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OLD AND NEW IN STABILITY ANALYSIS OF CUSHING 
EQUATION: A GEOMETRIC PERSPECTIVE 

C. I. MORĂRESCU , S. I. NICULESCU* 

In această lucrare se caracterizează zonele de stabilitate pentru o clasă de 
sisteme liniare în prezeţa întârzierilor definite de o gamma-distribuţie cu gap. Mai 
precis, vom pune în evidenţă mulţimea frecvenţelor pentru care este posibilă o 
schimbare a numărului de rădăcini instabile ale ecuaţiei caracteristice, vom defini 
curbele de schimbare a numărului de rădăcini instabile, şi vom da o clasificare 
completă a acestor curbe . Mai mult, este exprimată clar direcţia în care rădăcinile  
traversează axa imaginară. Lucrarea este completată de un exemplu care ilustrează 
modul de aplicare al metodei.. 

 This paper focuses on the characterization of the stability crossing curves of 
a class of linear systems including gamma-distributed delays with a gap. More 
explicitly, we compute the crossing set, which consists of all frequencies 
corresponding to all points on the stability crossing curve, and we give their 
complete classification. Furthermore, the directions in which the zeros cross the 
imaginary axis are explicitly expressed. One illustrative example complete the 
paper. 

 
Keywords: distributed delay, gamma distribution with gap, stability analysis of 

dynamical systems, Cushing equation. 

Introduction  

The stability of dynamical systems in presence of time-delay is a problem 
of recurring interest (see for instance [13, 8, 19], and the references therein), since 
the presence of a time-delay may induce instabilities, and complex behaviors for 
the corresponding schemes. The problem becomes even more difficult in the case 
when the delays are distributed. 

Without any loss of generality, we may discuss some dichotomic 
characters of the distributed delay on the system’s stability. In this sense, in 
control theory, [24] pointed out the existence of various instability mechanisms in 
the implementation of some standard distributed control laws in the finite 
spectrum assignment design strategy, phenomenon explained in [6]. Various 
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discussions, and solutions for a safe implementation are presented in [22], and in 
[17], respectively. In opposition with the property mentioned above, [16] used 
distributed delays as approximation of “fast” time-varying point-wise delays in 
the analysis of some cases where (linear) time-varying delay system is stable, 
whereas the system with constant delay is unstable. Such arguments represent 
sufficient reasons to focus on the effects of distributed delays on the (asymptotic) 
stability of dynamical systems. The study considered here is mainly motivated by 
biological applications including gamma-distributed delays with a gap in 
population dynamics. In [15], the author largely discusses the connection between 
gamma distribution delay models, and population dynamics, and a particular 
attention is paid to the so-called distributed delay with some gap. To the best of 
the authors’ knowledge, the first population dynamics model including 
gamma-distributed delays is due to Cushing [4], and it received a lot of attention 
starting with the 80s [3, 1, 2]. The linearized model [3] simply writes as: 

( ) ( ) ( ) ( )∫ −+−=
• t

dgtxtxtx
0

θθθβα ,                                  (1) 

under appropriate initial conditions. Here α is the death rate of the population x 
and β is the rate of egg-laying (maternity rate). The function g represents the 
proportion of egg laid at any specific time, that survive and hatch out after time s. 
A narrow distribution will lead to some simple discrete delay system of the form 
( ) ( ) ( )htxtxtx −+−=

•

βα , whose dynamics and stability are completely understood 
(see, for instance, [13] and the references therein). Next, if one assumes that the 
delay kernel is given by the gamma-distribution law: 
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the Laplace transform applied to (1), under the definition (2) reduces the stability 
analysis of (1) to the analysis of some parameter-dependent polynomials of the 
form: 
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where 
a

n 1+
=τ  denotes the corresponding mean delay value. One of the problems 

discussed in [3] was the analysis of the behavior of the roots of the characteristic 
equation with respect to the imaginary axis when the mean delay value τ , or the 
exponent n are varying. The main interest of such a study was to compute the 
stability regions with respect to the corresponding parameters, and to analyze the 
sensitivity of such regions when the parameters change. Further discussions on 
this topics can be found in [15].  
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Next, Nisbet, and Gurney [20] mention that population dynamics models 
based on partial differential equations, and reduced for convenience to integro-
differential forms are more realistic if the corresponding delay kernel ĝ includes 
some gap (see also [1, 15]), that is if it can be expressed as: 
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for some positive delay values τ  . Simple computations prove that the 
corresponding mean delay is defined by 

a
n 1+

+=ττ . In this case, the stability 

analysis becomes more complicated, since the parameter-dependent polynomial 
( )nsD ,,τ  in (3) becomes a parameter-dependent quasipolynomial of the form 

(see, for instance, [1, 2]): 
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The paper addresses the problem of analyzing the effects of the gap, and 
mean delay values on the stability regions of the general characteristic equation 
(5). Whereas several particular cases received a lot of attention, see, for instance, 
[3, 1, 2, 15] using various frequency-domain methods, the corresponding 
methodologies are extremely difficult to apply to (5). We think that our approach 
overcomes this difficulties, and gives a simple and appealing way to treat such a 
stability problem. More explicitly, we shall define the stability crossing curves, 
that is the curves consisting of all delays such that the corresponding characteristic 
quasipolynomial has at least one root on the imaginary axis. Next, we explicitly 
compute the crossing set, that is the set represented by all the frequencies 
corresponding to all the points in the stability crossing curves, and we discuss the 
way such a set can be computed as well as its properties. The classification of the 
stability crossing curves follows naturally from the procedure considered. Finally, 
we detail the directions in which zeros cross the imaginary axis. To the best of the 
authors’ knowledge, there are no similar analysis in the literature for such a case 
study.  
The main interest of the approach is twofold: first, to understand the underlying 
mechanisms of stability/instability issues in the case of linear systems including 
gamma-distributed delays with a gap, and second, to derive some simple stability 
criteria for such systems. Indeed, it is well known (see, for instance, [5]) that the 
complete stability characterization of the linear delay systems is still an open 
problem. Furthermore, it was proved in [23] that the problem is NP-hard even in 
the case of multiple discrete (piece-wise) constant delays. However, the geometry 
of the stability regions in the delay-parameter space for the two (piece-wise) 
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delays case was completely developed in [9]. The intention of this paper is to give 
similar insights for this class of dynamical systems with respect to the 
corresponding gap, and average delay values, respectively. Some illustrative 
examples complete the approach considered, giving a simple, and easy way to 
follow the methodology considered. 

The remaining paper is organized as follows: Section 2 presents the 
problem formulation and some simple prerequisites necessary in developing our 
results. The main results (crossing sets, stability crossing curves classification, 
tangent and smoothness, crossing directions) and one illustrative example are 
presented in Section 3 and concluding remarks end the paper. The notations are 
standard. 

1. Problem formulation, and preliminaries 

As mentioned in the Introduction, our main interest is to analyze the 
effects of the gap, and mean delay values on the stability regions of the general 
characteristic equation (5). Consider now the following system, whose dynamics 
are described by the following characteristic equation: 

( ) ( )( ) 01:,, 1 =+++= −+ τβατ sn esTsTsD ,                                    (6) 
More explicitly, we study the occurrence of any possible stability switch/reversal 
resulting by increasing the time delay τ  or the average delay T. In other words, 
we explicitly study the change of number of zeros of (6) on C+ as the delays ( )τ,T  
vary on 2

+R . 
Since the main objective of this study is to identify the regions of ( )τ,T in 2

+R  
such that D(s; T; τ ) is (asymptotically) stable, we will exclude some cases, and 
the following assumption appears naturally, as discussed below: 
Assumption 1. 0>+ βα ; 

If 0=+ βα then 0 is a zero of (6) for any ( ) 2, +∈ RT τ , and therefore we 
can never get the stability by increasing T, or τ . For stability at zero delay we 
require 0>+ βα .  

In [12], the authors introduced the notion of hyperbolicity for linear delay 
system. More explicitly, the characteristic equation (6) is said to be hyperbolic at 
some point ( )00 ,τT  if no root of the characteristic equation lies on the imaginary 
axis for 0TT = , and 0ττ = . 

Using the assumption, and the hyperbolicity notion introduced above, we 
have the following simple result: 
Proposition 1. The system (6) is hyperbolic for all ( ) ++ ×∈ RRT τ,  if and only if: 

                                  βα > ,                                                    (7) 
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Remark 1. The proposition above gives a simple frequency-sweeping 
characterization of the so-called delay-independent hyperbolicity property. 
Further discussions on this topics can be found in [19]. In the case when the 
system free of delays is asymptotically stable, then the result above gives a very 
simple condition of delay-independent stability (see also [8], and the references 
therein). 
We can ignore cases where 0<α on biological grounds. So in all that follows we 
assume βα <<0 .  

2. Stability analysis of Cushing equation: an overview 

This section is devoted to existing results in the literature, in the analysis 
of Cushing model. It is very important to note that even for the simple case 
without the gap, some of the first results concerning its stability analysis include 
errors. 
In [3] Cooke K.L and Grosmann Z. made a stability analysis using an algebraic 
approach. They studied the case when τ = 0 so equation (6) becomes 
( )( ) 01 =+++ βα nsTs and  

                        ( )
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,                                    (8) 

At the root ωjs = , if any, we have 
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Writing ωρ js +=  and using (8) for Tα > 1 they stated that any root with a 
positive real part, if such exists for some T, must cross the imaginary axis and 
undergo an irreversible change of sign of the real part as T is increased. 
In [1] Blythe and all, corrected the results which characterize the behaviors in 
presence of a distributed delay. 
First they stated for linearized Cushing model whose behavior is given by 
characteristic equation 

              ( ) 0
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that we have a crossing towards instability and there is a range of values of α/β 
within which restabilisation occurs but beyond which it cannot. Next, they studied 
a model with a gap given by: 



C. I. Morarescu, S. I. Niculescu 18

( ) 0
1

1 2

1
1 =+⎟

⎠
⎞

⎜
⎝
⎛

+
++ −

+
τβτα s

n

e
n

ss ,                                        (10) 

and they defined the angular quantity θ, by 
1
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                                                   ( ) ( ) PMPnW //, 12 −=ττ    (12) 
which falls to zero as n and/or 12 /ττ  increases. 
Using another method Boese pointed out in [2] that both papers contain errors and 
weakness. Boese focused on the analysis of some models related to  
Theorem 1. The function  

                                                           ( ) ( ) τβα sn essf −++=    (13) 
with real α,β,τ with α> 0 and β ,τ ≥ 0 as well as Nn∈ is stable if ( )βαττ ,<  and 
unstable for ( )βαττ ,>  where 
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3. Main results 

The characterization of the stability crossing curves in the delay parameter 
space needs the following ingredients: 
(a) first, the identification of the corresponding crossing points, that is the set of 
frequencies corresponding to all the points in the stability crossing curves. Next, 
we define the associated crossing set, which will be defined by a finite number of 
intervals of finite length;  
(b) second, the classification of the corresponding stability crossing curves, 
including some simple geometric characterization (tangent, smoothness);  
(c) finally, the characterization of the way the roots cross the imaginary axis. 
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All these steps are detailed in the next paragraphs, and the examples illustrating 
each case study are considered in the next section. The presentation is as simple 
and intuitive as possible,. 
 

3.1. Identification of crossing points 
Let ℱ denote the set of all ( ) 2, +∈ RT τ  such that (6) has at least one zero on 
imaginary axis. Any ( )∈τ,T  ℱ  is known as a crossing point. The set ℱ , which 
is the collection of all crossing points, is known as the stability crossing curves. 
Based on the results presented in the previous section, it becomes clear that 
crossing points potentially exist if the condition (7) is not satisfied for some 
frequency values ω. Such aspects, together with various simple, and intuitive 
geometrical figures will be addressed in the sequel. 
Remark 2. 1) There is +∈ Rτ which satisfies equation (6) for a fixed s = jω if and 
only if  

                                             ( ) βωαω =++ jTj n1     (15) 

2) There exists +∈ RT which satisfies (15) for a fixed s = jω, 0≠ω  if and only if 
                                          βωα ≤+ j   and  0≠+ ωα j      (16) 

Therefore ℱ is the set of (T = T(ω);  τ= τ (ω)) with ω satisfies (16). 
Remark 3. If ω is a real number and ( ) 2, +∈ RT τ  then 

        ( )( ) ( )( ) ωτωτ βωαωβωαω jnjn eTjjeTjj −+++=+−+− 11  
Therefore we only need to consider positive ω. Let Ω be the set of all positive real 
number which satisfy (16). 
We will refer to Ω as the crossing set. It contains all the ω such that some zero(s) 
of D(s; T; τ ) may cross the imaginary axis at jω. 
Remark 4. If D( jω; T; τ ) = 0 then D( jω; T; τ+2kπ ) = 0; ∈∀k ℤ. In this context 
exists ( )ππτ ,0 −∈  such that D(jω; T; 0τ ) = 0. 
Proposition 2. The following statements are true: 
1) The crossing set Ω consists of one interval ( ]22,0 αβ −  of finite length. 
2) 0lim

22
=

−→
T

αβω
 

3 T
0

lim
→ω

and kτω 0
lim
→

 are infinite. 

Proposition 3. The following monotonicity properties are true: 
1) T = T(ω) is a decreasing function on Ω ; 
2) τ = τ (ω) is a decreasing function on Ω ; 
3) τ = τ (T) is a increasing function on ( )+∞,0  
Example 1. Consider a system with 
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                                                 ( ) 3+= ssP  and ( ) 5=sQ    (17) 

Figure 1 
( )
ω
ω

jQ
jP

against ω. The crossing set Ω can be easily identified from the 

Figure 1, it contains one interval 
Ω = (0; 4] of type 02,1 
 

 
 

Fig. 1 -.
( )
ω
ω
jQ
jP

versus ω for the system represented by (17) 

 
3.2. Tangents and smoothness 

 
Next, we will discuss the smoothness of the curves in ℱ . In this part we 

use an approach based on implicit function theorem. For this purpose we consider 
T and τ as implicit functions of s = jω defined by (6). As s moves to imaginary 
axis, ( ) ( ) ( )( )ωτωτ ,, TT = moves along the ℱ . For a given Ω∈ω , let 
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Then, since D(s; T; τ ) is an analytic function of s, T and τ , the implicit function 
theorem indicates that the tangent of T can be expressed as 
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provided that 
                                       01221 ≠− IRIR                                                      (19) 

It follows that T is smooth everywhere except possibly at the points where either 
(19) is not satisfied, or when 

                                             0
d
d

d
d

==
ω
τ

ω
T          (20) 

Proposition 4. The curves in ℱ are smooth everywhere except possibly at the 
degenerate points corresponding to ω in any one of the following cases: 
1) s = jω is a multiple solution of (6) 
2) 22 αβω −= . 
 

3.3. Direction of crossing 
 

Next we will discuss the direction in which the solutions of (6) cross the 
imaginary axis as (T; τ ) deviates from a curve in ℱ . We will call the direction of 
the curve that corresponds to increasing ω the positive direction. Notice, as the 
curve passes through the points corresponding to the end points of Ω, the positive 
direction is reversed. We will also call the region on the left hand side as we head 
in the positive direction of the curve the region on the left. Again, due to the 
possible reversion of parametrization the same region may be considered on the 
left with respect to one point of the curve, and on the right with respect to another 
point of the curve. To establish the direction of crossing we need to consider T 
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and τ as functions of s = ρ + jω i.e., function of two real variables ρ and ω, and 
partial notation needs to be adopted instead. Since the tangent of ℱ along 

the positive direction is ⎟
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ω
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ω d
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So, if a pair of conjugate complex solutions of (6) cross imaginary axis to the right 
half plane then:   
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i.e. the region on the left of ℱ at ω has two more solutions in right half plane. If 
the inequality (21) is reversed then the region on the left of ℱ at ω has two fewer 
solutions in right half plane. Like in (18) we can express 
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where iR and iI are defined in previous section. Using this we can arrive to the 
following result: 
Proposition 5. Let Ω∈ω  and (T; τ )∈ℱ. Then a pair of solutions of (6) cross the 
imaginary axis to the right, through the ”gates” ωj±  if 02112 >− IRIR , and 
cross to the left if the inequality is reversed. 
 
Example 2 (linearized Cushing equation with a gap). In this example we apply the 
above method for the Cushing linearized equation ( )( )  0.1 =+++ − τsn besTas  
First it’s easy to remark that the only interesting case is ba < .  All other cases 
don’t present any stability switch because the crossing set Ω  is empty. 
If ba < then ( ]22,0 ab −=Ω  and the corresponding pairs (T; τ ) are given 

by:  
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According with the Proposition 2 we get 0lim
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Also the slopes of the corresponding asymptotes are given by 
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The following picture plots { }4,3,2,1, ∈mmτ  against T in the case n = 1 for a = 3 
and b = 5. We can easily see that ( ) ( ) 01 , immm >∀>+ ωτωτ  and Ω∈ω . 
 

 
Figure 2: { }4,3,2,1,0, ∈τ mm versus T when n = 1 

 
Proposition 6. For the previous system all the crossing directions of the 
characteristic roots are towards instability. 
 



C. I. Morarescu, S. I. Niculescu 24

To illustrate that our method can be easily extended to a more general class of 
linear system, we briefly present a second order system. We consider 1=n , 

2)( 2 += ssP  and ssQ =)(  and we find ]2,2()2,1[ ∪=Ω .  The stability 
regions and the regions with a constant number of unstable roots (situated in right 
half-plane, denoted RHP), can be identified in the figure below. 
 

 
  
Proposition 7.  For the system presented in this case the crossing direction for 
characteristic equation is towards stability for 2<ω and towards instability if 

2>ω . Therefore one can obtain h stability regions, where h is the first integer 
with )(max)(min 1

22
ωτωτ

ωω +
><

≥ hh . 

Conclusions 

This paper addressed the stability problem of a class of distributed delay system. 
More precisely, we have characterized the geometry of the stability crossing 
curves in the parameter space defined by the gap, and the corresponding mean 
delay. The method can be easily extended to the higher-order linear system 
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including gamma-distributed delays with a gap. One example has been presented 
to illustrate the interest of the approach. 
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