
U.P.B. Sci. Bull., Series A, Vol. 74, Iss. 2, 2012                                                  ISSN 1223-7027 

TOTAL BOUNDEDNESS IN PROBABILISTIC NORMED 
SPACES  

R. SAADATI1 , G. ZHANG2 , B. LAFUERZA--GUILLEN 3 

In this paper, we study total boundedness in probabilistic normed space and 
we give criterion for total boundedness and D-boundedness in these spaces. Also we 
show that in general a totally bounded set is not D-bounded. 
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1. Introduction 

In this paper, we shall consider the space of all distance probability 
distribution functions (briefly,  d.f. 's), namely the set of all left--continuous and 
non--decreasing functions from R  into [ ]0,1  such that 0=(0)F  and 1=)(+∞F ; here 
as usual, },{:= +∞−∞∪RR . The spaces of these functions will be denoted by +Δ , 
while the subset +Δ⊆+D  will denote the set of all proper distance  d.f. 's, namely 
those for which 1=)(+∞−FA . Here )(xf−A  denotes the left limit of the function f  at 
the point x , )(lim:=)( tfxtxf −→

−A . For any 0≥a , aε  is the  d.f.  given by 0=aε  if 
ax ≥  and 1=aε  if ax < . In particular, under the usual point-wise ordering of 

functions, 0ε  is the maximal element of +Δ . A triangle function is a binary 
operation on +Δ , namely a function +Δ→+Δ×+Δ:τ  that is associative, 
commutative, nondecreasing and which has 0ε  as unit, continuity of a triangle 
function means continuity with respect to the topology of weak convergence        
in +Δ . 

Probabilistic normed spaces were introduced by Sherstnev in 1962 [1] by 
means of a definition that was closely modeled on the theory of (classical) normed 
spaces, and used to study the problem of best approximation in statistics.  Then a 
new definition was proposed by Alsina, Schweizer and Sklar [2]. The properties 
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of these spaces were studied by several authors; here we shall mention [3-9] (but 
see also the survey paper [10]). 

Definition 1.1 A Probabilistic Normed space (briefly, PN space) is a 
quadruple )*,,,( ττνV , where V  is a real vector space, τ  and *τ  are continuous 
triangle functions with *ττ ≤  and ν  is a mapping (the probabilistic norm) from 

V  into +Δ , such that for every choice of p  and q  in V  the following hold:  (N1) 
0= εν p  if, and only if, θ=p (θ  is the null vector in V );  (N2) pp νν =− , (N3) 

),( qpqp νντν ≥+ ;  (N4) ),( )(1
*

ppp λλ νντν −≤  for every [0,1]∈λ .  
A PN space is called a Šerstnev space if it satisfies (N1), (N3) and the 

following condition: For every R∈≠ 0α  and 0>x  one has  
),/(=)()( αναν xpxpNS  

which clearly implies (N2) and also (N4) in the strengthened form 
.))(1,(= ppMp λνλντν −  The triple ),,( τνV   where V  is a real vector space, τ  is a 

continuous triangle functions and ν  is a mapping from V  into +Δ , such that 
(N1), (NS) and (N3) hold is a  Šerstnev space. 

  A PN space in which Tττ =  and *=*
T
ττ  for a suitable continuous t --

norm T  and its conorm *T  is called a Menger PN space.  In the case of PN 
spaces, the concepts of boundedness are based on the consideration of the 
probabilistic radius rather than that of the probabilistic diameter; the probabilistic 
radius AR of a set VA ⊂  is defined by 1=)(+∞AR  and, for 0>x , by 

}.:)({inflim
<,

:=)( Apypxyxy
xAR ∈

→
ν In a PN space there is an easy characterization of a 

D -bounded set A : A  is D -bounded if, and only if,there exists a proper distance 
distribution function G , i.e. one for which 1=)(lim xGx +∞→ , such that Gp ≥ν  for 
every Ap ∈ . 

Definition 1.2 Let ),,,( *ττνV  be a PN-space. For each p  in V  and 0>λ , 
the strong −λ neighborhood of p  is the set },1>)(:{=)( λλνλ −−∈ qpVqpN  and the 
strong neighborhood system for V  is the union pVp N∪ ∈  where 0}>:)({= λλpNpN . 

 The strong neighborhood system for V  determines a Hausdorff topology 
for V  which is also first countable. 

Definition 1.3 Let ),,,( *ττνV  be a PN space, a sequence }{ np  in V  is said 
to be strongly convergent to p  in V  if for each 0>λ , there exists a positive 
integer N  such that )(λpn Np ∈ , for Nn ≥ . Also the sequence }{ np  in V  is called 
strongly Cauchy sequence if for every 0>λ , there exists a positive integer N  
such that λλν −− 1>)(

mpnp , whenever Nnm >, . A PN space ),,,( *ττνV  is said to be 
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strongly complete in the strong topology if and only if every strongly Cauchy 
sequence in V  is strongly convergent to a point in V .  

Lemma 1.4 ([2]) If |||| βα ≤  then pp αβ νν ≤ , for every p  in V . 
Definition 1.5 A subset A  of TVS (topological vector space) V  is said to 

be topologically bounded if for every sequence }{ nα  of real numbers that 
converges to zero as +∞→n  and for every }{ np  of elements of A , one has 

θα →nn p , in the strong topology. The PN space ),,,( *ττνV  is called characteristic 
whenever +⊆ DV )(ν .  

Example 1.6 The triple ),,( πτνV , where +Δ→V:ν  is defined by 

px

x
xp

+
=)(ν  is a characteristic Šerstnev space (see [11, Theorem 9]). 

  
Theorem 1.7 ([11]) A Šerstnev space ),,( τνV  is a TVS if and only if it is 

characteristic. 
Lemma 1.8 ([11]) In a characteristic Šerstnev space ),,( τνV  a subset A  

of V  is topologically bounded if and only if it is D-bounded . 
Lemma 1.9 Let τ  be a continuous triangle function. Then for every 

+∈DF  and 0< εF  there exists FG ≥  such that FGG >),(τ . 
Proof. Let there exists +∈DF  and 0< εF  such that for every FG ≥  we 

have FGG ≤),(τ . Consider the sequence of  d.f. 's defined by ),(max= 1 FG
n

n ε , 

then FGn ≥  for every N∈n , therefore .),( FGG nn ≤τ Taking ∞→n  in the above 
inequality then we have F≤0ε  which is a contradiction. 

   2.  The Main Results 
Definition 2.1 Let ),,,( *ττνV  be a PN space and VA⊂ . We say A  is a 

probabilistic strongly totally bounded set if for every +∈DF  and 0< εF , there 
exists a finite subset FS  of A  such that  

 ).(FDA p

FSp
∪
∈

⊆  (2.1) 

Where }.>:{=)( FVqFD qpp −∈ ν  
Lemma 2.2 Let ),,,( *ττνV  be a PN space and VA⊂ . A  is a probabilistic 

strongly totally bounded set if and only if for every +∈DF  with 0< εF , there 
exists a finite subset FS  of V  such that  

 ).(FDA p

FSp
∪
∈

⊆  (2.2) 
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Proof. Let +∈DF , 0< εF  and condition (2.2) holds. By continuity of τ , 
there exists FG ≥  such that FGG >),(τ . Now, applying condition (2.2) for G , 
there exists a subset },...,{= 1 nG ppS  of V  such that )(GDA p

GSip∪ ∈
⊂ . We assume 

that φ≠∩ AGD
jp )( , otherwise we omit jp  from GS  and so we have 

)(
}{\

GDA
ip

jpGSip∪ ∈
⊂ . For every ni 1,...,=  we select iq  in AGD

ip ∩)( , and we put 

},...,{= 1 nF qqS . Now for every q  in A , there exists }{1,..., ni∈  such that G
ipq >−ν . 

Therefore we have (by using property N3 of a PN space), 
),(

iqipipqiqq −−− ≥ νντν ),( GGτ≥ .> F  Which implies that )(FDA
ip

FSip∪ ∈
⊂ . The 

converse is trivial. 
Lemma 2.3 Let ),,,( *ττνV  be a PN space and VA⊂ . If A  is a 

probabilistic strongly totally bounded set then so is its closure A . 
Proof. Let +∈DF , 0< εF , then there exists a finite subset },...,{= 1 nG qqS  

of V  with FG ≥  and FGG >),(τ , such that )(GDA
iq

GSiq∪ ∈
⊆ .  Since for every r  

in A , A
n

Nr ∩)1(  is non-empty for every N∈n  (see Definition 1.2 and first 

countability property) therefore we can find Ap∈  such that Grp ≥−ν  and there 
exists ni ≤≤1  such that G

iqp ≥−ν , therefore ),(
iqppriqr −−− ≥ νντν ),( GGτ≥ .> F  

 Hence A )(FD
iq

FSiq∪ ∈
⊂ , i.e. A  is probabilistic strongly totally bounded 

set.  
Theorem 2.4 Let ),,,( *ττνV  be a PN space and VA⊂ . A  is a 

probabilistic strongly totally bounded set if and only if every sequence in A  has a 
strongly Cauchy subsequence. 

 Proof. Let A  be a probabilistic strongly totally bounded set. Let }{ np  be a 
sequence in A . For every N∈k , there exists a finite subset 

kFS  of V  such that 

)( kq
kFSq

FDA ∪ ∈
⊆ , here 

k
kF 1= ε . Hence, for 1=k , there exists 

11 FSq ∈  and a 

subsequence }{ 1,np  of }{ np  such that )( 111, FDp qn ∈ , for every N∈n . Similarly, 

there exists 
22 FSq ∈  and a subsequence }{ 2,np  of }{ 1,np  such that )( 222, FDp qn ∈ , for 

every N∈n . Continuing this process, we get 
kFk Sq ∈  and subsequences }{ ,nkp  of 

}{ 1,nkp −  such that )(, kkqnk FDp ∈ , for every N∈n . Now we consider the 

subsequence }{ ,nnp  of }{ np . For every +∈DF  and 0< εF , by continuity of τ , 
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there exists an N∈0n  such that FFF nn >),(
00

τ  and FFn ≥
0

. Therefore for every 

0, nmk ≥ , we have  
 ),(

,00,,, mmpnqnqkkpmmpkkp −−− ≥ νντν ),(
00 nn FFτ≥ .> F  

 Hence }{ ,nnp  is a strongly Cauchy sequence. Conversely, suppose that A  
is not a probabilistic strongly totally bounded set. Then there exists +∈DF  such 
that for every finite subset FS  of V , A  is not a subset of )(FDq

FSq∪ ∈
. Fix Ap ∈1 . 

Since A  is not a subset of )(
}1{

FDqpq∪ ∈
, there exists Ap ∈2  such that Fpp ≤− 21

ν . 

Since A  is not a subset of )(
}2,1{

FDqppq∪ ∈
, there exists a Ap ∈3  such that Fpp ≤− 31

ν  

and Fpp ≤− 32
ν . Continuing this process, we construct a sequence }{ np  of distinct 

points in A  such that F
jpip ≤−ν , for every ji ≠ . Therefore }{ np  has not strongly 

Cauchy subsequence. 
Every probabilistic strongly totally bounded set is not D-bounded set , in 

general, as can see from the next example. 
Example 2.5 The quadruple ),,,( *

ππ ττνR  where +Δ→R:ν  is defined by 
)(xpν =0 if  0=x , ),||(exp)( pxvp −=  if  +∞<<0 x and 1)( =xpν if ∞=x .  And 

00 = εν  is a PN space (see, [12]). In this space, since the set }:1{ N∈n
n

 has strongly 

Cauchy subsequence then it is probabilistic strongly totally bounded but it is not 
D-bounded set (note that 1,)||(exp)( <−= pxvp  for all 0≠p ). Note that in this 
space only {0} is a D-bounded set. 

Lemma 2.6 In a characteristic Šerstnev space ),,( τνV  every strongly 
Cauchy sequence is topologically bounded set. 

Proof. Let }{ mp  be a strongly Cauchy sequence. Then there exists a 0n  
such that for every 0, nnm ≥ , 

nm
npmp

+
− ≥ 1εν . Now let 0→mα  and 1<<0 mα , then we 

have  (by using  a property of  Šerstnev space in which )()/(=)( x
p

vmxpxp
m

>αναν  

) 
),(

0
)

0
( npmnpmpmmpm ααα νντν −≥ ),(

00 npmnpmp ανντ −≥     

),(
0

0

1 npm
nm

ανετ
+

≥ ),( 00 εετ→ ,= 0ε  

 as m  tends to infinity. 
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Lemma 2.7 In a characteristic Šerstnev space ),,( τνV  every probabilistic 
strongly totally bounded set is D-bounded. 

Proof. We show that if A  is a probabilistic strongly totally bounded set 
then it is topologically bounded, and so by Lemma 1.8, it is D-bounded. If A  is 
not topologically bounded, there exists a sequence Apm ⊆}{  and a real sequence 

0→mα  such that mm pα  doesn't tend to the null vector in V . There is an infinite 
set NJ ⊆  such that the sequence Jmmm p ∈}{α  stays off a neighborhood of the 
origin. Since }{ mp  is probabilistic strongly totally bounded, then has a Cauchy 
subsequence say }{

lmp  which by Lemma 2.6 is topologically bounded and since 

0→
lmα  then 0ενα →

lmp
lm

 and hence }{
lmlm pα  is a strongly Cauchy subsequence of 

}{ mm pα . Then }{ mm pα  is probabilistic strongly totally bounded and so is 

Jmmm p ∈}{α , therefore there is a strong Cauchy subsequence of Jmmm p ∈}{α , say 

kmkm pα  which stays off a neighborhood of the origin, hence it doesn't tend to the 

null vector in V , on the other hand, since }{
kmkm pα  is a strongly Cauchy sequence 

then there is a N∈0k  such that for every 0, ktk ≥  we have 
tktmp

kmp
+

− ≥ 1εν . Thus  

),(
0

)
0

(
kmp

kmkmp
kmp

kmkmp
km ααα νντν −≥ ),(

0 kmp
kmkmp

kmp ανντ −≥ ),(
0

1
kmp

km
kk

ανετ
+

≥

),( 00 εετ→ ,= 0ε  
 as k  tends to infinity. Which is a contradiction.  
 
Every D-bounded set is not probabilistic strongly totally bounded set, in 

general, as can see from the next example. 
Example 2.8 Let +∞ Δ→l:ν  via pp εν :=  for every ∞∈ lp . Let *,ττ  be 

continuous triangle functions such that *ττ ≤  and baba +εεετ =),( , for all 0>,ba . 
For instance,it suffices to take Tττ =  and *

* =
T
ττ , where T  is a continuous t --

norm and *T  is its t --conorm. Then ),,,( *ττν∞l  is a PN space (see [6, Example 
1.1]).  Suppose }1,||=:||{= ∞∈ lpppA , A  is D-bounded set but not probabilistic 
strongly totally bounded set. In fact  

 ).(1,=}:)(||||{inflim
<,

=)( +∞→→∈
→

xApypxyxy
xAR ε  

therefore A  is D-bounded. Let ∞
1}{ np  is a sequence of A , where  

...,1,0,...),(0,0,0,...=.,,0,...),..(0,1,0,...=2,0,...),(1,0,0,...=1 nppp  
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In view of Definition 1.3., It is obvious that ∞
1}{ np  is not strongly Cauchy 

sequence. By Theorem 2.4., we have that A  is not probabilistic strongly totally 
bounded set.   

Theorem 2.9 Let )*,,,( ττνV  be a PN space. If A  and B  are two 
probabilistic strongly totally bounded subsets of V . Then 

  (i) BA∪  is probabilistic strongly totally bounded; 
  (ii) BA +  is probabilistic strongly totally bounded, where the set A+B 

given by },:{:= BqApqpBA ∈∈++ . 
Proof. (i). By Definition 2.1., for every +∈DF  and 0< εF , there exist 

finite subset FS  of A  and FS ′  of B  such that ),()( FpD
FSp

BandFpD
FSp

A ∪∪
′∈

⊆
∈

⊆  

where }.>:{=)( FqpVqFpD −∈ ν  
So we have that ).(=))(()( FpD

FSFSp
FpD

FSp
FpD

FSp
BA ∪

∪
∪∪∪∪

′∈′∈∈
⊂  Thus BA∪  is 

probabilistic strongly totally bounded. 
(ii). Let }{ nc  is a sequence of BA + . Suppose nnn qpc += , where Apn ∈}{  

and Bqn ∈}{ . Because A  and B  are probabilistic strongly totally bounded subsets, 
by Theorem 2.4., there exist subsequence }{ ,nkp  of }{ np  and }{ ,nkq  of }{ nq , where 

}{ ,nkp  and }{ ,nkq  are both strongly Cauchy subsequences, i.e., 
,,,0,,

∞→→− nm
mkpnkp εν  ∞→→− nm

mkqnkq ,,0,,
εν .So  

 ),,(),,(,,
=

mkqmkpnkqnkpmkcnkc +−+− νν ),,(),,(=
mkqnkqmkpnkp −+−ν  

  
 ),( ),,(),,( mkqnkqmkpnkp −−≥ νντ ),( 00 εετ→ ,= 0ε   

 as nm,  tends to infinity, i.e., the subsequence }{ ,nkc  of }{ nc  is a strongly 
Cauchy subsequence. By Theorem 2.4. we have that BA +  is probabilistic strongly 
totally bounded.   

Corollary 2.10.  Let )*,,,( ττνV ) be a PN space. Let iA  be probabilistic 
strongly totally bounded, where i=1,2,3,...,n.Then we have that i

n
i A1=∪  and i

n

i
A∑ 1=

 

are all probabilistic strongly totally bounded, where ....:= 211= ni
n

i
AAAA +++∑  

3. Conclusions 

In this paper, we studied the concept of total boundedness in PN space and 
its relation to D-boundedness .  We proved that  A  is a probabilistic strongly 
totally bounded set if and only if every sequence in A  has a strongly Cauchy 
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subsequence .Next we showed that every probabilistic strongly totally bounded 
set is not D-bounded set , in general. 

 
             Acknowledgements 

The authors would like to thank the referees for giving useful suggestions 
for the improvement of this paper. 

R E F E R E N C E S 

[1] A. N. Sherstnev, On the motion of a random normed space, Dokl. Akad. Nauk SSSR 149 
(1963), 280-283 (English translation in Soviet Math. Dokl. 4 (1963), 388-390) 

[2] C. Alsina, B. Schweizer and A. Sklar, Continuity properties of probabilistic norms, J. Math.  
Anal. Appl., 08 (1997) 446-452. 

[3] B. Lafuerza Guillén, J.A. Rodríguez Lallena, C. Sempi, Completion of probabilistic Normed 
spaces, Internat. J. Math. Math. Sci. 18 (1995) 649-652. 

[4] B. Lafuerza Guillén, J.A. Rodríguez Lallena, C. Sempi, Some classes of probabilistic normed 
spaces, Rend. Mat. 7 (17) (1997) 237-252. 

[5] B. Lafuerza Guillén, J.A. Rodríguez Lallena, C. Sempi, Probabilistic norms for linear operators, 
J. Math. Anal. Appl. 220 (1998) 462-476. 

[6] B. Lafuerza Guillén, J.A. Rodríguez Lallena, C. Sempi, A study of boundedness in probabilistic 
normed spaces, J. Math. Anal. Appl. 232 (1999) 183-196. 

[7] R. Saadati and S.M. Vaezpour, Linear operators in probabilistic normed spaces, J. Math 
Anal.Appl. 346 (2008), no. 2, 446-450. 

[8] R. Saadati and M. Amini, D-boundedness and D-compactness in finite dimensional   
probabilistic normed spaces. Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 4, 483--
492. 

[9] G. Zhang and M. Zhang, On the normability of generalized ·Serstnev PN spaces, J. Math. Anal. 
Appl., 340 (2008) 1000-1011.  

[10] C. Sempi, A short and partial history of probabilistic normed spaces, Mediterr. J. Math. 3 
(2006) 283- 300. 

[11]  B. Lafuerza Guillén, J.A. Rodrguez Lallena and C. Sempi, Normability of probabilistic 
normed spaces (to appear). in J. Math. Anal. Appl. 

[12] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed  space,     
Aequationes Math., 46  , 1993, 91-98. 

 


