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OLD AND NEW IN STABILITY ANALYSIS OF CUSHING
EQUATION: A GEOMETRIC PERSPECTIVE

C.I. MORARESCU, S. I. NICULESCU"

In aceasta lucrare se caracterizeaza zonele de stabilitate pentru o clasa de
sisteme liniare in prezeta intdrzierilor definite de o gamma-distributie cu gap. Mai
precis, vom pune in evidenta multimea frecventelor pentru care este posibila o
schimbare a numarului de raddacini instabile ale ecuatiei caracteristice, vom defini
curbele de schimbare a numdrului de raddcini instabile, si vom da o clasificare
completd a acestor curbe . Mai mult, este exprimata clar directia in care raddacinile
traverseazd axa imaginard. Lucrarea este completatd de un exemplu care ilustreaza
modul de aplicare al metodei..

This paper focuses on the characterization of the stability crossing curves of
a class of linear systems including gamma-distributed delays with a gap. More
explicitly, we compute the crossing set, which consists of all frequencies
corresponding to all points on the stability crossing curve, and we give their
complete classification. Furthermore, the directions in which the zeros cross the
imaginary axis are explicitly expressed. One illustrative example complete the

paper.

Keywords: distributed delay, gamma distribution with gap, stability analysis of
dynamical systems, Cushing equation.

Introduction

The stability of dynamical systems in presence of time-delay is a problem
of recurring interest (see for instance [13, 8, 19], and the references therein), since
the presence of a time-delay may induce instabilities, and complex behaviors for
the corresponding schemes. The problem becomes even more difficult in the case
when the delays are distributed.

Without any loss of generality, we may discuss some dichotomic
characters of the distributed delay on the system’s stability. In this sense, in
control theory, [24] pointed out the existence of various instability mechanisms in
the implementation of some standard distributed control laws in the finite
spectrum assignment design strategy, phenomenon explained in [6]. Various
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discussions, and solutions for a safe implementation are presented in [22], and in
[17], respectively. In opposition with the property mentioned above, [16] used
distributed delays as approximation of “fast” time-varying point-wise delays in
the analysis of some cases where (linear) time-varying delay system is stable,
whereas the system with constant delay is unstable. Such arguments represent
sufficient reasons to focus on the effects of distributed delays on the (asymptotic)
stability of dynamical systems. The study considered here is mainly motivated by
biological applications including gamma-distributed delays with a gap in
population dynamics. In [15], the author largely discusses the connection between
gamma distribution delay models, and population dynamics, and a particular
attention is paid to the so-called distributed delay with some gap. To the best of
the authors’ knowledge, the first population dynamics model including
gamma-distributed delays is due to Cushing [4], and it received a lot of attention
starting with the 80s [3, 1, 2]. The linearized model [3] simply writes as:

x(0)=~a(0) + B[ x(- O)g(0)d0, (1)
under appropriate initial conditions. Here o is the death rate of the population x
and [ is the rate of egg-laying (maternity rate). The function g represents the

proportion of egg laid at any specific time, that survive and hatch out after time s.
A narrow distribution will lead to some simple discrete delay system of the form

;c(t)=—ax(t)+ Bx(t—h), whose dynamics and stability are completely understood

(see, for instance, [13] and the references therein). Next, if one assumes that the
delay kernel is given by the gamma-distribution law:

n+l

g(g)=2—¢re, @)

n!

the Laplace transform applied to (1), under the definition (2) reduces the stability
analysis of (1) to the analysis of some parameter-dependent polynomials of the
form:

— n+l
D(s,f,n)::(s+a)£1+sLj ~B=0, 3)
n+1
where 7= ! denotes the corresponding mean delay value. One of the problems
a

discussed in [3] was the analysis of the behavior of the roots of the characteristic

equation with respect to the imaginary axis when the mean delay value 7, or the
exponent n are varying. The main interest of such a study was to compute the
stability regions with respect to the corresponding parameters, and to analyze the
sensitivity of such regions when the parameters change. Further discussions on
this topics can be found in [15].
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Next, Nisbet, and Gurney [20] mention that population dynamics models
based on partial differential equations, and reduced for convenience to integro-
differential forms are more realistic if the corresponding delay kernel ¢ includes
some gap (see also [1, 15]), that is if it can be expressed as:

0, E<rt
g(¢)= ey e, gae 4)
n.

for some positive delay values t . Simple computations prove that the
2+ 1 1n this case, the stability

corresponding mean delay is defined by 7 =7+
a

analysis becomes more complicated, since the parameter-dependent polynomial
D(s, T, n) in (3) becomes a parameter-dependent quasipolynomial of the form

(see, for instance, [1, 2]):

— n+1
D(s,7,7,n):= (s—i-a)(l-i—s 4 j - pe’" =0, (5)
n+1

The paper addresses the problem of analyzing the effects of the gap, and
mean delay values on the stability regions of the general characteristic equation
(5). Whereas several particular cases received a lot of attention, see, for instance,
[3, 1, 2, 15] using various frequency-domain methods, the corresponding
methodologies are extremely difficult to apply to (5). We think that our approach
overcomes this difficulties, and gives a simple and appealing way to treat such a
stability problem. More explicitly, we shall define the stability crossing curves,
that is the curves consisting of all delays such that the corresponding characteristic
quasipolynomial has at least one root on the imaginary axis. Next, we explicitly
compute the crossing set, that is the set represented by all the frequencies
corresponding to all the points in the stability crossing curves, and we discuss the
way such a set can be computed as well as its properties. The classification of the
stability crossing curves follows naturally from the procedure considered. Finally,
we detail the directions in which zeros cross the imaginary axis. To the best of the
authors’ knowledge, there are no similar analysis in the literature for such a case
study.

The main interest of the approach is twofold: first, to understand the underlying
mechanisms of stability/instability issues in the case of linear systems including
gamma-distributed delays with a gap, and second, to derive some simple stability
criteria for such systems. Indeed, it is well known (see, for instance, [5]) that the
complete stability characterization of the linear delay systems is still an open
problem. Furthermore, it was proved in [23] that the problem is NP-hard even in
the case of multiple discrete (piece-wise) constant delays. However, the geometry
of the stability regions in the delay-parameter space for the two (piece-wise)
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delays case was completely developed in [9]. The intention of this paper is to give
similar insights for this class of dynamical systems with respect to the
corresponding gap, and average delay values, respectively. Some illustrative
examples complete the approach considered, giving a simple, and easy way to
follow the methodology considered.

The remaining paper is organized as follows: Section 2 presents the
problem formulation and some simple prerequisites necessary in developing our
results. The main results (crossing sets, stability crossing curves classification,
tangent and smoothness, crossing directions) and one illustrative example are
presented in Section 3 and concluding remarks end the paper. The notations are
standard.

1. Problem formulation, and preliminaries

As mentioned in the Introduction, our main interest is to analyze the
effects of the gap, and mean delay values on the stability regions of the general
characteristic equation (5). Consider now the following system, whose dynamics
are described by the following characteristic equation:

D(s,T,7):=(s+a)1+sT)" + pe " =0, (6)
More explicitly, we study the occurrence of any possible stability switch/reversal
resulting by increasing the time delay 7 or the average delay 7. In other words,
we explicitly study the change of number of zeros of (6) on C. as the delays (T , T)

vary on R’.

Since the main objective of this study is to identify the regions of (T , T)il’l R}
such that D(s; T; 7 ) is (asymptotically) stable, we will exclude some cases, and
the following assumption appears naturally, as discussed below:

Assumption 1. ¢+ >0,

If o+ f=0then 0 is a zero of (6) for any (T , 7)€ R?, and therefore we
can never get the stability by increasing 7, or 7 . For stability at zero delay we
require @ + > 0.

In [12], the authors introduced the notion of Ayperbolicity for linear delay
system. More explicitly, the characteristic equation (6) is said to be hyperbolic at
some point (7,,7,) if no root of the characteristic equation lies on the imaginary

axis for7 =T, and7 =7,,.

Using the assumption, and the hyperbolicity notion introduced above, we
have the following simple result:
Proposition 1. The system (6) is hyperbolic for all (T, z’) € R, xR, if and only if:

jer|> |81 )
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Remark 1. The proposition above gives a simple frequency-sweeping
characterization of the so-called delay-independent hyperbolicity property.
Further discussions on this topics can be found in [19]. In the case when the
system free of delays is asymptotically stable, then the result above gives a very
simple condition of delay-independent stability (see also [8], and the references
therein).

We can ignore cases where a < 0 on biological grounds. So in all that follows we
assume 0<a < .

2. Stability analysis of Cushing equation: an overview

This section is devoted to existing results in the literature, in the analysis
of Cushing model. It is very important to note that even for the simple case
without the gap, some of the first results concerning its stability analysis include
eITors.

In [3] Cooke K.L. and Grosmann Z. made a stability analysis using an algebraic
approach. They studied the case when 7 = 0 so equation (6) becomes

(s+a)l+sT) +pB=0and
ds _ ns(s+a) (8)
dT 1+sT+nT(s+a)’

Atthe roots = jw, if any, we have

ds oo +a) B no’ - jnoa
il nTa+1+ jn+1)w nTa+1+ j(n+1)o
ds n’Taw®+no’ —n(n+1)lao’
Re ——= - 2 2 2
dr ra+1Y +(n+1)w

sgn{Re 5—;}:sgn [nTa+1—(n+1)Ta]:sgn(1—Ta)

Writing s = p+ jo and using (8) for Ta > 1 they stated that any root with a

positive real part, if such exists for some T, must cross the imaginary axis and
undergo an irreversible change of sign of the real part as T is increased.

In [1] Blythe and all, corrected the results which characterize the behaviors in
presence of a distributed delay.

First they stated for linearized Cushing model whose behavior is given by
characteristic equation

n+l

(s+a)(l+s71) +4=0, )
n+1

that we have a crossing towards instability and there is a range of values of a/f8

within which restabilisation occurs but beyond which it cannot. Next, they studied

a model with a gap given by:
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(s+a)(1+sniiljn+l +fe’ =0, (10)
and they defined the angular quantity 0, by tan 8 = a)jl
For "
P= (cos y)"+1 cos{(n + 1)(6’ + Z—Ztan HH and M = —(cos z)”+1 (11)
1

where y is a solution of: tan 8 + (1 + 22 gec? HJ tan{(n + 1)[6? +22 tan HH =0and
0 3

) ) T
z1is a solution of @+ -2tan @ =
T, n+1

wW(n,z,/7,)=(P-M)/P (12)
which falls to zero as n and/or 7, /7, increases.

Using another method Boese pointed out in [2] that both papers contain errors and
weakness. Boese focused on the analysis of some models related to
Theorem 1. The function

they obtained the restabilisation window”

Ss)=(s+a) +pe (13)
with real o,f,t with a> 0 and f ,t >0 as well as n € N is stable if T < r(a,ﬁ) and
unstable for t > t(a, B) where

+ oo, p<a
(e, )= m—narctan/ B> a” —1 " (14)
max- 0, p>a
a\/ﬂzmad 1

3. Main results

The characterization of the stability crossing curves in the delay parameter
space needs the following ingredients:
(a) first, the identification of the corresponding crossing points, that is the set of
frequencies corresponding to all the points in the stability crossing curves. Next,
we define the associated crossing set, which will be defined by a finite number of
intervals of finite length;
(b) second, the classification of the corresponding stability crossing curves,
including some simple geometric characterization (tangent, smoothness);
(c) finally, the characterization of the way the roots cross the imaginary axis.
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All these steps are detailed in the next paragraphs, and the examples illustrating
each case study are considered in the next section. The presentation is as simple
and intuitive as possible,.

3.1. Identification of crossing points
Let < denote the set of all (7,7)e R such that (6) has at least one zero on

imaginary axis. Any (T,7)e F is known as a crossing point. The set &, which

is the collection of all crossing points, is known as the stability crossing curves.
Based on the results presented in the previous section, it becomes clear that
crossing points potentially exist if the condition (7) is not satisfied for some
frequency values w. Such aspects, together with various simple, and intuitive
geometrical figures will be addressed in the sequel.

Remark 2. 1) There is = € R, which satisfies equation (6) for a fixed s = jo if and

only if

1+ joT) e+ jo|=|p] (15)
2) There exists T € R, which satisfies (15) for a fixed s = jow, @ # 0 if and only if
|a+ja)|£|,8| and a+ jo#0 (16)

Therefore Fis the set of (T = T(w); 1=t (w)) with  satisfies (16).
Remark 3. If w is a real number and (T, r)eR? then

(- jo+a)l-joT) + B’ =(jo+a)l+ joT) + B
Therefore we only need to consider positive w. Let Q be the set of all positive real
number which satisfy (16).
We will refer to Q as the crossing set. It contains all the w such that some zero(s)
of D(s, T; t) may cross the imaginary axis at jo.
Remark 4. If D(jw, T; t) =0 then D(jw,; T, t+2kn )= 0,V k € Z In this context
exists 1, € (— 7, ) such that D(jo; T: 7,)=0.
Proposition 2. The following statements are true:

1) The crossing set Q consists of one interval (0, Ny R J of finite length.
2) lim T=0

o> ﬁz—az

3im7T and lin% T, are infinite.
—

w0 -
Proposition 3. The following monotonicity properties are true:
1) T=T(w) is a decreasing function on Q ;
2) =1 (w) is a decreasing function on € ;
3) =1 (T) is a increasing function on (O,+oo)
Example 1. Consider a system with
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P(s)=s+3 and O(s)=5 (17)
[P(j)
0lje

Figure 1, it contains one interval
Q=(0,4] of type 02,1

Figure 1

against . The crossing set Q can be easily identified from the

ALPGw)|

1.1

0.9

0.8

0.7

0.6

0.5 1 '

P(jo)
/e

eV

Fig. 1 -. versus @ for the system represented by (17)

3.2. Tangents and smoothness

Next, we will discuss the smoothness of the curves in & . In this part we
use an approach based on implicit function theorem. For this purpose we consider
T and 7 as implicit functions of s = jow defined by (6). As s moves to imaginary
axis, (T,7) = (T(@),7(w))moves along the . For a given w € Q, let

joD(s,T,7)

R, = Re(— —) = 1 Re{[nT(a + ja)) + (1 + ja)T)] (1 + ja)T)'H _ Tﬁe—jwr}
S Os o @

1= L2EL) L infur(as jo) (1 joras jor ) - e )
S S s=j@ @
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10D(s,T,7)

and R, = Re[ o
s

j } = Re[n(a + jo)1 +ja)T)H]

I = Im(l Mj = imn(a + jo)i+ joT)"]

s oT

R, = Re(l —aD(S’T’ T)j =— Re[ﬂe""m]
s or omjo

11 — Im(l Mj - — Im[ﬂe_jwr]
s or s=jo

Then, since D(s; T; 7)) is an analytic function of s, 7 and 7 , the implicit function
theorem indicates that the tangent of 7 can be expressed as
dTr .
E :(Rl RzJ (Rojz 1 [Rolz_]oRzJ (18)
d_T 11 12 Io R112_Rz[1 R110_R011
do
provided that
R, - R,I, #0 (19)
It follows that T is smooth everywhere except possibly at the points where either
(19) is not satisfied, or when
a7 = dr =0 (20)
do do
Proposition 4. The curves in F are smooth everywhere except possibly at the
degenerate points corresponding to w in any one of the following cases:
1) s =jw is a multiple solution of (6)

2) w=+B>-a’.
3.3. Direction of crossing

Next we will discuss the direction in which the solutions of (6) cross the

imaginary axis as (7; ) deviates from a curve in #. We will call the direction of
the curve that corresponds to increasing w the positive direction. Notice, as the
curve passes through the points corresponding to the end points of €, the positive
direction is reversed. We will also call the region on the left hand side as we head
in the positive direction of the curve the region on the left. Again, due to the
possible reversion of parametrization the same region may be considered on the
left with respect to one point of the curve, and on the right with respect to another
point of the curve. To establish the direction of crossing we need to consider T’
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and 7 as functions of s = p + jw i.e., function of two real variables p and w, and

partial notation needs to be adopted instead. Since the tangent of # along

oo .. (dT d _ .
the positive direction is (d—,d—rj , the normal to J# pointing to the left hand side
@

(2
dr dr

,—j. The crossing of a pair of conjugate complex
do do

of positive direction [—

solutions of (6) is given by the moving of (7; 7 ) along the direction (d—T EJ

dp’dp
So, if a pair of conjugate complex solutions of (6) cross imaginary axis to the right
half plane then:
d7 dz drz dT 0 @)
dow dp do dp

i.e. the region on the left of & at @ has two more solutions in right half plane. If

the inequality (21) is reversed then the region on the left of # at @ has two fewer
solutions in right half plane. Like in (18) we can express

dr
dp _{Rl RzJ_l( I, j_ 1 (RoRz"']olzj 22)
d_T - I, 1, - R, _RIIZ_R211 - R R, - 1,1,

dp

where R, and /,are defined in previous section. Using this we can arrive to the
following result:

Proposition 5. Let w € Q and (T; t)e &F. Then a pair of solutions of (6) cross the
imaginary axis to the right, through the “gates” * jow ifR,I, — R, 1, > 0, and
cross to the left if the inequality is reversed.

Example 2 (linearized Cushing equation with a gap). In this example we apply the
above method for the Cushing linearized equation (s+a)(1 +sT )" +be" =0.
First it’s easy to remark that the only interesting case is |a| < |b| . All other cases
don’t present any stability switch because the crossing set Q) is empty.

If |a| < |b| then Q= (O,\/b2 —aZJ and the corresponding pairs (T, t) are given

1

2 1/n 0 _
by: T=L % -1 ,rm:l arg| b —|+2mx
o|l\o” +a @ (a+ jo)1+ joT)
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lim 7=0,1lim 7T = o, limr, =

According with the Proposition 2 we get
w—\b>—a® w—>0 0—0
1 - -q?
and lim 7, =-———|arg— +arctan——— + 2mnx
o—>b*-a? " ﬂlbz —Cl2 a a

Also the slopes of the corresponding asymptotes are given by
1

b2 1/n 2 _b
— n arctan (ZJ -1| +arg —+2mnx
a a

Smo_ 1
0o—>0 T b2 1/n 2
) -

The following picture plots ©,,m e {1,2,3,4} against T in the case n =1 for a =3
and b=5. We can easily see that 7, ,, (a)) >T, (a)), Vm>i, and we Q).

A
120

Y

2.5

Figure 2: T,,,m € {0,1,2,3,4}versus Twhenn=1

Proposition 6. For the previous system all the crossing directions of the
characteristic roots are towards instability.
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To illustrate that our method can be easily extended to a more general class of
linear system, we briefly present a second order system. We consider n=1,
P(s)=s>+2 and O(s)=s and we find Q=[1+2)U(+/2,2]. The stability
regions and the regions with a constant number of unstable roots (situated in right
half-plane, denoted RHP), can be identified in the figure below.

T
181
16
2
1 __m 3, we (V’§2|
12 stable
m—2,w € |l\/2}
1
6 in RHP < 2, w e (V2,2
8
stable > m=1,w & ]l\/g}
4inRHP 8T 2 sol in RHP
L m=1,w € (\.r’?,2|
4 stable
> M 0,w € [1,2)
ar 2 sol in RHP
OM—(— : m= . w € (/2.2 ) |¥
0 2 4 6 8 10 12
stable

Proposition 7. For the system presented in this case the crossing direction for

characteristic equation is towards stability for @ < V2 and towards instability if

w>N2.T herefore one can obtain h stability regions, where h is the first integer
th min7, (w) > maxr,. (@),

WHE o2 (@) ) (@)

Conclusions

This paper addressed the stability problem of a class of distributed delay system.
More precisely, we have characterized the geometry of the stability crossing
curves in the parameter space defined by the gap, and the corresponding mean
delay. The method can be easily extended to the higher-order linear system
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including gamma-distributed delays with a gap. One example has been presented
to illustrate the interest of the approach.

8.

9
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