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A STUDY ON INTERIOR I'mMHYPERFILTERS IN ORDERED
I-SEMIHYPERGROUPS

by C. Chen!, S. Kosari?, S. Omidi3, B. Davvaz* and M. Akhoundi®

In this paper, interior I'-hyperfilters of ordered I"-semihypergroups are de-
fined and various types of them are studied. Results related to productional ordered I'-
semihypergroups were investigated. Moreover, we investigate some properties of the in-
verse images of strong interior I'-hyperfilters in ordered I'-semihypergroups. Finally, we
discuss the relationship between two fundamental notions of ordered I'-semihypergroup,
the several types of interior I'-hyperfilters and the (completely) prime interior I'-hyperideals.
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1. Introduction and prerequisites

The notion of ordered semihypergroups was proposed by Heidari and Davvaz
[7] in 2011. In [4], Davvaz et al. initiated the study of pseudoorders in ordered semi-
hypergroups. Connections between ordered semigroups and ordered semihypergroups are
considered in [4]. Gu and Tang [6] attempted to study the ordered regular equivalence
relations of the ordered semihypergroups. They answered to an open problem on ordered
semihypergroups which appeared in [4].

In 2010, Anvariyeh et al. [1] introduced the notion of a I’-semihypergroup which is a
generalization of semihypergroup. In 2015, Yaqoob and Aslam [23] introduced the idea of
rough quasi-I-hyperideals in I'-semihypergroups. Tang et al. [22] inspected useful results on
fuzzy I-T-hyperideals in ordered I'-semihypergroups. In [5], Gan and Jiang defined ordered
semiring and investigated some useful results. In 2016, Omidi and Davvaz [16] made a first
step in extending the theory of ordered rings to ordered (semi)hyperrings. In 2017, Omidi
and Davvaz [14] studied the prime (m, n)-bi-hyperideals of ordered semihyperrings. There
have been approaches to the constructions of ordered hyperstructyures as can be seen in
[6, 13, 18, 19].

Hypergroups were originally proposed in 1934 by Marty [11] at the 8" Congress of
Scandinavian Mathematicians. The notion of hyperrings was proposed by Krasner [10] in
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1983. Jun [8] attempted to study the geometric aspects of the Krasner hyperrings. In [3],
Corsini and Leoreanu provided many applications of hyperstructures.

Some researchers worked on hyperfilters by applying them to different types of or-
dered hyperstructures. In [20], Tang et al. applied fuzzy set theory to the hyperfilters of
ordered semihypergroups. As generalizations of filters in ordered semigroups, the concept of
[-hyperfilters of an ordered I'-semihypergroup was first introduced by Omidi et al. [17] in
2018. After that so many authors, for example [12, 18, 21], conducted research on this and
developed it. In [21], Tang et al. defined and analyzed the weak hyperfilters of ordered semi-
hypergroups. (m,n)-Hyperfilters of ordered semihypergroups were investigated by Mahboob
and Khan [12]. Later on, Rao et al. [18] introduced and studied the concept of (m,n)-T-
hyperfilters in ordered I'-semihypergroups. In [24], Yaqoob and Tang applied rough set
theory to different types of hyperfilters in ordered LA-semihypergroups and explored some
results. Roughness has also studied in hyperfilters of ordered LA-semihypergroups [2].

Previous studies on the hyperfilters of ordered hyperstructures motivated us to study
the interior I-hyperfilter (briefly, I-I-hyperfilter) of an ordered I'-semihypergroup. In Sec-
tion 1, some notions on ordered I'-semihypergroups are explained to facilitate the terminol-
ogy (see [17] and [18] for more details and basic definitions). In Section 2, we define the
concepts of strong and weak interior I'-hyperfilters of the ordered I'-semihypergroup S which
are two new classes of I-I-hyperfilters. In Section 3, several properties of strong and weak
interior I'-hyperfilters are provided. Furthermore, we discuss the relationship between two
fundamental notions of ordered I'-semihypergroup, the several types of I-I'-hyperfilters and
the (completely) prime I-I-hyperideals. The study ends with some conclusions and ideas
for future works.

Let P*(S) be the family of all non-empty subsets of S # (). A mapping o: S x S —
P*(S) is called a hyperoperation on S. If ) £ U,V C S and x € S, then
UoV=J uovyxoU={z}oUand Voxr=Vo{x}.

uelU
veV

A non-empty set equipped with a (binary) hyperoperation is called hypergroupoid. A hy-
pergroupoid (S, o) is called a semihypergroup if for every a,b,c € S,
ao(boc)=(aob)oec.
Let S # () be a set equipped with the hyperoperations ' = {«a, 8,7, - }. If

(1) aybC S for all a,b € S and all vy € T,

(2) If a,b, 2,y € S such that a = z and b = y, then ayb = zvyy,

(3) za(aBb) = (zaa)Bb,
hold, then S is said to be a I'-semihypergroup. The reader may see [1, 9] for detailed
discussion.

Definition 1.1. [15] An ordered T'-semihypergroup (T,T',<) is a T'-semihypergroup (T,T)
endowed with a suitable (partial) order relation < such that: for all a,bx € T and v € T,
a < b implies ayx < byx and xya = xvb, where for every O £ U,V C S, U XV if and only
if for each uw € U, there exists v € V' such that u < v.

(T,T, <) is called regular if for every a € T there exist € T, 4,5 € T such that
a =< ayxrda. A subset F' # ) of an ordered I'-semihypergroup T is said to be a sub I'-
semihypergroup if and only if ayb C F for all a,b € F and v € T'. (F] is defined as follows:

(Fl:={zeT |z < fforsome f € F}.

Example 1.1. [15] Let S = [0,1] and T' = N. For every z,y € S and v € T, we define
v:SxT xS — P*S) by ayy = [0, %] For every x,y,z € S and v, 5 € T, we have
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(z7y)Bz = [0, ZF] = xy(yB2).
We set
x <y if and only if [0, %] C o, %] forallz,y,z€ S and v €T.
Then (S,T, <) is an ordered T'-semihypergroup.
A T-hyperideal F of an ordered I'-semihypergroup 7T is said to be completely prime

if for each z,y € T and v € T such that xyy N F # (), then x € F or y € F. Recall that a
non-empty subset F' of T is a I'-hyperideal of T if (1) TTF C F and FT'T C F; (2) (F] C F.

Definition 1.2. [22] An interior T'-hyperideal (in short I-T-hyperideal) F of an ordered
I-semihypergroup (T, T, <) is a sub I'-semihypergroup F of T such that

(1) TTFTT C F;

(2) (FICF.
Theorem 1.1. Let (T,T',<) be a regular ordered T'-semihypergroup. Then every I-I'-
hyperideal of T is a T'-hyperideal of T .

Proof. For the proof see Theorem 3.6 in [22]. O
Definition 1.3. [17] A sub I'-semihypergroup F of an ordered T'-semihypergroup (T, T, <)

1s called a T'-hyperfilter of T if

(1) foralla,beT andy €T, avbNF 0 =a € F and b € F;
(2) foralla€e F andceT,a<c=c€F, ie, [F)CF.

Indeed, for F C S we put
[F):={xeT | f <z for some f € F}.

2. Definitions and examples

Throughout the rest of this paper: S will be an ordered I'-semihypergroup. We begin
this section with the definition of an I-I'-hyperfilter on an ordered I'-semihypergroup S.

Definition 2.1. Let (S,T, <) be an ordered T'-semihypergroup and § # F C S. Then, F is
said to be an interior I'-hyperfilter (briefly, I-T-hyperfilter) of S if

(1) F is a sub I'-semihypergroup of S;

(1) foralla,b,x € S, (alT'z)TbC F =z € F;

(2) forallce Sanda€ F,a<c=c€EF.

Example 2.1. Consider an ordered T'-semihypergroup S = {a,b,c,d} with the following
hyperoperations T' = {v, 8} and (partial) order relation <:

5y a b c d
a a {b,d} d
b | {b,d} b {b,d} d
c c {b,d} a d
d d d d d
8 a b c d
« [ {od 0nd) (o d
b | {b,d} b {b,d} d
c | {a,c} {b,d} {a,c} d
d d d d d

S = {(a7 a)? (b7 b)7 (c7 C)’ (d7 a)’ (d7 b)7 (d7 C)’ (d7 d)}'
We give the covering relation <= {(d, a), (d,b), (d,c)}, and the figure of S in Figure 1.
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a b c
d

Figure 1: Figure of (S,T,<) for Example 1.
Note that for every v,8 € T' and x,y,z € S, we have xy(yBz) = (zyy)Bz. Clearly, Fy =
{a,c} is a sub T-semihypergroup of S, i.e., xyy C Fy for all z,y € Fy and v € T. We hava
Va,y € S, (2T'b)l'y € F.
Va,y € S, (aT'd)Ty € Fi.
On the other hand, [Fy) = Fi. Therefore, Fy ia an interior D-hyperfilter of S. All the
I-T-hyperfilters of S are Fy = {a,c}, Fo = {b} and F5 = 5.

Strong I-I-hyperfilters are sub I'-semihypergroups in which C is replaced with non-
empty intersection. In the following, we provide the basic definition and results concerning
strong I-I'-hyperfilters.

Definition 2.2. Let (S,T', <) be an ordered T'-semihypergroup and ) # F C S. Then, F is
said to be a strong I-T-hyperfilter of S if

(1) F is a sub I'-semihypergroup of S;

(1) for all a,b,x € S, (alx)TO)NF #0) = x € F;

(2) forallce S anda€ F,a<c=c€F.

Clearly, every strong I-I’-hyperfilter of an ordered I'-semihypergroup is an I-I'-hyperfilter.
The converse is not generally true as shown by the following example

Example 2.2. In Example 2.1, Fy = {b} is not a strong I-T-hyperfilter of S. Indeed:
blal’'c = {b,d} N F1 # () but a ¢ F}.
Definition 2.3. Let ) # F be a subset of an ordered T'-semihypergroup (S,T',<). Then F
1s called a weak I-T-hyperfilter of S if
(1) (ayb)NF # O for all a,b € F and all v € T;
(2) foralla,b,x €S, (al'z)TO)NF #0) =z € F;
(3) forallr e Fandze€ S,x <z=z2€F,ie,[F)CF.

Clearly, every strong I-I-hyperfilter of an ordered I'-semihypergroup S is a weak I-
[-hyperfilter of S. The converse is not true, in general, that is, a weak I-I'-hyperfilter may
not be a strong I-I'-hyperfilter of S.

Example 2.3. Let us follow the tables used in Example 2.1. By defining the (partial) order
relation

< :={(a,a),(b,0),(c,¢), (d,a),(d,c),(d,d)}
on S, we get that (S,T', <) is an ordered T'-semihypergroup. Covering relation of S as given
below

<={(d,a),(d,c)}.

The Hasse diagram of S is shown in Figure 2.

a C

N
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FIGURE 2: Figure of (S,T, <) for Example 4.

Here, F = {a,b,c} is a weak I-T-hyperfilter of S. Clearly, F is not a strong I-T-hyperfilter
of S. Since FTF = S ¢ F, i.e., al'b = {b,d} ¢ F, it follows that F is not a sub T'-
semihypergroup of S.

3. On two classes of interior I'-hyperfilters

Lemma 3.1. Let T be a sub I'-semihypergroup of an ordered I'-semihypergroup (S,T, <).
Then for an I-T-hyperfilter F' of S, either ) = FNT or FNT is an I-T-hyperfilter of T.

Proof. Let ) # F; = FNT. We show that F; is an I-I-hyperfilter of T. Clearly, F} is
a sub I'-semihypergroup of T. Indeed: FiI'Fy C FT'F C F and FAil'Fy, CTT'T C T. So,
BT C FNT = Fy. Therefore, Fy is a sub I'-semihypergroup of T. Now, let a,b,z € T
and (al'z)I'b C Fy. Then (aI'z)T'd C F. Since F' is an I-I-hyperfilter of S, it follows that
x € F. So,x € FNT = F;. Now take any a € F; and ¢ € T such that a < ¢. Since F' is an
I-T-hyperfilter of S and a € F, we get ¢ € F. Hence ¢ € FNT = Fy. Therefore, F; is an
I-I'-hyperfilter of T. O

Lemma 3.2. Intersection of a non-empty collection of I-I'-hyperfilters of an ordered T'-
semihypergroup S is also an I-T'-hyperfilter of S.

Proof. Let {Fy | A € A} be a non-empty family of I-T-hyperfilters of an ordered I'-semihyper-
group (S,T, <). We show that (] F) is an I-I-hyperfilter of S, if (| F\ # 0. Let F) be
A€A A€A
an I-D-hyperfilter of S for all A € A and a,b € () Fx. Then a,b € F) for all A € A.
AEA
Since F) is a sub I'-semihypergroup of S, we get ayb C F) for all A € A and v € T'. So,
ayb C () F». This shows that (] F) is a sub I'-semihypergroup of S. Let a,b,z € R and
AEA AeA
(aTz)Tb C () F). Then, (aT'z)T'b C F), for all A € A. As F) is an I-[-hyperfilter of S, then
AEA
x € F) for all A € A. Tt implies that 2 € () Fx. Now, let a € (| F\,c € S and a < c.
A€A AEA
Then, a € F), for all A € A. Since F), is an I-[-hyperfilter of S for all A € A, we get ¢ € F)
for all A € A. Hence, ¢ € [\ Fx. Therefore, (| F) is an I-I-hyperfilter of S. O
AeA AeA

Lemma 3.3. Let us follow the notations used in Lemma 3.2. Then, () Fy is a strong

AEA
LT -hyperfilter of S, if (| Fx # 0.
AEA

Proof. By the proof of Lemma 3.2, [\ F) is a sub I'-semihypergroup of S. Let a,b,x € S
AEA
and ((al'z)Tb) N ( () Fa) # 0. Then there exists u € (] F) for some u € (al'z)['b. Then,
AEA AEA
u € Fy forall A € A. So, u € ((al'z)Tb)NF) for all A € A. It means that ((al'z)['b)NFy # 0.
As F) is a strong I-T-hyperfilter of S, x € Fy for all A € A. Thus, z € () F). Clearly,
AEA
[N Fr) € () Fa. Hence, (] F) is a strong I-I-hyperfilter of S. O
AEA A€A AeA

Let (Sx,Tx, <)) be an ordered T'y-semihypergroup for all A € A. Define
© (T Sx) x (IT Tx) x (IT Sx) = P*(I] Sx)
XEA XEA XEA XEA
by
(Tx)aer © (ax)aea © (Un)rea = {(2a)ren | 2a € zxaaya},

for all (zx)aea, (Wa)rea € [ Sx and (ax)aea € [] Ta. Also,
XEA XEA
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(Z2)aea < (Yn)rea <= a2\ <) yy for all A € A.

One can easily see that ( [] Sx, [] I'x, <) is an ordered [] I'x-semihypergroup [15].
AEA  XEA AEA

Theorem 3.1. Let F)\ be a strong I-T-hyperfilter on the ordered T'-semihypergroup (Sx, T'x, <x

) for all X\ € A. Then, F = [] Fy is a strong I-T-hyperfilter on ] Sa.
AEA DY

Proof. Let Fy be a strong I-T-hyperfilter on the ordered I'-semihypergroup (Sx, Ty, <)) for
all A € A. First of all, we show F = ][] F) is a sub I'-semihypergroup of [] S). Let
AEA AEA
(x\)rens Wr)rer € F = J] Fr. Then, x),yx € F) for each A € A. As F\’s is a sub
AEA
I-semihypergroup of Sy, zaxvayx C F) for all vy € T'x. So,

(@x)rer © (M)aer © (Un)rea = (@xvaya)aenr € [[ Fa=F.

AEA
Therefore, F' is a sub I'-semihypergroup of [] Si.
AEA
Now, let (ax)xea, (¥a)ren, (ba)rea € [] Sy and
AEA

((ax)rea © (7a)rea © (zx)aea © (Oa)rea © (ba)rea) N F # 0.

Then,
((@x)rea © (a)rer © (2x)ren © (0x)rea © (ba)ren) N F # 0

= (ax1AZAONDA)Aea NF # 0
= axYaTA0\D\ N F) # @,V)\ eA
=x) € F\,VAeA

= (Tx)ren € F.
Let (a)\))\e/\ eF, (C/\)/\eA S H Sy and ((a)\))\e/\ =< (CA))\eA)- Then, ay <, ¢y for all
A

Xe
A € A. Since F), is a strong I-I-hyperfilter of Sy for each A € A, it follows that ¢y € F)

for each A € A. So, (cx)xea € [ Fn = F. Therefore, F is a strong I-I-hyperfilter of
AEA

IT Sx. O
AEA

A mapping ¢ : S — T of an ordered I'-semihypergroup (5,I",<g) into an ordered
I-semihypergroup (7,17, <r) is said to be a normal T'-homomorphism if (1) p(zyy) =
o)y e(y) for all z,y € S, v € ' and v/ € IT’; (2) ¢ is isotone, i.e., for any a,b € S, a <g b
implies ¢(a) <p @(b).

Theorem 3.2. Let ¢ : S — T be a normal I'-homomorphism of ordered I'-semihypergroups
(S,T,<g) and (T, TV, <p). If F is a strong I-T-hyperfilter of T, then

¢~ (F)={a€S|¢(a) € F}
1s a strong I-I'-hyperfilter of S.
Proof. Let a,b € ¢=*(F), a € T and o € I". Then ¢(a),p(b) € F. Since F is a sub
I'-semihypergroup of T and ¢ a normal I'-homomorphism, we get

p(aab) = p(a)a’p(b)
C FT'F
CF
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So, aab C ¢~ (F). Hence, p~1(F) is sub I'-semihypergroup of S.

Now, let a,b,x € S, o, 8 € T and aaxbN o~ (F) # (. Then,
aaxfBbN Y (F) # 0

= plaazBb) N F # )

= (U ela)a'o(w)NF#0
u€xBb

= (p(a)o/o(z)B'o(b)) N F # 0
= p(z) € F

=z e p H(F).

If a € ¢ }(F), c€ S and a <g c, then ¢(a) € F. Since ¢ is a [~homomorphism, we get
pla) <7 ¢(c). As F is a strong I-T-hyperfilter of T, we have ¢(c) € F. It implies that
c € ¢ Y(F). Therefore, p~1(F) is a strong I-T-hyperfilter of S. O

In the following, it reveals the relationship between two fundamental notions of or-
dered T'-semihypergroup, the several types of I-I-hyperfilters and the (completely) prime
I-T'-hyperideals.

Theorem 3.3. Let (S,T', <) be an ordered T'-semihypergroup and O # F G S. If S\ F is a
sub I'-semihypergroup of S, then F' is a strong I-I-hyperfilter of S if and only if S\ F is a
completely prime I-I'-hyperideal of S.

Proof. Necessity. First, we prove that S\ F'is an I-I'-hyperideal of S. Let a,b € S, z € S\ F,
7,6 € T and (ayzdb) N F # (). Since F is a strong I-I-hyperfilter of S, we get z € F, a
contradiction. So, ayxdb C S\ F, ie., ST(S\ F)I'S C S\ F. Now,letae S\ F,z € S
and z < a, ie,, z € (S\ F]. We show that z € S\ F. If z € F, then, since F is a
strong I-T-hyperfilter of S, it follows that a € F, a contradiction. Thus x € S\ F, and so
(S\ F] C S\ F. Therefore, S\ F is an I--hyperideal of S. Next, let u,v € S, « € T and
uav N (S\ F) # 0. Then, there exists ¢t € uav such that t € S\ F. If u € Fand v € F,
then, since F' is a sub I'-semihypergroup of S, we get ¢ € F', a contradiction. So, a € S\ F
or b € S\ F. Therefore, S\ F is a completely prime I-I-hyperideal of S.

Sufficiency. Let S\ F' be a completely prime I-I’-hyperideal of S. Now, let m,n € F
and o € T. If man ¢ F, then man N (S \ F) # (. Since S\ F is completely prime, we
get m € S\ F orn € S\ F, which is a contradiction. So, man C F. Thus, F is a sub
I'-semihypergroup of S. Let a,b,z € S and ((aI'z)['d)NF # (. If z € S\ F, then, since
S\ F is an I-T-hyperideal, we have al'xI'b C ST'(S\ F)I'S C S\ F, which is a contradiction.
It implies that z € F. Now, let a € F, c € S and a < ¢, i.e., ¢ € [F)). We show that ¢ € F.
If c € S\ F, then, since S\ F is an I-T-hyperideal of S, we get a € S\ F, a contradiction.
So ¢ € F, and thus [F) C F. Therefore, F is a strong I-I-hyperfilter of S. a

Example 3.1. In Ezample 2.1, F» = {a,c} is a strong I-T-hyperfilter of S. Thus, by
Theorem 3.3, S\ F» = {b,d} is a completely prime I-T'-hyperideal of S.

Combining Theorem 1.1 with Theorem 3.3 we draw the following conclusion.

Corollary 3.1. Let (S,T',<) be a regular ordered T'-semihypergroup and () # F g S. If
S\ F is a sub I'-semihypergroup of S, then F is a strong I-I'-hyperfilter of S if and only if
S\ F is a completely prime T'-hyperideal of S.
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In the following, we focus our study on weak I-I-hyperfilters of ordered I'-semi-
hypergroups.

Proposition 3.1. Let F be a weak I-T-hyperfilter of an ordered T'-semihypergroup (S, T, <).
If F < ayxdb, then x € F for all a,b,x € S and v,0 € I'. Here, U < V means that there
evistu € U and v € V such that u < v, for all ) AU,V C S.

Proof. Let F be a weak I-I'-hyperfilter of S and F' < ayxdb, where a,b,x € S and 7,0 € T.
As F < ayzdb, there exists u € F and v € ayxzdb such that v < v. Since [F) C F, we
get v € F. It implies that (ayxzdb) N F # 0. By condition (2) of Definition 2.3, we obtain
reF O

Proposition 3.2. Let F' be a weak I-T'-hyperfilter of an ordered T'-semihypergroup (S, T, <).
IfFUNF#QPandU <XV, then VNEF #0, where ) U,V C S.

Proof. Since U N F # (), then there exists u € S such that u € F and u € U. AsU XV
and u € U, there exists v € V such that u < v. Since F' is a weak I-[-hyperfilter of S and
u € F, we have v € F, by condition (3) of Definition 2.3. So, V N F # . O

Theorem 3.4. Let (S,T', <) be an ordered I'-semihypergroup and 0 # F G S. If S\ F is a
sub T-semihypergroup of S, then F is a weak I-T-hyperfilter of S if and only if S\ F is a
prime I-T-hyperideal of S.

Proof. Necessity. We first show that S\ F'is an I-I*-hyperideal of S. Let u,v € S, z € S\ F
and 7,6 € . If uyzdv € S\ F, then there exists ¢ € uyzdv such that t € F. So,
(uyzdv) N F # (). Since F is a weak I-T-hyperfilter of S, it follows that « € F', which is a
contradiction. So, uyxdv C S\ F. It means that

ST(S\ F)['SC S\ F.

On the other hand, (S\ F] C S\ F. Therefore, S\ F' is an I-T-hyperideal of S. Next, we
prove that S\ F'is prime. Let u,v € S,y €T and uyvo C S\ F. lf u € F and v € F, then,
since F is a weak I-I-hyperfilter of S, we get (uyv) N F # (), a contradiction. So, u € S\ F
or v € S\ F. Therefore, S\ F is a prime I-I*-hyperideal of S.

Sufficiency. Let S\ F is a prime I-I*-hyperideal of S. We assert that F' is a weak
I-T-hyperfilter of S. Let a,b € F and v € . If aybNF = ), then ayb C (S\ F). Since S\ F' is
prime, it follows that a € S\ F or b € S\ F, which is a contradiction. So, aybNF # (. Now,
let a,b,x € S,~,0 € T and (ayzdb)NF # 0. If x € S\ F, then ayzdb C ST(S\F)['S C S\ F.
So, ayzdbN F = (), which is a contradiction. It implies that x € F. Clearly, [F') C F. Hence,
F' is a weak I-I'-hyperfilter of S. O

4. Conclusions

In this study, we introduced the notion of I-I-hyperfilter of an ordered I'-
semihypergroup and then we obtained some useful properties. Results related to pro-
ductional ordered I'-semihypergroups were investigated. Moreover, we tried to general-
ize these results to various types of I-I'-hyperfilters of ordered I'-semihypergroups. In
ordered I'-semihypergroups there exist different types of I-I-hyperfilters. We use (com-
pletely) prime I-I-hyperideal to characterize various kinds of I-I-hyperfilters. From Ex-
amples and Definitions, we conclude that weak I-I'-hyperfilters C strong I-I'-hyperfilters
C I-T-hyperfilters. For future work, one could extend the existing work to the framework of
fuzzy I-I'-hyperfilters, soft I-I’-hyperfilters and rough I-I'-hyperfilters.
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