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FORMULAS FOR BINOMIAL SUMS INCLUDING POWERS OF

FIBONACCI AND LUCAS NUMBERS
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Recently Prodinger [2] proved general expansion formulas for sums of pow-
ers of Fibonacci and Lucas numbers. In this paper, we will prove general expansion
formulas for binomial sums of powers of Fibonacci and Lucas numbers.
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1. Introduction

The Fibonacci numbers Fn and Lucas numbers Ln are defined by the following
recursions: for n > 0,

Fn+1 = Fn + Fn−1 and Ln+1 = Ln + Ln−1,

where F0 = 0, F1 = 1 and L0 = 2, L1 = 1, respectively.
If the roots of the characteristic equation x2−x− 1 = 0 are α and β, then the

Binet formulas for them are

Fn =
αn − βn

α− β
and Ln = αn + βn.

Wiemann and Cooper [4] mentioned about some conjectures of Melham for the sum:
n∑

k=1

F 2m+1
2k .

Ozeki [1] considered Melham’s sum and then he gave an explicit expansion for Mel-
ham’s sum as a polynomial in F2n+1.

In general, Prodinger [2] derived the general formula for the sum:
n∑

k=0

F 2m+ε
2k+δ ,

where ε, δ ∈ {0, 1}, as well as the evaluations of the corresponding sums for Lucas
numbers.
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In [5], the authors gave formulas for the alternating analogues of sums of
Melham for Fibonacci and Lucas numbers of the forms

n∑
k=1

(−1)k F 2m+ε
2k+δ and

n∑
k=1

(−1)k L2m+ε
2k+δ ,

where ε, δ ∈ {0, 1}.
In this paper, we consider certain binomial sums given by

n∑
k=0

(
n

k

)
F 2m+ε
(2k+δ)t ,

n∑
k=0

(
n

k

)
L2m+ε
(2k+δ)t,

n∑
k=0

(
n

k

)
(−1)k F 2m+ε

(2k+δ)t and
n∑

k=0

(
n

k

)
(−1)k L2m+ε

(2k+δ)t,

where t is an positive integer and ε, δ ∈ {0, 1}.
Throughout this paper, we use the indicator function [S] defined by 1 if the

statement S is true or 0 otherwise.

We recall some facts for the readers convenience in [3]: For any real numbers
m and n,

(m+ n)t =

t/2−1∑
i=0

(
t

i

)
(mn)i

(
mt−2i + nt−2i

)
+

(
t

t/2

)
(mn)t/2 [t is even] (1)

and

(m− n)t =

t/2−1∑
i=0

(
t

i

)
(mn)i (−1)i

(
mt−2i + nt−2i

)
+

(
t

t/2

)
(mn)t/2 (−1)t/2 [t is even] . (2)

From [6], we have the following result:

Lemma 1.1. Let r and s be arbitrary integers. Then
i)

n∑
i=0

(
n

i

)
Fr+2si =

 5(n−1)/2Fn
s Lsn+r if n is odd,

5n/2Fn
s Fsn+r if n is even,

if s is odd,

Ln
sFsn+r if s is even.

(3)

ii)

n∑
i=0

(
n

i

)
Lr+2si =

 5(n+1)/2Fn
s Fsn+r if n is odd,

5n/2Fn
s Lsn+r if n is even,

if s is odd,

Ln
sLsn+r if s is even.

(4)

iii)

n∑
i=0

(
n

i

)
(−1)i Fr+2si =

 5n/2Fn
s Fsn+r if n is even,

−5(n−1)/2Fn
s Lsn+r if n is odd,

if s is even,

(−1)n Ln
sFsn+r if s is odd.

(5)
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iv)

n∑
i=0

(
n

i

)
(−1)i Lr+2si =

 5n/2Fn
s Lsn+r if n is even,

−5(n+1)/2Fn
s Fsn+r if n is odd,

if s is even,

(−1)n Ln
sLsn+r if s is odd.

(6)

2. Some Binomial Sums for Fibonacci Numbers

Here we consider binomial and alternating binomial sums of powers of Fi-
bonacci numbers.

Theorem 2.1. i) For t > 0,

n∑
k=0

(
n

k

)
F 2m
2kt =

1

5m

m−1∑
i=0

(−1)i
(
2m

i

)
Ln
2(m−i)tL2(m−i)tn +

1

5m

(
2m

m

)
(−1)m 2n.

ii) For odd t > 0,

n∑
k=0

(
n

k

)
F 2m+1
2kt

=


5

(n−2m)
2

m∑
i=0

(−1)i
(
2m+1

i

)
Fn
(2m−2i+1)tF(2m−2i+1)tn if n is even,

5
(n−2m−1)

2

m∑
i=0

(−1)i
(
2m+1

i

)
Fn
(2m−2i+1)tL(2m−2i+1)tn if n is odd,

and for even t > 0,
n∑

k=0

(
n

k

)
F 2m+1
2kt =

1

5m

m∑
i=0

(−1)i
(
2m+ 1

i

)
Ln
(2m−2i+1)tF(2m−2i+1)tn

Proof. i) From the Binet formulas of {Fn} and {Ln} , and by (2), we write
n∑

k=0

(
n

k

)
F 2m
2kt

=

n∑
k=0

(
n

k

)(
α2kt − β2kt

α− β

)2m

=
1

(α− β)2m

n∑
k=0

(
n

k

)(m−1∑
i=0

(
2m

i

)
(−1)i

(
α2(2m−2i)tk + β2(2m−2i)tk

)
+

(
2m

m

)
(−1)m

)
=

1

5m

(
m−1∑
i=0

(−1)i
(
2m

i

) n∑
k=0

(
n

k

)
L2(2m−2i)tk +

(
2m

m

)
(−1)m

n∑
k=0

(
n

k

))
,

which, by (4) in Lemma 1.1 and since
∑n

k=0

(
n
k

)
= 2n, equivalent to

n∑
k=0

(
n

k

)
F 2m
2kt =

1

5m

(
m−1∑
i=0

(−1)i
(
2m

i

)
Ln
2(m−i)tL2(m−i)tn +

(
2m

m

)
(−1)m 2n

)
,
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as claimed.
ii) Consider

n∑
k=0

(
n

k

)
F 2m+1
2kt

=

n∑
k=0

(
n

k

)(
α2kt − β2kt

α− β

)2m+1

=
1

(α− β)2m+1

n∑
k=0

(
n

k

) m∑
i=0

(
2m+ 1

i

)
(−1)i

(
α2(2m+1−2i)tk − β2(2m+1−2i)tk

)
=

1

5m

m∑
i=0

(−1)i
(
2m+ 1

i

) n∑
k=0

(
n

k

)
F2(2m+1−2i)kt,

which, by taking s = (2m+ 1− 2i) t and r = 0 in (3) in Lemma 1.1, gives the
claimed results. �

Following the proof way of Theorem 2.1, we have the following result without
proof:

Theorem 2.2. i) For t > 0,

n∑
k=0

(
n

k

)
F 2m
(2k+1)t

=
1

5m

m−1∑
i=0

(−1)i(t+1)

(
2m

i

)
Ln
(2m−2i)tL(2m−2i)t(n+1) +

1

5m

(
2m

m

)
(−1)(t+1)m 2n.

ii)For odd t > 0,

n∑
k=0

(
n

k

)
F 2m+1
(2k+1)t

=


5(n−2m)/2

m∑
i=0

(
2m+ 1

i

)
Fn
(2m+1−2i)tF(2m+1−2i)t(n+1) if n is even,

5(n−2m−1)/2
m∑
i=0

(
2m+ 1

i

)
Fn
(2m−2i+1)tL(2m−2i+1)t(n+1) if n is odd,

and, for even t > 0,

n∑
k=0

(
n

k

)
F 2m+1
(2k+1)t =

1

5m

m∑
i=0

(
2m+ 1

i

)
(−1)i Ln

(2m+1−2i)tF(2m+1−2i)t(n+1).
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Theorem 2.3. i) For t > 0,

n∑
k=0

(
n

k

)
(−1)k F 2m

(2k+1)t

=



5
(n−2m)

2

m−1∑
i=0

(−1)i(t+1)

(
2m

i

)
Fn
(2m−2i)tL(2m−2i)t(n+1)

+ 1
5m

(
2m

m

)
(−1)m(t+1) [n = 0] if n is even,

−5
(n−2m+1)

2

m−1∑
i=0

(−1)i(t+1)

(
2m

i

)
Fn
(2m−2i)tF(2m−2i)t(n+1) if n is odd.

ii) For odd t > 0,

n∑
k=0

(
n

k

)
(−1)k F 2m+1

(2k+1)t =
(−1)n

5m

m∑
i=0

(
2m+ 1

i

)
Ln
(2m+1−2i)tF(2m+1−2i)t(n+1),

and, for even t > 0,

n∑
k=0

(
n

k

)
(−1)k F 2m+1

(2k+1)t

=


5

(n−2m)
2

m∑
i=0

(−1)i
(
2m+ 1

i

)
Fn
(2m+1−2i)tF(2m+1−2i)t(n+1) if n is even,

−5
(n−2m−1)

2

m∑
i=0

(−1)i
(
2m+ 1

i

)
Fn
(2m+1−2i)tL(2m+1−2i)t(n+1) if n is odd.

Proof. i) For t > 0, by (2), consider

n∑
k=0

(
n

k

)
(−1)k F 2m

(2k+1)t

=

n∑
k=0

(
n

k

)
(−1)k

(
α(2k+1)t − β(2k+1)t

α− β

)2m

=
1

(α− β)2m

n∑
k=0

(
n

k

)
(−1)k

m−1∑
i=0

(
2m

i

)
(−1)i(t+1)

×
(
α(2m−2i)t(2k+1) + β(2m−2i)t(2k+1)

)
+

(
2m

m

)
(−1)m

1

(α− β)2m

n∑
k=0

(
n

k

)
(−1)k (−1)(2k+1)tm

=
1

5m

m−1∑
i=0

(
2m

i

)
(−1)i(t+1)

n∑
k=0

(
n

k

)
(−1)k L(2m−2i)t(2k+1)

+
1

5m

(
2m

m

)
(−1)m(t+1)

n∑
k=0

(
n

k

)
(−1)k ,
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which, by taking s = r = (2m− 2i) t in (6) in Lemma 1.1 and
∑n

k=0

(
n
k

)
(−1)k =

[n = 0] , gives the claimed result.
ii) For t > 0, by (2), consider

n∑
k=0

(
n

k

)
(−1)k F 2m+1

(2k+1)t

=
n∑

k=0

(
n

k

)
(−1)k

(
α(2k+1)t − β(2k+1)t

α− β

)2m+1

=
1

(α− β)2m+1

n∑
k=0

(
n

k

)
(−1)k

m∑
i=0

(
2m+ 1

i

)
(−1)i+ti

×
(
α(2m+1−2i)t(2k+1) − β(2m+1−2i)t(2k+1)

)
=

1

5m

m∑
i=0

(
2m+ 1

i

)
(−1)i(t+1)

n∑
k=0

(
n

k

)
(−1)k F(2m+1−2i)t(2k+1)

which, by taking s = r = (2m+ 1− 2i) t in (5) in Lemma 1.1, gives the claimed
result. �

Following the proof way of Theorem 2.3, we have the following result:

Theorem 2.4. i)For t > 0,

n∑
k=0

(−1)k
(
n

k

)
F 2m
2kt

=



5
(n−2m)

2

m−1∑
i=0

(−1)i
(
2m

i

)
Fn
2(m−i)tL2(m−i)tn

+ 1
5m

(
2m

m

)
(−1)m [n = 0]

if n is even,

−5
(n−2m+1)

2

m−1∑
i=0

(−1)i
(
2m

i

)
Fn
2(m−i)tF2(m−i)tn if n is odd,

ii) For odd t > 0,
n∑

k=0

(−1)k
(
n

k

)
F 2m+1
2kt = (−1)n

1

5m

m∑
i=0

(−1)i
(
2m+ 1

i

)
Ln
(2m−2i+1)tF(2m−2i+1)tn,

and for even t > 0,

n∑
k=0

(−1)k
(
n

k

)
F 2m+1
2kt

=


5

(n−2m)
2

m∑
i=0

(−1)i
(
2m+ 1

i

)
Fn
(2m−2i+1)tF(2m−2i+1)tn if n is even

−5
(n−2m−1)

2

m∑
i=0

(−1)i
(
2m+ 1

i

)
Fn
(2m−2i+1)tL(2m−2i+1)tn if n is odd

.
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3. Binomial Sums and Binomial Alternating Sums for Lucas Num-
bers

Now we consider binomial and alternating binomial sums of powers of Lucas
numbers.

Theorem 3.1. i) For t > 0,

n∑
k=0

(
n

k

)
L2m
2kt =

m−1∑
i=0

(
2m

i

)
Ln
2(m−i)tL2(m−i)tn +

(
2m

m

)
2n.

ii)For even t > 0,

n∑
k=0

(
n

k

)
L2m+1
2kt =

m∑
i=0

(
2m+ 1

i

)
Ln
(2m−2i+1)tL(2m−2i+1)tn,

and, for odd t > 0,

n∑
k=0

(
n

k

)
L2m+1
2kt =


5n/2

m∑
i=0

(
2m+ 1

i

)
Fn
(2m−2i+1)tL(2m−2i+1)tn if n is even,

5(n+1)/2
m∑
i=0

(
2m+ 1

i

)
Fn
(2m−2i+1)tF(2m−2i+1)tn if n is odd.

Proof. i) For t > 0, by the Binet formula of {Ln} and (1), we write

n∑
k=0

(
n

k

)
L2m
2kt

=
n∑

k=0

(
n

k

)(
α2kt + β2kt

)2m
=

n∑
k=0

(
n

k

)(m−1∑
i=0

(
2m

i

)(
α2(2m−2i)tk + β2(2m−2i)tk

)
+

(
2m

m

)
(αβ)2ktm

)

=

m−1∑
i=0

(
2m

i

) n∑
k=0

(
n

k

)
L2(2m−2i)tk +

(
2m

m

) n∑
k=0

(
n

k

)
,

which, by taking s = (2m− 2i) t and r = 0 in (4) in Lemma 1.1, gives the claimed
result.
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ii) For t > 0, by the Binet formula of {Ln} and (1), we write

n∑
k=0

(
n

k

)
L2m+1
2kt

=

n∑
k=0

(
n

k

)(
α2kt + β2kt

)2m+1

=
n∑

k=0

(
n

k

) m∑
i=0

(
2m+ 1

i

)(
α2(2m+1−2i)tk + β2(2m+1−2i)tk

)
=

m∑
i=0

(
2m+ 1

i

) n∑
k=0

(
n

k

)
L2(2m+1−2i)tk

which, by taking s = (2m+ 1− 2i) t and r = 0 in (4) in Lemma 1.1, gives the
claimed result. �

Following the proof way of the previous Theorems, we give the following results
without proof:

Theorem 3.2. i) For t > 0,

n∑
k=0

(
n

k

)
L2m
(2k+1)t =

m−1∑
i=0

(
2m

i

)
(−1)ti Ln

2(m−i)tL2(m−i)t(n+1) +

(
2m

m

)
(−1)tm 2n.

ii) For even t > 0,

n∑
k=0

(
n

k

)
L2m+1
(2k+1)t =

m∑
i=0

(
2m+ 1

i

)
Ln
(2m−2i+1)tL(2m−2i+1)t(n+1),

and, for odd t > 0,

n∑
k=0

(
n

k

)
L2m+1
(2k+1)t

=


5

n
2

m∑
i=0

(
2m+ 1

i

)
(−1)i Fn

(2m−2i+1)tL(2m−2i+1)t(n+1) if n is even,

5
(n+1)

2

m∑
i=0

(
2m+ 1

i

)
(−1)i Fn

(2m−2i+1)tF(2m−2i+1)t(n+1) if n is odd.

Theorem 3.3. i) For t > 0,

n∑
k=0

(
n

k

)
(−1)k L2m

2kt

=


5

n
2

m−1∑
i=0

(
2m

i

)
Fn
(2m−2i)tL(2m−2i)tn +

(
2m

m

)
[n = 0] if n is even,

−5
(n+1)

2

m−1∑
i=0

(
2m

i

)
Fn
(2m−2i)tF(2m−2i)tn if n is odd.
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ii) For odd t > 0,

n∑
k=0

(
n

k

)
(−1)k L2m+1

2kt = (−1)n
m∑
i=0

(
2m+ 1

i

)
Ln
(2m+1−2i)tL(2m+1−2i)tn,

and, for even t > 0,
n∑

k=0

(
n

k

)
(−1)k L2m+1

2kt

=


5

n
2

m∑
i=0

(
2m+ 1

i

)
Fn
(2m+1−2i)tL(2m+1−2i)tn if n is even,

−5
(n+1)

2

m∑
i=0

(
2m+ 1

i

)
Fn
(2m+1−2i)tF(2m+1−2i)tn if n is odd.

Theorem 3.4. i) For t > 0,

n∑
k=0

(
n

k

)
(−1)k L2m

(2k+1)t

=



5n/2
m−1∑
i=0

(
2m

i

)
(−1)ti Fn

(2m−2i)tL(2m−2i)t(n+1)

+

(
2m

m

)
(−1)tm [n = 0]

if n is even,

−5(n+1)/2
m−1∑
i=0

(
2m

i

)
(−1)ti Fn

(2m−2i)tF(2m−2i)t(n+1) if n is odd.

ii) For odd t > 0,

n∑
k=0

(
n

k

)
(−1)k L2m+1

(2k+1)t = (−1)n
m∑
i=0

(
2m+ 1

i

)
(−1)i Ln

(2m+1−2i)tL(2m+1−2i)t(n+1),

and, for even t > 0,

n∑
k=0

(
n

k

)
(−1)k L2m+1

(2k+1)t

=


5

n
2

m∑
i=0

(
2m+ 1

i

)
Fn
(2m+1−2i)tL(2m+1−2i)t(n+1) if n is even,

−5
(n+1)

2

m∑
i=0

(
2m+ 1

i

)
Fn
(2m+1−2i)tF(2m+1−2i)t(n+1) if n is odd.
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