

A STUDY ON INTERIOR Γ -HYPERFILTERS IN ORDERED Γ -SEMIHYPERGROUPS

by C. Chen¹, S. Kosari², S. Omidi³, B. Davvaz⁴ and M. Akhouni⁵

In this paper, interior Γ -hyperfilters of ordered Γ -semihypergroups are defined and various types of them are studied. Results related to productional ordered Γ -semihypergroups were investigated. Moreover, we investigate some properties of the inverse images of strong interior Γ -hyperfilters in ordered Γ -semihypergroups. Finally, we discuss the relationship between two fundamental notions of ordered Γ -semihypergroup, the several types of interior Γ -hyperfilters and the (completely) prime interior Γ -hyperideals.

Keywords: ordered Γ -semihypergroup; \mathbf{I} - Γ -hyperfilter; strong \mathbf{I} - Γ -hyperfilter; weak \mathbf{I} - Γ -hyperfilter; (completely) prime.

MSC2020: 16Y99, 20N20, 06F99.

1. Introduction and prerequisites

The notion of ordered semihypergroups was proposed by Heidari and Davvaz [7] in 2011. In [4], Davvaz et al. initiated the study of pseudoorders in ordered semihypergroups. Connections between ordered semigroups and ordered semihypergroups are considered in [4]. Gu and Tang [6] attempted to study the ordered regular equivalence relations of the ordered semihypergroups. They answered to an open problem on ordered semihypergroups which appeared in [4].

In 2010, Anvariye et al. [1] introduced the notion of a Γ -semihypergroup which is a generalization of semihypergroup. In 2015, Yaqoob and Aslam [23] introduced the idea of rough quasi- Γ -hyperideals in Γ -semihypergroups. Tang et al. [22] inspected useful results on fuzzy \mathbf{I} - Γ -hyperideals in ordered Γ -semihypergroups. In [5], Gan and Jiang defined ordered semiring and investigated some useful results. In 2016, Omidi and Davvaz [16] made a first step in extending the theory of ordered rings to ordered (semi)hyperrings. In 2017, Omidi and Davvaz [14] studied the prime (m, n) -bi-hyperideals of ordered semihyperrings. There have been approaches to the constructions of ordered hyperstructures as can be seen in [6, 13, 18, 19].

Hypergroups were originally proposed in 1934 by Marty [11] at the 8th Congress of Scandinavian Mathematicians. The notion of hyperrings was proposed by Krasner [10] in

¹Institute of Software, School of Electronics Engineering and Computer Sciences, Peking University, Beijing 100871, China, e-mail: congzhouchen@pku.edu.cn

²Corresponding author, Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China e-mail: saeedkosari38@gzhu.edu.cn

³Ministry of Education Iran, Department of Education in Tehran, Tehran, Iran, e-mail: omidi.saber@yahoo.com

⁴Department of Mathematics, Yazd University, Yazd, Iran, e-mail: davvaz@yazd.ac.ir

⁵Clinical Research Development Unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran, e-mail: Maryam.akhoundi@mubabol.ac.ir

1983. Jun [8] attempted to study the geometric aspects of the Krasner hyperrings. In [3], Corsini and Leoreanu provided many applications of hyperstructures.

Some researchers worked on hyperfilters by applying them to different types of ordered hyperstructures. In [20], Tang et al. applied fuzzy set theory to the hyperfilters of ordered semihypergroups. As generalizations of filters in ordered semigroups, the concept of Γ -hyperfilters of an ordered Γ -semihypergroup was first introduced by Omidi et al. [17] in 2018. After that so many authors, for example [12, 18, 21], conducted research on this and developed it. In [21], Tang et al. defined and analyzed the weak hyperfilters of ordered semihypergroups. (m, n) -Hyperfilters of ordered semihypergroups were investigated by Mahboob and Khan [12]. Later on, Rao et al. [18] introduced and studied the concept of (m, n) - Γ -hyperfilters in ordered Γ -semihypergroups. In [24], Yaqoob and Tang applied rough set theory to different types of hyperfilters in ordered LA-semihypergroups and explored some results. Roughness has also studied in hyperfilters of ordered LA-semihypergroups [2].

Previous studies on the hyperfilters of ordered hyperstructures motivated us to study the interior Γ -hyperfilter (briefly, \mathbf{I} - Γ -hyperfilter) of an ordered Γ -semihypergroup. In Section 1, some notions on ordered Γ -semihypergroups are explained to facilitate the terminology (see [17] and [18] for more details and basic definitions). In Section 2, we define the concepts of strong and weak interior Γ -hyperfilters of the ordered Γ -semihypergroup S which are two new classes of \mathbf{I} - Γ -hyperfilters. In Section 3, several properties of strong and weak interior Γ -hyperfilters are provided. Furthermore, we discuss the relationship between two fundamental notions of ordered Γ -semihypergroup, the several types of \mathbf{I} - Γ -hyperfilters and the (completely) prime \mathbf{I} - Γ -hyperideals. The study ends with some conclusions and ideas for future works.

Let $P^*(S)$ be the family of all non-empty subsets of $S \neq \emptyset$. A mapping $\circ : S \times S \rightarrow P^*(S)$ is called a *hyperoperation* on S . If $\emptyset \neq U, V \subseteq S$ and $x \in S$, then

$$U \circ V = \bigcup_{\substack{u \in U \\ v \in V}} u \circ v, \quad x \circ U = \{x\} \circ U \text{ and } V \circ x = V \circ \{x\}.$$

A non-empty set equipped with a (binary) hyperoperation is called hypergroupoid. A hypergroupoid (S, \circ) is called a *semihypergroup* if for every $a, b, c \in S$,

$$a \circ (b \circ c) = (a \circ b) \circ c.$$

Let $S \neq \emptyset$ be a set equipped with the hyperoperations $\Gamma = \{\alpha, \beta, \gamma, \dots\}$. If

- (1) $a\gamma b \subseteq S$ for all $a, b \in S$ and all $\gamma \in \Gamma$,
- (2) If $a, b, x, y \in S$ such that $a = x$ and $b = y$, then $a\gamma b = x\gamma y$,
- (3) $x\alpha(a\beta b) = (x\alpha a)\beta b$,

hold, then S is said to be a Γ -semihypergroup. The reader may see [1, 9] for detailed discussion.

Definition 1.1. [15] An ordered Γ -semihypergroup (T, Γ, \leq) is a Γ -semihypergroup (T, Γ) endowed with a suitable (partial) order relation \leq such that: for all $a, b, x \in T$ and $\gamma \in \Gamma$, $a \leq b$ implies $a\gamma x \leq b\gamma x$ and $x\gamma a \leq x\gamma b$, where for every $\emptyset \neq U, V \subseteq S$, $U \preceq V$ if and only if for each $u \in U$, there exists $v \in V$ such that $u \leq v$.

(T, Γ, \leq) is called *regular* if for every $a \in T$ there exist $x \in T$, $\gamma, \delta \in \Gamma$ such that $a \preceq a\gamma x\delta a$. A subset $F \neq \emptyset$ of an ordered Γ -semihypergroup T is said to be a *sub Γ -semihypergroup* if and only if $a\gamma b \subseteq F$ for all $a, b \in F$ and $\gamma \in \Gamma$. $[F]$ is defined as follows:

$$[F] := \{x \in T \mid x \leq f \text{ for some } f \in F\}.$$

Example 1.1. [15] Let $S = [0, 1]$ and $\Gamma = \mathbb{N}$. For every $x, y \in S$ and $\gamma \in \Gamma$, we define $\gamma : S \times \Gamma \times S \rightarrow \mathcal{P}^*(S)$ by $x\gamma y = [0, \frac{xy}{\gamma}]$. For every $x, y, z \in S$ and $\gamma, \beta \in \Gamma$, we have

$$(x\gamma y)\beta z = [0, \frac{xz}{\gamma\beta}] = x\gamma(y\beta z).$$

We set

$$x \leq y \text{ if and only if } [0, \frac{xz}{\gamma}] \subseteq [0, \frac{yz}{\gamma}] \text{ for all } x, y, z \in S \text{ and } \gamma \in \Gamma.$$

Then (S, Γ, \leq) is an ordered Γ -semihypergroup.

A Γ -hyperideal F of an ordered Γ -semihypergroup T is said to be *completely prime* if for each $x, y \in T$ and $\gamma \in \Gamma$ such that $x\gamma y \cap F \neq \emptyset$, then $x \in F$ or $y \in F$. Recall that a non-empty subset F of T is a Γ -hyperideal of T if (1) $T\Gamma F \subseteq F$ and $F\Gamma T \subseteq F$; (2) $[F] \subseteq F$.

Definition 1.2. [22] An interior Γ -hyperideal (in short $\mathbf{I}\text{-}\Gamma$ -hyperideal) F of an ordered Γ -semihypergroup (T, Γ, \leq) is a sub Γ -semihypergroup F of T such that

- (1) $T\Gamma F \subseteq F$;
- (2) $[F] \subseteq F$.

Theorem 1.1. Let (T, Γ, \leq) be a regular ordered Γ -semihypergroup. Then every $\mathbf{I}\text{-}\Gamma$ -hyperideal of T is a Γ -hyperideal of T .

Proof. For the proof see Theorem 3.6 in [22]. \square

Definition 1.3. [17] A sub Γ -semihypergroup F of an ordered Γ -semihypergroup (T, Γ, \leq) is called a Γ -hyperfilter of T if

- (1) for all $a, b \in T$ and $\gamma \in \Gamma$, $a\gamma b \cap F \neq \emptyset \Rightarrow a \in F$ and $b \in F$;
- (2) for all $a \in F$ and $c \in T$, $a \leq c \Rightarrow c \in F$, i.e., $[F] \subseteq F$.

Indeed, for $F \subseteq S$ we put

$$[F] := \{x \in T \mid f \leq x \text{ for some } f \in F\}.$$

2. Definitions and examples

Throughout the rest of this paper: S will be an ordered Γ -semihypergroup. We begin this section with the definition of an $\mathbf{I}\text{-}\Gamma$ -hyperfilter on an ordered Γ -semihypergroup S .

Definition 2.1. Let (S, Γ, \leq) be an ordered Γ -semihypergroup and $\emptyset \neq F \subseteq S$. Then, F is said to be an interior Γ -hyperfilter (briefly, $\mathbf{I}\text{-}\Gamma$ -hyperfilter) of S if

- (1) F is a sub Γ -semihypergroup of S ;
- (1) for all $a, b, x \in S$, $(a\Gamma x)\Gamma b \subseteq F \Rightarrow x \in F$;
- (2) for all $c \in S$ and $a \in F$, $a \leq c \Rightarrow c \in F$.

Example 2.1. Consider an ordered Γ -semihypergroup $S = \{a, b, c, d\}$ with the following hyperoperations $\Gamma = \{\gamma, \beta\}$ and (partial) order relation \leq :

γ	a	b	c	d
a	a	$\{b, d\}$	c	d
b	$\{b, d\}$	b	$\{b, d\}$	d
c	c	$\{b, d\}$	a	d
d	d	d	d	d

β	a	b	c	d
a	$\{a, c\}$	$\{b, d\}$	$\{a, c\}$	d
b	$\{b, d\}$	b	$\{b, d\}$	d
c	$\{a, c\}$	$\{b, d\}$	$\{a, c\}$	d
d	d	d	d	d

$$\leq := \{(a, a), (b, b), (c, c), (d, a), (d, b), (d, c), (d, d)\}.$$

We give the covering relation $\prec = \{(d, a), (d, b), (d, c)\}$, and the figure of S in Figure 1.

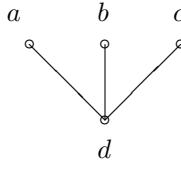


Figure 1: Figure of (S, Γ, \leq) for Example 1.

Note that for every $\gamma, \beta \in \Gamma$ and $x, y, z \in S$, we have $x\gamma(y\beta z) = (x\gamma y)\beta z$. Clearly, $F_1 = \{a, c\}$ is a sub Γ -semihypergroup of S , i.e., $x\gamma y \subseteq F_1$ for all $x, y \in F_1$ and $\gamma \in \Gamma$. We have

$$\forall x, y \in S, (x\Gamma b)\Gamma y \not\subseteq F_1.$$

$$\forall x, y \in S, (x\Gamma d)\Gamma y \not\subseteq F_1.$$

On the other hand, $[F_1] = F_1$. Therefore, F_1 is an interior Γ -hyperfilter of S . All the $\mathbf{I}\text{-}\Gamma$ -hyperfilters of S are $F_1 = \{a, c\}$, $F_2 = \{b\}$ and $F_3 = S$.

Strong $\mathbf{I}\text{-}\Gamma$ -hyperfilters are sub Γ -semihypergroups in which \subseteq is replaced with non-empty intersection. In the following, we provide the basic definition and results concerning strong $\mathbf{I}\text{-}\Gamma$ -hyperfilters.

Definition 2.2. Let (S, Γ, \leq) be an ordered Γ -semihypergroup and $\emptyset \neq F \subseteq S$. Then, F is said to be a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S if

- (1) F is a sub Γ -semihypergroup of S ;
- (1) for all $a, b, x \in S$, $((a\Gamma x)\Gamma b) \cap F \neq \emptyset \Rightarrow x \in F$;
- (2) for all $c \in S$ and $a \in F$, $a \leq c \Rightarrow c \in F$.

Clearly, every strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of an ordered Γ -semihypergroup is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter. The converse is not generally true as shown by the following example

Example 2.2. In Example 2.1, $F_1 = \{b\}$ is not a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S . Indeed:

$$b\Gamma a\Gamma c = \{b, d\} \cap F_1 \neq \emptyset \text{ but } a \notin F_1.$$

Definition 2.3. Let $\emptyset \neq F$ be a subset of an ordered Γ -semihypergroup (S, Γ, \leq) . Then F is called a weak $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S if

- (1) $(a\gamma b) \cap F \neq \emptyset$ for all $a, b \in F$ and all $\gamma \in \Gamma$;
- (2) for all $a, b, x \in S$, $((a\Gamma x)\Gamma b) \cap F \neq \emptyset \Rightarrow x \in F$;
- (3) for all $x \in F$ and $z \in S$, $x \leq z \Rightarrow z \in F$, i.e., $[F] \subseteq F$.

Clearly, every strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of an ordered Γ -semihypergroup S is a weak $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S . The converse is not true, in general, that is, a weak $\mathbf{I}\text{-}\Gamma$ -hyperfilter may not be a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S .

Example 2.3. Let us follow the tables used in Example 2.1. By defining the (partial) order relation

$$\leq := \{(a, a), (b, b), (c, c), (d, a), (d, c), (d, d)\}$$

on S , we get that (S, Γ, \leq) is an ordered Γ -semihypergroup. Covering relation of S as given below

$$\prec = \{(d, a), (d, c)\}.$$

The Hasse diagram of S is shown in Figure 2.

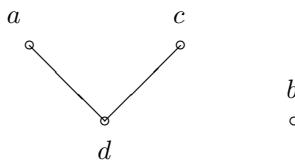


FIGURE 2: Figure of (S, Γ, \leq) for Example 4.

Here, $F = \{a, b, c\}$ is a weak $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S . Clearly, F is not a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S . Since $\text{FTF} = S \not\subseteq F$, i.e., $a\Gamma b = \{b, d\} \not\subseteq F$, it follows that F is not a sub Γ -semihypergroup of S .

3. On two classes of interior Γ -hyperfilters

Lemma 3.1. *Let T be a sub Γ -semihypergroup of an ordered Γ -semihypergroup (S, Γ, \leq) . Then for an $\mathbf{I}\text{-}\Gamma$ -hyperfilter F of S , either $\emptyset = F \cap T$ or $F \cap T$ is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of T .*

Proof. Let $\emptyset \neq F_1 = F \cap T$. We show that F_1 is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of T . Clearly, F_1 is a sub Γ -semihypergroup of T . Indeed: $F_1\Gamma F_1 \subseteq F\Gamma F \subseteq F$ and $F_1\Gamma F_1 \subseteq T\Gamma T \subseteq T$. So, $F_1\Gamma F_1 \subseteq F \cap T = F_1$. Therefore, F_1 is a sub Γ -semihypergroup of T . Now, let $a, b, x \in T$ and $(a\Gamma x)\Gamma b \subseteq F_1$. Then $(a\Gamma x)\Gamma b \subseteq F$. Since F is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S , it follows that $x \in F$. So, $x \in F \cap T = F_1$. Now take any $a \in F_1$ and $c \in T$ such that $a \leq c$. Since F is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S and $a \in F$, we get $c \in F$. Hence $c \in F \cap T = F_1$. Therefore, F_1 is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of T . \square

Lemma 3.2. *Intersection of a non-empty collection of $\mathbf{I}\text{-}\Gamma$ -hyperfilters of an ordered Γ -semihypergroup S is also an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S .*

Proof. Let $\{F_\lambda \mid \lambda \in \Lambda\}$ be a non-empty family of $\mathbf{I}\text{-}\Gamma$ -hyperfilters of an ordered Γ -semihypergroup (S, Γ, \leq) . We show that $\bigcap_{\lambda \in \Lambda} F_\lambda$ is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S , if $\bigcap_{\lambda \in \Lambda} F_\lambda \neq \emptyset$. Let F_λ be an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S for all $\lambda \in \Lambda$ and $a, b \in \bigcap_{\lambda \in \Lambda} F_\lambda$. Then $a, b \in F_\lambda$ for all $\lambda \in \Lambda$. Since F_λ is a sub Γ -semihypergroup of S , we get $a\gamma b \subseteq F_\lambda$ for all $\lambda \in \Lambda$ and $\gamma \in \Gamma$. So, $a\gamma b \subseteq \bigcap_{\lambda \in \Lambda} F_\lambda$. This shows that $\bigcap_{\lambda \in \Lambda} F_\lambda$ is a sub Γ -semihypergroup of S . Let $a, b, x \in R$ and $(a\Gamma x)\Gamma b \subseteq \bigcap_{\lambda \in \Lambda} F_\lambda$. Then, $(a\Gamma x)\Gamma b \subseteq F_\lambda$ for all $\lambda \in \Lambda$. As F_λ is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S , then $x \in F_\lambda$ for all $\lambda \in \Lambda$. It implies that $x \in \bigcap_{\lambda \in \Lambda} F_\lambda$. Now, let $a \in \bigcap_{\lambda \in \Lambda} F_\lambda$, $c \in S$ and $a \leq c$. Then, $a \in F_\lambda$ for all $\lambda \in \Lambda$. Since F_λ is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S for all $\lambda \in \Lambda$, we get $c \in F_\lambda$ for all $\lambda \in \Lambda$. Hence, $c \in \bigcap_{\lambda \in \Lambda} F_\lambda$. Therefore, $\bigcap_{\lambda \in \Lambda} F_\lambda$ is an $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S . \square

Lemma 3.3. *Let us follow the notations used in Lemma 3.2. Then, $\bigcap_{\lambda \in \Lambda} F_\lambda$ is a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S , if $\bigcap_{\lambda \in \Lambda} F_\lambda \neq \emptyset$.*

Proof. By the proof of Lemma 3.2, $\bigcap_{\lambda \in \Lambda} F_\lambda$ is a sub Γ -semihypergroup of S . Let $a, b, x \in S$ and $((a\Gamma x)\Gamma b) \cap (\bigcap_{\lambda \in \Lambda} F_\lambda) \neq \emptyset$. Then there exists $u \in \bigcap_{\lambda \in \Lambda} F_\lambda$ for some $u \in (a\Gamma x)\Gamma b$. Then, $u \in F_\lambda$ for all $\lambda \in \Lambda$. So, $u \in ((a\Gamma x)\Gamma b) \cap F_\lambda$ for all $\lambda \in \Lambda$. It means that $((a\Gamma x)\Gamma b) \cap F_\lambda \neq \emptyset$. As F_λ is a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S , $x \in F_\lambda$ for all $\lambda \in \Lambda$. Thus, $x \in \bigcap_{\lambda \in \Lambda} F_\lambda$. Clearly, $(\bigcap_{\lambda \in \Lambda} F_\lambda) \subseteq \bigcap_{\lambda \in \Lambda} F_\lambda$. Hence, $\bigcap_{\lambda \in \Lambda} F_\lambda$ is a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S . \square

Let $(S_\lambda, \Gamma_\lambda, \leq_\lambda)$ be an ordered Γ_λ -semihypergroup for all $\lambda \in \Lambda$. Define

$$\odot : (\prod_{\lambda \in \Lambda} S_\lambda) \times (\prod_{\lambda \in \Lambda} \Gamma_\lambda) \times (\prod_{\lambda \in \Lambda} S_\lambda) \rightarrow \mathcal{P}^* (\prod_{\lambda \in \Lambda} S_\lambda)$$

by

$$(x_\lambda)_{\lambda \in \Lambda} \odot (\alpha_\lambda)_{\lambda \in \Lambda} \odot (y_\lambda)_{\lambda \in \Lambda} = \{(z_\lambda)_{\lambda \in \Lambda} \mid z_\lambda \in x_\lambda \alpha_\lambda y_\lambda\},$$

for all $(x_\lambda)_{\lambda \in \Lambda}, (y_\lambda)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} S_\lambda$ and $(\alpha_\lambda)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} \Gamma_\lambda$. Also,

$$(x_\lambda)_{\lambda \in \Lambda} \leq (y_\lambda)_{\lambda \in \Lambda} \iff x_\lambda \leq_\lambda y_\lambda \text{ for all } \lambda \in \Lambda.$$

One can easily see that $(\prod_{\lambda \in \Lambda} S_\lambda, \prod_{\lambda \in \Lambda} \Gamma_\lambda, \leq)$ is an ordered $\prod_{\lambda \in \Lambda} \Gamma_\lambda$ -semihypergroup [15].

Theorem 3.1. *Let F_λ be a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter on the ordered Γ -semihypergroup $(S_\lambda, \Gamma_\lambda, \leq_\lambda)$ for all $\lambda \in \Lambda$. Then, $F = \prod_{\lambda \in \Lambda} F_\lambda$ is a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter on $\prod_{\lambda \in \Lambda} S_\lambda$.*

Proof. Let F_λ be a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter on the ordered Γ -semihypergroup $(S_\lambda, \Gamma_\lambda, \leq_\lambda)$ for all $\lambda \in \Lambda$. First of all, we show $F = \prod_{\lambda \in \Lambda} F_\lambda$ is a sub Γ -semihypergroup of $\prod_{\lambda \in \Lambda} S_\lambda$. Let $(x_\lambda)_{\lambda \in \Lambda}, (y_\lambda)_{\lambda \in \Lambda} \in F = \prod_{\lambda \in \Lambda} F_\lambda$. Then, $x_\lambda, y_\lambda \in F_\lambda$ for each $\lambda \in \Lambda$. As F_λ 's is a sub Γ -semihypergroup of S_λ , $x_\lambda \gamma_\lambda y_\lambda \subseteq F_\lambda$ for all $\gamma_\lambda \in \Gamma_\lambda$. So,

$$(x_\lambda)_{\lambda \in \Lambda} \odot (\gamma_\lambda)_{\lambda \in \Lambda} \odot (y_\lambda)_{\lambda \in \Lambda} = (x_\lambda \gamma_\lambda y_\lambda)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} F_\lambda = F.$$

Therefore, F is a sub Γ -semihypergroup of $\prod_{\lambda \in \Lambda} S_\lambda$.

Now, let $(a_\lambda)_{\lambda \in \Lambda}, (x_\lambda)_{\lambda \in \Lambda}, (b_\lambda)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} S_\lambda$ and

$$((a_\lambda)_{\lambda \in \Lambda} \odot (\gamma_\lambda)_{\lambda \in \Lambda} \odot (x_\lambda)_{\lambda \in \Lambda} \odot (\delta_\lambda)_{\lambda \in \Lambda} \odot (b_\lambda)_{\lambda \in \Lambda}) \cap F \neq \emptyset.$$

Then,

$$((a_\lambda)_{\lambda \in \Lambda} \odot (\gamma_\lambda)_{\lambda \in \Lambda} \odot (x_\lambda)_{\lambda \in \Lambda} \odot (\delta_\lambda)_{\lambda \in \Lambda} \odot (b_\lambda)_{\lambda \in \Lambda}) \cap F \neq \emptyset$$

$$\Rightarrow (a_\lambda \gamma_\lambda x_\lambda \delta_\lambda b_\lambda)_{\lambda \in \Lambda} \cap F \neq \emptyset$$

$$\Rightarrow a_\lambda \gamma_\lambda x_\lambda \delta_\lambda b_\lambda \cap F_\lambda \neq \emptyset, \forall \lambda \in \Lambda$$

$$\Rightarrow x_\lambda \in F_\lambda, \forall \lambda \in \Lambda$$

$$\Rightarrow (x_\lambda)_{\lambda \in \Lambda} \in F.$$

Let $(a_\lambda)_{\lambda \in \Lambda} \in F$, $(c_\lambda)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} S_\lambda$ and $((a_\lambda)_{\lambda \in \Lambda} \preceq (c_\lambda)_{\lambda \in \Lambda})$. Then, $a_\lambda \leq_\lambda c_\lambda$ for all $\lambda \in \Lambda$. Since F_λ is a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S_λ for each $\lambda \in \Lambda$, it follows that $c_\lambda \in F_\lambda$ for each $\lambda \in \Lambda$. So, $(c_\lambda)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} F_\lambda = F$. Therefore, F is a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of $\prod_{\lambda \in \Lambda} S_\lambda$. \square

A mapping $\varphi : S \rightarrow T$ of an ordered Γ -semihypergroup (S, Γ, \leq_S) into an ordered Γ -semihypergroup (T, Γ', \leq_T) is said to be a normal Γ -homomorphism if (1) $\varphi(x\gamma y) = \varphi(x)\gamma'\varphi(y)$ for all $x, y \in S$, $\gamma \in \Gamma$ and $\gamma' \in \Gamma'$; (2) φ is isotone, i.e., for any $a, b \in S$, $a \leq_S b$ implies $\varphi(a) \leq_T \varphi(b)$.

Theorem 3.2. *Let $\varphi : S \rightarrow T$ be a normal Γ -homomorphism of ordered Γ -semihypergroups (S, Γ, \leq_S) and (T, Γ', \leq_T) . If F is a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of T , then*

$$\varphi^{-1}(F) = \{a \in S \mid \varphi(a) \in F\}$$

is a strong $\mathbf{I}\text{-}\Gamma$ -hyperfilter of S .

Proof. Let $a, b \in \varphi^{-1}(F)$, $\alpha \in \Gamma$ and $\alpha' \in \Gamma'$. Then $\varphi(a), \varphi(b) \in F$. Since F is a sub Γ -semihypergroup of T and φ a normal Γ -homomorphism, we get

$$\begin{aligned} \varphi(a\alpha b) &= \varphi(a)\alpha'\varphi(b) \\ &\subseteq F\Gamma'F \\ &\subseteq F. \end{aligned}$$

So, $aab \subseteq \varphi^{-1}(F)$. Hence, $\varphi^{-1}(F)$ is sub Γ -semihypergroup of S .

Now, let $a, b, x \in S$, $\alpha, \beta \in \Gamma$ and $a\alpha x\beta b \cap \varphi^{-1}(F) \neq \emptyset$. Then,

$$a\alpha x\beta b \cap \varphi^{-1}(F) \neq \emptyset$$

$$\Rightarrow \varphi(a\alpha x\beta b) \cap F \neq \emptyset$$

$$\Rightarrow \left(\bigcup_{u \in x\beta b} \varphi(a)\alpha'\varphi(u) \right) \cap F \neq \emptyset$$

$$\Rightarrow (\varphi(a)\alpha'\varphi(x)\beta'\varphi(b)) \cap F \neq \emptyset$$

$$\Rightarrow \varphi(x) \in F$$

$$\Rightarrow x \in \varphi^{-1}(F).$$

If $a \in \varphi^{-1}(F)$, $c \in S$ and $a \leq_S c$, then $\varphi(a) \in F$. Since φ is a Γ -homomorphism, we get $\varphi(a) \leq_T \varphi(c)$. As F is a strong \mathbf{I} - Γ -hyperfilter of T , we have $\varphi(c) \in F$. It implies that $c \in \varphi^{-1}(F)$. Therefore, $\varphi^{-1}(F)$ is a strong \mathbf{I} - Γ -hyperfilter of S . \square

In the following, it reveals the relationship between two fundamental notions of ordered Γ -semihypergroup, the several types of \mathbf{I} - Γ -hyperfilters and the (completely) prime \mathbf{I} - Γ -hyperideals.

Theorem 3.3. *Let (S, Γ, \leq) be an ordered Γ -semihypergroup and $\emptyset \neq F \subsetneq S$. If $S \setminus F$ is a sub Γ -semihypergroup of S , then F is a strong \mathbf{I} - Γ -hyperfilter of S if and only if $S \setminus F$ is a completely prime \mathbf{I} - Γ -hyperideal of S .*

Proof. Necessity. First, we prove that $S \setminus F$ is an \mathbf{I} - Γ -hyperideal of S . Let $a, b \in S$, $x \in S \setminus F$, $\gamma, \delta \in \Gamma$ and $(a\gamma x\delta b) \cap F \neq \emptyset$. Since F is a strong \mathbf{I} - Γ -hyperfilter of S , we get $x \in F$, a contradiction. So, $a\gamma x\delta b \subseteq S \setminus F$, i.e., $ST(S \setminus F)\Gamma S \subseteq S \setminus F$. Now, let $a \in S \setminus F$, $x \in S$ and $x \leq a$, i.e., $x \in (S \setminus F)$. We show that $x \in S \setminus F$. If $x \in F$, then, since F is a strong \mathbf{I} - Γ -hyperfilter of S , it follows that $a \in F$, a contradiction. Thus $x \in S \setminus F$, and so $(S \setminus F) \subseteq S \setminus F$. Therefore, $S \setminus F$ is an \mathbf{I} - Γ -hyperideal of S . Next, let $u, v \in S$, $\alpha \in \Gamma$ and $u\alpha v \cap (S \setminus F) \neq \emptyset$. Then, there exists $t \in u\alpha v$ such that $t \in S \setminus F$. If $u \in F$ and $v \in F$, then, since F is a sub Γ -semihypergroup of S , we get $t \in F$, a contradiction. So, $a \in S \setminus F$ or $b \in S \setminus F$. Therefore, $S \setminus F$ is a completely prime \mathbf{I} - Γ -hyperideal of S .

Sufficiency. Let $S \setminus F$ be a completely prime \mathbf{I} - Γ -hyperideal of S . Now, let $m, n \in F$ and $\alpha \in \Gamma$. If $m\alpha n \not\subseteq F$, then $m\alpha n \cap (S \setminus F) \neq \emptyset$. Since $S \setminus F$ is completely prime, we get $m \in S \setminus F$ or $n \in S \setminus F$, which is a contradiction. So, $m\alpha n \subseteq F$. Thus, F is a sub Γ -semihypergroup of S . Let $a, b, x \in S$ and $((a\Gamma x)\Gamma b) \cap F \neq \emptyset$. If $x \in S \setminus F$, then, since $S \setminus F$ is an \mathbf{I} - Γ -hyperideal, we have $a\Gamma x\Gamma b \subseteq ST(S \setminus F)\Gamma S \subseteq S \setminus F$, which is a contradiction. It implies that $x \in F$. Now, let $a \in F$, $c \in S$ and $a \leq c$, i.e., $c \in [F]$. We show that $c \in F$. If $c \in S \setminus F$, then, since $S \setminus F$ is an \mathbf{I} - Γ -hyperideal of S , we get $a \in S \setminus F$, a contradiction. So $c \in F$, and thus $[F] \subseteq F$. Therefore, F is a strong \mathbf{I} - Γ -hyperfilter of S . \square

Example 3.1. *In Example 2.1, $F_2 = \{a, c\}$ is a strong \mathbf{I} - Γ -hyperfilter of S . Thus, by Theorem 3.3, $S \setminus F_2 = \{b, d\}$ is a completely prime \mathbf{I} - Γ -hyperideal of S .*

Combining Theorem 1.1 with Theorem 3.3 we draw the following conclusion.

Corollary 3.1. *Let (S, Γ, \leq) be a regular ordered Γ -semihypergroup and $\emptyset \neq F \subsetneq S$. If $S \setminus F$ is a sub Γ -semihypergroup of S , then F is a strong \mathbf{I} - Γ -hyperfilter of S if and only if $S \setminus F$ is a completely prime Γ -hyperideal of S .*

In the following, we focus our study on weak \mathbf{I} - Γ -hyperfilters of ordered Γ -semihypergroups.

Proposition 3.1. *Let F be a weak \mathbf{I} - Γ -hyperfilter of an ordered Γ -semihypergroup (S, Γ, \leq) . If $F \ll a\gamma x\delta b$, then $x \in F$ for all $a, b, x \in S$ and $\gamma, \delta \in \Gamma$. Here, $U \ll V$ means that there exist $u \in U$ and $v \in V$ such that $u \leq v$, for all $\emptyset \neq U, V \subseteq S$.*

Proof. Let F be a weak \mathbf{I} - Γ -hyperfilter of S and $F \ll a\gamma x\delta b$, where $a, b, x \in S$ and $\gamma, \delta \in \Gamma$. As $F \ll a\gamma x\delta b$, there exists $u \in F$ and $v \in a\gamma x\delta b$ such that $u \leq v$. Since $[F] \subseteq F$, we get $v \in F$. It implies that $(a\gamma x\delta b) \cap F \neq \emptyset$. By condition (2) of Definition 2.3, we obtain $x \in F$. \square

Proposition 3.2. *Let F be a weak \mathbf{I} - Γ -hyperfilter of an ordered Γ -semihypergroup (S, Γ, \leq) . If $U \cap F \neq \emptyset$ and $U \preceq V$, then $V \cap F \neq \emptyset$, where $\emptyset \neq U, V \subseteq S$.*

Proof. Since $U \cap F \neq \emptyset$, then there exists $u \in S$ such that $u \in F$ and $u \in U$. As $U \preceq V$ and $u \in U$, there exists $v \in V$ such that $u \leq v$. Since F is a weak \mathbf{I} - Γ -hyperfilter of S and $u \in F$, we have $v \in F$, by condition (3) of Definition 2.3. So, $V \cap F \neq \emptyset$. \square

Theorem 3.4. *Let (S, Γ, \leq) be an ordered Γ -semihypergroup and $\emptyset \neq F \subsetneq S$. If $S \setminus F$ is a sub Γ -semihypergroup of S , then F is a weak \mathbf{I} - Γ -hyperfilter of S if and only if $S \setminus F$ is a prime \mathbf{I} - Γ -hyperideal of S .*

Proof. Necessity. We first show that $S \setminus F$ is an \mathbf{I} - Γ -hyperideal of S . Let $u, v \in S$, $x \in S \setminus F$ and $\gamma, \delta \in \Gamma$. If $u\gamma x\delta v \notin S \setminus F$, then there exists $t \in u\gamma x\delta v$ such that $t \in F$. So, $(u\gamma x\delta v) \cap F \neq \emptyset$. Since F is a weak \mathbf{I} - Γ -hyperfilter of S , it follows that $x \in F$, which is a contradiction. So, $u\gamma x\delta v \subseteq S \setminus F$. It means that

$$S\Gamma(S \setminus F)\Gamma S \subseteq S \setminus F.$$

On the other hand, $(S \setminus F) \subseteq S \setminus F$. Therefore, $S \setminus F$ is an \mathbf{I} - Γ -hyperideal of S . Next, we prove that $S \setminus F$ is prime. Let $u, v \in S$, $\gamma \in \Gamma$ and $u\gamma v \subseteq S \setminus F$. If $u \in F$ and $v \in F$, then, since F is a weak \mathbf{I} - Γ -hyperfilter of S , we get $(u\gamma v) \cap F \neq \emptyset$, a contradiction. So, $u \in S \setminus F$ or $v \in S \setminus F$. Therefore, $S \setminus F$ is a prime \mathbf{I} - Γ -hyperideal of S .

Sufficiency. Let $S \setminus F$ is a prime \mathbf{I} - Γ -hyperideal of S . We assert that F is a weak \mathbf{I} - Γ -hyperfilter of S . Let $a, b \in F$ and $\gamma \in \Gamma$. If $a\gamma b \cap F = \emptyset$, then $a\gamma b \subseteq (S \setminus F)$. Since $S \setminus F$ is prime, it follows that $a \in S \setminus F$ or $b \in S \setminus F$, which is a contradiction. So, $a\gamma b \cap F \neq \emptyset$. Now, let $a, b, x \in S$, $\gamma, \delta \in \Gamma$ and $(a\gamma x\delta b) \cap F \neq \emptyset$. If $x \in S \setminus F$, then $a\gamma x\delta b \subseteq S\Gamma(S \setminus F)\Gamma S \subseteq S \setminus F$. So, $a\gamma x\delta b \cap F = \emptyset$, which is a contradiction. It implies that $x \in F$. Clearly, $[F] \subseteq F$. Hence, F is a weak \mathbf{I} - Γ -hyperfilter of S . \square

4. Conclusions

In this study, we introduced the notion of \mathbf{I} - Γ -hyperfilter of an ordered Γ -semihypergroup and then we obtained some useful properties. Results related to productional ordered Γ -semihypergroups were investigated. Moreover, we tried to generalize these results to various types of \mathbf{I} - Γ -hyperfilters of ordered Γ -semihypergroups. In ordered Γ -semihypergroups there exist different types of \mathbf{I} - Γ -hyperfilters. We use (completely) prime \mathbf{I} - Γ -hyperideal to characterize various kinds of \mathbf{I} - Γ -hyperfilters. From Examples and Definitions, we conclude that weak \mathbf{I} - Γ -hyperfilters \subseteq strong \mathbf{I} - Γ -hyperfilters \subseteq \mathbf{I} - Γ -hyperfilters. For future work, one could extend the existing work to the framework of fuzzy \mathbf{I} - Γ -hyperfilters, soft \mathbf{I} - Γ -hyperfilters and rough \mathbf{I} - Γ -hyperfilters.

Funding

This work was supported by the Youth program 62002002 and China Postdoctoral Science Foundation 2020M680237.

REFERENCES

- [1] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, *On Γ -hyperideals in Γ -semihypergroups*, Carpathian J. Math. **26(1)** (2010), 11–23.
- [2] F. Bouaziz and N. Yaqoob, *Rough hyperfilters in po-LA-semihypergroups*, Discrete Dyn. Nat. Soc. **2019** (2019), 8–pages.
- [3] P. Corsini and V. Leoreanu, *Applications of Hyperstructure Theory*, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.
- [4] B. Davvaz, P. Corsini and T. Changphas, *Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder*, European J. Combin. **44** (2015), 208–217.
- [5] A. P. Gan and Y. L. Jiang, *On ordered ideals in ordered semirings*, J. Math. Res. Exposition, **31(6)** (2011), 989–996.
- [6] Z. Gu and X. Tang, *Ordered regular equivalence relations on ordered semihypergroups*, J. Algebra, **450** (2016), 384–397.
- [7] D. Heidari and B. Davvaz, *On ordered hyperstructures*, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. **73(2)** (2011), 85–96.
- [8] J. Jun, *Algebraic geometry over hyperrings*, Adv. Math. **323** (2018), 142–192.
- [9] N. Kehayopulu, *On ordered Γ -hypersemigroups, minimal bi-ideals, and minimal left ideals*, Turk. J. Math. **45** (2021), 909–918.
- [10] M. Krasner, *A class of hyperrings and hyperfields*, Internat. J. Math. and Math. Sci. **6(2)** (1983), 307–312.
- [11] F. Marty, *Sur une généralisation de la notion de groupe*, 8th Congress Math. Scandinaves, Stockholm, 1934, 45–49.
- [12] A. Mahboob and N. M. Khan, *(m, n) -Hyperfilters in ordered semihypergroups*, Kragujevac J. Math. **46(2)** (2022), 307–315.
- [13] S. Omidi and B. Davvaz, *Construction of ordered regular equivalence relations on ordered semihyperrings*, Honam Math. J. **40(4)** (2018), 601–610.
- [14] S. Omidi and B. Davvaz, *Contribution to study special kinds of hyperideals in ordered semihyperrings*, J. Taibah Univ. Sci. **11(6)** (2017), 1083–1094.
- [15] S. Omidi and B. Davvaz, *Convex ordered Γ -semihypergroups associated to strongly regular relations*, Matematika, **33(2)** (2017), 227–240.
- [16] S. Omidi and B. Davvaz, *Foundations of ordered (semi)hyperrings*, J. Indones. Math. Soc. **22(2)** (2016), 131–150.
- [17] S. Omidi, B. Davvaz and C. Abdioglu, *Some properties of quasi- Γ -hyperideals and hyperfilters in ordered Γ -semihypergroups*, Southeast Asian Bull. Math. **42(2)** (2018), 223–242.
- [18] Y. Rao, S. Kosari, Z. Shao, M. Akhouni and S. Omidi, *A study on A- I - Γ -hyperideals and (m, n) - Γ -hyperfilters in ordered Γ -Semihypergroups*, Discrete Dyn. Nat. Soc. **2021** (2021), 10–pages.
- [19] Y. Rao, P. Xu, Z. Shao and S. Kosari, *Left k -bi-quasi hyperideals in ordered semihyperrings*, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. **83(1)** (2021), 125–134.
- [20] J. Tang, B. Davvaz and Y. F. Luo, *Hyperfilters and fuzzy hyperfilters of ordered semihypergroups*, J. Intell. Fuzzy Systems, **29** (2015), 75–84.
- [21] J. Tang, X. Y. Xie and Z. Gu, *A study on weak hyperfilters of ordered semihypergroups*, AIMS Mathematics, **6(5)** (2020), 4319–4330.

- [22] J. Tang, B. Davvaz, X. Y. Xie and N. Yaqoob, *On fuzzy interior Γ -hyperideals in ordered Γ -semihypergroups*, J. Intell. Fuzzy Systems, **32** (2017), 2447–2460.
- [23] N. Yaqoob and M. Aslam, *On rough quasi- Γ -hyperideals in Γ -semihypergroups*, Afrika Mat. **26** (2015), 303–315.
- [24] N. Yaqoob and J. Tang, *Approximations of quasi and interior hyperfilters in partially ordered LA-semihypergroups*, AIMS Mathematics, **6(8)** (2021), 7944–7960.