
U.P.B. Sci. Bull., Series C, Vol. 82, Iss. 3, 2020 ISSN 2286-3540

RESEARCH ON CREDIBLE SOFTWARE TEST CASE

GENERATION BASED ON BEHAVIOR DECLARATION

Wei ZHUO
1*

, Xuejun YU
2

In the software testing process, in order to complete the verification of

software credibility and improve the efficiency of software testing, this paper

proposes a software testing method that combines software credibility with software

test case automatic generation technology. First, a credible behavior declaration for

the software under test is generated as a standard for verifying software credibility
and algorithm initial values. Then, in the selection of test case generation algorithm,

this paper proposes an improved particle swarm optimization algorithm

(DACSPSO). The experimental results show that the automatic generation model of

credible test cases based on behavior declaration can verify the credibility of the

software, and at the same time improve the efficiency of software testing.

Keywords: software test; software credibility; behavior declaration; particle

swarm optimization

1. Introduction

Regarding the research on software credibility, Academician Shen

Changxiang of China gave a detailed introduction and analysis of trusted

computing in the literature [1]. Guo and others have built a credible framework

for testing hardware and software that enables credibility verification of third-

party vendor projects [2]. Anurag and others conducted credibility studies on

crowdsourcing software development and analyzed the factors and risks that can

impact the credibility of crowdsourced software [3]. Wu and others have proposed

a framework for assessing the credibility of cloud services, and their decision

support can be customized [4]. At the same time, because the scale and

complexity of software systems are gradually increasing, we need an efficient and

fast testing technology [5]. In the research of automatic generation of test cases,

Particle Swarm Optimization (PSO) has the characteristics of fast convergence

and strong versatility compared with most evolutionary optimization algorithms

[6][7]. However, in practical applications, PSO has problems such as lack of

diversity of particles in the late stage of the algorithm, reduced search accuracy,

1 * MA. Eng., Faculty of Information Technology, Beijing University of Technology, Beijing,

correspondng author, e-mail: 18810819561@163.com
2 A.P., Faculty of Information Technology, Beijing University of Technology, Beijing, e-mail:

yuxuejun@bjut.edu.cn

62 Wei Zhuo, Xuejun Yu

and poor local search ability. In view of the shortcomings of particle swarm

optimization, Micael Couceiro and others introduced the fractional algorithm into

the particle swarm optimization algorithm, which improved the local search

ability of the algorithm [8]. Li and others made precise adjustments to the fitness

value of the particle swarm optimization algorithm, which improved the

convergence efficiency of the algorithm [9]. Zheng and others introduced

improved genetic algorithms in the particle swarm optimization algorithm, which

enabled the population to obtain the characteristics of genetic variation and

enhanced the performance of the algorithm [10]. Through the above analysis, this

paper proposes an automatic generation method of test cases based on credible

behavior declaration.

2. Test case generation model based on behavior declaration

The test case automatic generation model proposed in this study mainly

includes three parts, namely test environment construction module based on

behavior declaration, algorithm implementation module and test run module, as

shown in Fig. 1.

Fig. 1. Automatic generation model of test cases based on behavior declaration

Research on credible software test case generation based on behavior declaration 63

3. Construct a test environment based on behavior declaration

3.1 Credible behavior declaration

A credible behavior declaration describes a collection of all behaviors

related to credibility in the software, describing only the expected behavior of the

software. The behavior of the software can be described more accurately and more

fully through the declaration of credible behavior.

Credible behavior declaration can be defined in a variety of styles for

different types and platforms of software. However, the behavior in all styles

should include the action name, unique ID, action content, trigger condition,

constraint parameters, expected results, and security level. The generic credible

behavior declaration structure is shown in Fig. 2 (a).

Fig. 2 (a) Structure of a generic credible behavior declaration (a)

This paper defines the generic credible behavior declaration by means of

XML, as shown in Fig. 2 (b).

64 Wei Zhuo, Xuejun Yu

Fig. 2 (b). Structure of a generic credible behavior declaration

3.2 Analysis of behavior declaration

In a behavior declaration, a rule entry represents a constraint on a specific

operation, and each rule entry has a security level rule subkey. Validating the

software through behavior declaration file ensures that the initial values of the

generated algorithms are credible. Through the definition of the behavior

declaration, the logical structure analysis of the path of the program under test,

you can get the path structure based on the behavior declaration, as shown in Fig.

3.

Fig. 3. Schematic diagram of the path structure based on the behavior declaration

Research on credible software test case generation based on behavior declaration 65

In Fig. 3, 1, 2, ..., S, N represent all path nodes in the program under test,

each node has a corresponding rule entry, and the direction of path execution is

determined according to the content defined in the rule entry.

3.3 Equivalence class

After obtaining the path structure based on the behavior declaration, in

order to make the designed test case cover all the paths, the equivalence class is

introduced as a parameter filling. This paper implements the equivalence class

generation algorithm, which is based on the predicate expression of the branch

node and generates the equivalence class through the key sentence coverage

criterion. Where b is the branch predicate, is the key sentence, is the

predicate clause set, is the true value set, and is the generated equivalence

class set. The specific algorithm steps are shown in Algorithm 1.

Algorithm 1: Equivalence class generation algorithm

Begin

Input: , ,

Set: ,

For (b in predicate set)

 For (in truth set , in truth set)

 if ()

 if

 add to

 if

 add to

Output:

End

According to the above algorithm, taking the geolocation operation as an

example, an equivalence class of the path node can be obtained, as shown in Table

1.
Table 1

Analysis results of the path equivalence class

Number Rule entry Security Level

Effective

equivalence

class

Invalid

equivalence class

1 LocationAccuracy Suspicious behavior -- 100 meters

2 LocationFrequency Safe behavior No limit --

3 LocationCoding Dangerous behavior -- Unable to locate

66 Wei Zhuo, Xuejun Yu

3.4 Fitness function and program instrumentation

The fitness function is the only interface that connects the particle swarm

algorithm to the actual problem [11]. Since the branches in the program under test

have different coverage difficulty and different test priorities, the branch weight

 is introduced. The fitness function is obtained by the formula (1).

 (1)

In the formula (1), N is the total number of branches, is the branch

distance function of the i-th branch, and is the weight of the i-th branch, and

 . The value of branch weight is obtained by branch nesting and

branch predicate. First, the implementation of branch coverage becomes more and

more difficult as the branch nesting level increases, so the branch nesting weight

 is introduced. Let be the level of the current branch, and and be

the largest and smallest branch levels in the tested program. Then use the formula

 to obtain the branch nesting weight. Then, at the branch

node, several conditions are connected as branch predicates by the relational

operators. Since the weights of the operators are different, the branch predicate

weight is introduced. Let the weight of the basic condition be . If the

current relational operator is “and”, the predicate weight acquisition formula is

 . If the current relational operator is “or”, the predicate weight

acquisition formula is . Finally, the branch weight of the branch i

is calculated by the formula .

Program instrumentation refers to the collection of dynamic information

about program execution by inserting branch functions into the program under test

[12]. To perform the instrumentation operation, you first need to specify the

information to be obtained and select the insertion position of the branch function.

Then insert the branch function in front of the selected branch judgment

statement. Finally, insert the fitness function of the current target path into the end

of the program.

4. Improvement of test case generation algorithm

4.1 Basic particle swarm optimization

The running process of particle swarm optimization algorithm is as

follows, the corresponding flowchart is shown in Fig. 4.

(1) Initialize the particle swarm optimization algorithm to randomly

initialize the speed and position of each particle in the population;

Research on credible software test case generation based on behavior declaration 67

(2) After the initialization is successful, the fitness of the particles, the

individual optimal value and the global optimal value in the population are

calculated;

(3) Calculate the latest speed and position of the particles through the

speed and position update formula;

(4) Adjust according to the fitness value of the particles. If the fitness

value of the selected particle is better than the individual optimal value in the

population, the fitness value of the particle is assigned to . If the fitness value of

the selected particle is better than the global optimal value of the population,

then the fitness value of the particle is assigned to ;

(5) If the number of iterations of the population has reached the maximum

value or the optimal value found by the population meets the requirements, step

(6) is performed, otherwise step (3) is performed;

(6) End the algorithm and output the global optimal value of the

population at this time.

Fig. 4. Basic particle swarm optimization flowchart

4.2 Improved particle swarm optimization

For the automatic generation of test cases, although particle swarm

optimization has advantages over other optimization algorithms, such as fast

convergence and strong versatility. However, particle swarm optimization also

has some shortcomings, such as lack of diversity in the late stage of the algorithm,

reduced search accuracy, and poor local search capabilities. In view of the

shortcomings of particle swarm optimization, this article uses an improved

68 Wei Zhuo, Xuejun Yu

version of particle swarm optimization algorithm I proposed before, which is

based on dynamic adaptive and chaotic search, see the literature [13] for details.

The specific flow of the algorithm is shown in the figure below:

Fig. 5. Improved particle swarm optimization flowchart

5. Experiment and result analysis

5.1 Experimental purpose and experimental steps

Experimental purpose: In order to verify the credible test case generation

model proposed in this paper, the efficiency of software test can be improved

while verifying the credibility of the software. In this paper, the iOS application

software is used as the program to be tested, and the general function of the tested

software is selected as an example to verify the model.

Research on credible software test case generation based on behavior declaration 69

Experimental steps: First step, upload the test program source file and

behavior declaration file to the model proposed in this paper. The model analyzes

the sequence of program tuning through the behavior declaration file to obtain a

collection of sensitive behaviors of each functional module. Then check the

behavior name, trigger condition and constraint indicator of the current behavior

of each function. Then, in order for the designed test case to cover all the paths,

the corresponding equivalence class is populated as a parameter into the current

behavior sub-item. Finally, the improved particle swarm algorithm is used to

generate the credible test cases automatically, and the test cases are analyzed to

obtain experimental conclusions.

5.2 Experimental results and experimental analysis

By analyzing the program under test and selecting its various functional

modules as objects to generate credible test cases, the relevant test cases are

generated by the model proposed in this paper, as shown below.

Table 2

Test case generation results of image reading and writing function

Serial

number
File Type

File

Number
File Size expected results actual results

001
The most accurate

positioning
3 6.7 MB

Not credible

behavior

Consistent with

expectations

002
Range of

kilometer error
1 18.2 MB

Not credible

behavior

Consistent with

expectations

003
The most accurate

positioning
1 52 KB

Not credible

behavior

Consistent with

expectations

004
Range of hundred

meters error
1 2.1 MB

Credible

behavior

Consistent with

expectations

Table 3

Test case generation results for geolocation

Serial

number

Location

Accuracy

Location

Frequency

Location

Coding

expected

results
actual results

001
The most accurate

positioning

400

meters

Unable to

locate

Not credible

behavior

Consistent with

expectations

002
Range of

kilometer error
No limit

Positioning

successful

Not credible

behavior

Consistent with

expectations

003
The most accurate

positioning
No limit

Positioning

successful

Credible

behavior

Consistent with

expectations

004
Range of hundred

meters error
50 meters

Positioning

successful

Not credible

behavior

Consistent with

expectations

It has been verified by Table 2 and Table 3 that the credible test case

automatic generation model proposed in this paper can detect the credibility of the

tested software. At the same time, in order to verify that the model improves the

efficiency of test case generation, this paper introduces the basic particle swarm

70 Wei Zhuo, Xuejun Yu

optimization algorithm and genetic algorithm as the comparison algorithm of

DACSPSO, and carries out related experiments. The three algorithms are

compared and analyzed mainly from the average iteration number of the algorithm

and the average iteration time. Taking the test geolocation function as an example,

the experimental results obtained are shown in Table 4.

Table 4

Experimental results of the three algorithms

Number

of
population

Number

of
executions

Average number of iterations Average iteration time (ms)

DACSPSO PSO GA DACSPSO PSO GA

100

10 70.2 113.7 208.3 5.36 6.82 11.43

20 73.6 105.8 215.6 5.17 7.64 10.78

30 65.5 102.6 210.4 4.85 7.23 12.36

150

10 64.1 123.5 193.2 5.62 7.51 10.82

20 75.6 107.3 204.5 5.39 7.82 11.71

30 72.9 103.1 208.9 4.52 6.94 11.16

200

10 74.5 116.3 201.4 5.13 7.47 10.27

20 66.2 112.9 214.1 5.72 7.81 11.39

30 71.3 124.2 203.7 5.28 7.25 11.53

From Table 4, it can be found that the average number of iterations and the

average iteration time of the DACSPSO-based test case generation model are less

than PSO and GA when the number of populations and the number of algorithm

executions are the same, which indicates the search speed of DACSPSO is more

excellent. At the same time, compared with the comparison algorithm, DACSPSO

has stronger stability because of its effective regulation ability.

Finally, in order to fully prove the efficiency of DASPSO here, some

common functions are selected for performance testing. The advantages and

disadvantages of the algorithm can be judged by the process of searching the

extremum of each function. The control algorithms selected in the experiment are

DNSPSO [14], OLPSO [15], and PSO. The population size M is 20, the particle

dimension D is 30, and the maximum iteration number of the algorithm is 1500.

Perform 100 searches and calculate the average and standard deviation of the

optimal fitness value. The specific experimental results are shown in Table 5.

Table 5

Compare search performance of various algorithms

Test

function
 Sphere Ackley Rosenbrock Rastrigrin

PSO

Average fitness 2.41E-64 5.91E-02 2.57E+04 6.42E+03

Standard
deviation

1.72E-59 3.82E-01 1.74E+05 2.73E+04

OLPSO
Average fitness 6.25E-69 7.13E-09 5.23E+02 8.25E+02

Standard 9.74E-72 5.36E-07 8.41E+03 3.17E+02

Research on credible software test case generation based on behavior declaration 71

deviation

DNSPSO

Average fitness 5.24E-75 3.14E-14 7.36E+02 2.47E+00

Standard

deviation
3.82E-72 7.45E-15 2.32E+02 1.85E+00

DACSPSO

Average fitness 8.39E-113 4.92E-18 3.27E+00 5.63E-04

Standard

deviation
6.15E-108 3.42E-17 5.82E+01 1.57E-02

It can be concluded from Table 5 that the PSO algorithm has the largest

average fitness value, OLPSO and DNSPSO are smaller than PSO, and the

average value of DASPSO is the smallest, indicating that the convergence

accuracy of DASPSO is the highest. At the same time, the standard deviation of

DASPSO is the smallest among these algorithms, indicating that the stability and

robustness of the algorithm are optimal. In summary, the proposed automatic

generation model of credible test cases based on behavior declaration can verify

the credibility of the software and improve the efficiency of software testing.

6. Conclusions

For software testing, this paper proposes an automatic generation model of

test case based on credible behavior declaration. First, generate a credible

behavior declaration for the software under test and build a test environment

based on the behavior declaration. Then the test case generation algorithm is

improved, and finally the test case generation model is realized. The experimental

results show that the model can improve the testing efficiency of the software

while verifying the credibility of the software.

Acknowledgement

The paper was supported by National Key Research and Development

Plan of China (2017YFF0211801).

R E F E R E N C E S

[1]. C. X. Shen, To create a positive cyberspace by safeguarding network security with Active

Immune Trusted Computing 3.0[J]. Information Security Research, vol. 4, no. 4, 2018, pp.

282-302.

[2]. X. Guo, R. G. Dutta, Y. Jin, Eliminating the hardware-software boundary: a proof-carrying

approach for trust evaluation on computer systems[J]. IEEE Transactions on Information

Forensics and Security, vol. 12, no. 2, 2017, pp. 405-417.

[3]. A. Dwarakanath, N.C. Shrikanth, K. Abhinav, A. Kass, Trustworthiness in enterprise

crowdsourcing: A taxonomy & evidence from data. In: Proc. of the ICSE 2016. Companion,

2016, pp. 41-50.

72 Wei Zhuo, Xuejun Yu

[4]. Z.P. Wu, Y. Zhou, Customized cloud service trustworthiness evaluation and comparison using

fuzzy neural networks. In: Proc. of the IEEE 40th Annual Computer Software and

Applications Conf. (COMPSAC 2016), 2016, pp. 433-442.

[5]. L. H. Lian, Research and implementation of software automatic test[J]. IOP Conference

Series: Earth and Environmental Science, vol. 69, no. 1, 2017.

[6]. J. Kennedy, R. C. Eberhart, Particle swarm optimization[C]. Proceedings of IEEE

International Conference on Neural Networks. Piscataway: IEEE Press, 1995, pp. 1492-

1498.

[7]. Z. H. Zhan, J. Zhang, Y. Li, S. H. Chung, Adaptive particle swarm optimization. IEEE
Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 39, no. 6, 2009,

pp. 1362-1381.

[8]. M. Couceiro, S. Sicasundaram, Novel fractional order particle swarm optimization[J]. Applied

Mathematics and Computation, 2016, pp. 36-54.

[9]. S. F. Li, C. Y. Cheng, Particle Swarm Optimization with Fitness Adjustment Parameters[J].

Computers & Industrial Engineering, 2017, pp. 831-841.

[10]. Y. Zheng, Y. Liu, W. Lu, et al. A hybrid PSO-GA method for composing heterogeneous

groups in collaborative learning[C]// International Conference on Computer Science &

Education. IEEE, 2016.

[11]. B.Y. Cheng, H.Y. Lu, Y. Huang, K.B. Xu, An adaptive excellent coefficient particle swarm

optimization algorithm for solving TSP[J]. Journal of Computer Applications, vol. 37, no.
03, 2017, pp. 750-754.

[12]. A. G. Li, Y. L. Zhang, Automatic Generating All-Path Test Data of a Program Based on

PSO[C]//World Congress on Software Engineering. Piscataway, NJ: IEEE Press, 2009, pp.

189-193.

[13]. Wei Zhuo, Xuejun Yu, A Particle Swarm Optimization Algorithm Based on Dynamic

Adaptive and Chaotic Search[C]. IOP Conf. Series: Materials Science and Engineering 612

(2019) 052043 doi:10.1088/1757-899X/612/5/052043.

[14]. Wang H, Sun H, Li C H, et al. Diversity enhanced particle swarm optimization with

neighborhood search[J]. Information Sciences, 2013, 223(2):119-135.

[15]. Zhan Z H, Li Y, Shi Y H, Orthogonal learning particle swarm optimization[J]. IEEE Trans on

Evol Comput, 2011, 15(6):832-847.

