible 

behavior 

Consistent with 

expectations 

003 
The most accurate 

positioning 
No limit 

Positioning 

successful 

Credible 

behavior 

Consistent with 

expectations 

004 
Range of hundred 

meters error 
50 meters 

Positioning 

successful 

Not credible 

behavior 

Consistent with 

expectations 

 

It has been verified by Table 2 and Table 3 that the credible test case 

automatic generation model proposed in this paper can detect the credibility of the 

tested software. At the same time, in order to verify that the model improves the 

efficiency of test case generation, this paper introduces the basic particle swarm 
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optimization algorithm and genetic algorithm as the comparison algorithm of 

DACSPSO, and carries out related experiments. The three algorithms are 

compared and analyzed mainly from the average iteration number of the algorithm 

and the average iteration time. Taking the test geolocation function as an example, 

the experimental results obtained are shown in Table 4. 

Table 4 

Experimental results of the three algorithms 

Number 

of 
population 

Number 

of 
executions 

Average number of iterations Average iteration time (ms) 

DACSPSO PSO GA DACSPSO PSO GA 

100 

10 70.2 113.7 208.3 5.36 6.82 11.43 

20 73.6 105.8 215.6 5.17 7.64 10.78 

30 65.5 102.6 210.4 4.85 7.23 12.36 

150 

10 64.1 123.5 193.2 5.62 7.51 10.82 

20 75.6 107.3 204.5 5.39 7.82 11.71 

30 72.9 103.1 208.9 4.52 6.94 11.16 

200 

10 74.5 116.3 201.4 5.13 7.47 10.27 

20 66.2 112.9 214.1 5.72 7.81 11.39 

30 71.3 124.2 203.7 5.28 7.25 11.53 

 

From Table 4, it can be found that the average number of iterations and the 

average iteration time of the DACSPSO-based test case generation model are less 

than PSO and GA when the number of populations and the number of algorithm 

executions are the same, which indicates the search speed of DACSPSO is more 

excellent. At the same time, compared with the comparison algorithm, DACSPSO 

has stronger stability because of its effective regulation ability. 

Finally, in order to fully prove the efficiency of DASPSO here, some 

common functions are selected for performance testing. The advantages and 

disadvantages of the algorithm can be judged by the process of searching the 

extremum of each function. The control algorithms selected in the experiment are 

DNSPSO [14], OLPSO [15], and PSO. The population size M is 20, the particle 

dimension D is 30, and the maximum iteration number of the algorithm is 1500. 

Perform 100 searches and calculate the average and standard deviation of the 

optimal fitness value. The specific experimental results are shown in Table 5. 
 

Table 5 

Compare search performance of various algorithms 

Test 

function 
 Sphere Ackley Rosenbrock Rastrigrin 

PSO 

Average fitness 2.41E-64 5.91E-02 2.57E+04 6.42E+03 

Standard 
deviation 

1.72E-59 3.82E-01 1.74E+05 2.73E+04 

OLPSO 
Average fitness 6.25E-69 7.13E-09 5.23E+02 8.25E+02 

Standard 9.74E-72 5.36E-07 8.41E+03 3.17E+02 
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deviation 

DNSPSO 

Average fitness 5.24E-75 3.14E-14 7.36E+02 2.47E+00 

Standard 

deviation 
3.82E-72 7.45E-15 2.32E+02 1.85E+00 

DACSPSO 

Average fitness 8.39E-113 4.92E-18 3.27E+00 5.63E-04 

Standard 

deviation 
6.15E-108 3.42E-17 5.82E+01 1.57E-02 

 

It can be concluded from Table 5 that the PSO algorithm has the largest 

average fitness value, OLPSO and DNSPSO are smaller than PSO, and the 

average value of DASPSO is the smallest, indicating that the convergence 

accuracy of DASPSO is the highest. At the same time, the standard deviation of 

DASPSO is the smallest among these algorithms, indicating that the stability and 

robustness of the algorithm are optimal. In summary, the proposed automatic 

generation model of credible test cases based on behavior declaration can verify 

the credibility of the software and improve the efficiency of software testing. 

6. Conclusions 

For software testing, this paper proposes an automatic generation model of 

test case based on credible behavior declaration. First, generate a credible 

behavior declaration for the software under test and build a test environment 

based on the behavior declaration. Then the test case generation algorithm is 

improved, and finally the test case generation model is realized. The experimental 

results show that the model can improve the testing efficiency of the software 

while verifying the credibility of the software. 
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