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EXACT SOLUTIONS FOR AN ELLIPTICAL INCLUSION IN
PLANE ELASTICITY

Romeo Bercia1

In această lucrare obţinem soluţia exactă a problemei unei inclu-
ziuni elastice de profil eliptic ı̂ntr-o matrice elastică infinită. Este presu-
pusă stare de deformaţie plană. La infinit sunt impuse tensiuni liniare,
ceea ce ı̂nglobează cazurile tracţiunii, compresiunii, forfecării simple sau
ı̂ncovoierii. Metoda constă ı̂n determinarea potenţialilor complecşi ϕ and ψ
ı̂n interiorul şi exteriorul incluziunii, care satisfac condiţiile de aderenţă la
interfaţă. Pentru tensiuni constante impuse la infinit regăsim rezultatele lui
Hardiman. In cazul stării de ı̂ncovoiere, punem ı̂n evidenţă diferenţe faţă
de soluţia obţinută de Sendeckyj.

In this paper, we shall give exact solutions for the problem of one elliptical
elastic inclusion in an infinite body. Plane deformation state is assumed
both in matrix and inclusion. Linear stresses are imposed at infinity, wich
means that simple tension, all-round tension, simple shear and bending at
infinity may be recovered as particular cases. The method consists in finding
the complex potentials ϕ and ψ inside and outside the inclusion wich give the
continuity of resultant stress vector and displacement across the interface.
This yields much simpler equations, that not involve second order derivatives
of the potentials. For constant stresses at infinity, on obtain the same results
with the method used by Hardiman [1] for the plate in generalized plane
stress. In the case of a bending field at infinity, the solution show that
bending is induced inside the inclusion, but also a rigid translation is present
wich was not signaled by Sendeckyj [4].
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1. Problem statement

For an isotropic elastic solid, having shear modulus µ and Poisson ratio
ν, in a state of plane deformation parallel to the x, y plane, the displacements
and stresses can be written in terms of Muskhelishvili’s complex potentials
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ϕ(z), ψ(z) [3]

σxx + σyy = 2
(
ϕ′(z) + ϕ′(z)

)
, (1)

σyy − σxx − 2iσxy = 2
(
zϕ′′(z) + ψ′(z)

)
, (2)

2µ(u+ iv) = κϕ(z)− zϕ′(z)− ψ(z), (3)

where κ = 3− 4ν.
Let Xnds and Ynds be the components of the stress vector applied to an

element of arc ds on the positive side of the normal. Then, for an arbitrary

arc ÂB the resultant stress vector is given by [3]∫
ÂB

(Xn + iYn) ds = −i
(
ϕ(z) + zϕ′(z) + ψ(z)

)∣∣∣B
A
.

Let D2 be an elastic infinite body that contains an elastic inclusion D1.
We assume that the two bodies are perfectly bonded on the interface Γ =
D2 ∩D1 and that both regions are is state of plane deformation.

The elastic matrix D2 is subjected to linear stresses at infinity, described
by the potentials

ϕ∞(z) = C11z + C2z
2, ψ∞(z) = G1z +G2z

2, (4)

where C11 is real and C2 = C21 + iC22, Gk = Gk1 + iGk2 are complex constants.
Letting subscripts 1 and 2 on functions and elastic constants refer to the

inclusion and matrix respectively, the boundary conditions corresponding to
a perfect bond at the interface are the continuity of the displacements and
tractions along the interface Γ, namely

1

2µ2

(
κ2ϕ2 − zϕ′2(z)− ψ2(z)

)
=

1

2µ1

(
κ1ϕ1 − zϕ′1(z)− ψ1(z)

)
, (5)

ϕ2(z) + zϕ′2(z) + ψ2(z) = ϕ1(z) + zϕ′1(z) + ψ1(z), (6)

for z ∈ Γ, where for definiteness, the condition

ϕ2(z0)− ϕ′2(z0) + ψ2(z0)− ϕ1(z0) + ϕ′1(z0)− ψ1(z0) = 0,

for z0 ∈ Γ fixed, has been taken.
The presence of the inclusion give rise to disturbance of the remote fields.

We introduce the potentials of these disturbances

ϕ (z) = ϕ2 (z)− ϕ∞ (z) , ψ (z) = ψ2 (z)− ψ∞ (z) . (7)

Linear combinations of equations (5) and (6) give rise to the following equations

ϕ (z) =
1 + c

b
ϕ1 (z) +

c

b

(
zϕ′1(z) + ψ1(z)

)
− ϕ∞ (z) , (8)

ψ (z) = −1 + c− b
b

ϕ1 (z) +
b− c
b

(zϕ′1(z) + ψ1(z))

−zϕ′(z)− zϕ′∞(z)− ψ∞ (z) , (9)
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for z ∈ Γ, where

b =
κ2 + 1

κ1 + 1

µ1

µ2

, c =
1

κ1 + 1

µ1 − µ2

µ2

.

2. Elliptic inclusion

Consider an elliptical elastic inclusion with the boundary Γ described by
the equation

x2 +
y2

ε2
= 1.

where 0 < ε ≤ 1. Let ξ be a complex variable related to z by the transformation

z = ω (ξ) = h
(
ξ + λξ−1

)
, (10)

with h = 1+ε
2

and λ = 1−ε
1+ε

. Equation (10) maps the unit circle |ξ| = 1 in the
ξ-plane into the interface Γ in the z-plane and points exterior to the circle are
mapped uniquely into points exterior to Γ.

In terms of ξ, equations (8)-(9) are

ϕ̂ (ξ) =
1 + c

b
ϕ̂1 (ξ) +

c

b

ω (ξ)

ω′ (ξ)
ϕ̂′1(ξ) +

c

b
ψ̂1(ξ)− ϕ̂∞ (ξ) , (11)

ψ̂ (ξ) = −1 + c− b
b

ϕ̂1 (ξ) +
b− c
b

ψ̂1(ξ)− ψ̂∞ (ξ)

+
ω (ξ)

ω′ (ξ)

(
b− c
b

ϕ̂′1(ξ)− ϕ̂′(ξ)− ϕ̂′∞(ξ)

)
, (12)

where φ̂ (ξ) = φ (ω (ξ)) .

Because lim|ξ|→∞ ϕ̂ (ξ) = lim|ξ|→∞ ψ̂ (ξ) = 0 and ϕ̂ (ξ) , ψ̂ (ξ) are analytic
in |ξ| > 1, we write their Laurent expansions

ϕ̂ (ξ) =
∞∑
k=1

fk

(2h)k
ξ−k, ψ̂ (ξ) =

∞∑
k=1

dk

(2h)k
ξ−k. (13)

For the interior potentials we assume

ϕ1 (z) = A0 + A1z + A2z
2, ψ1 (z) = B0 +B1z +B2z

2, (14)

where Aj = Aj1 + iAj2 and Bj = Bj1 + iBj2 are complex constants.
When the expresions (4), (13), (14) are substituted in (11) and the coef-

ficients of the same powers of ξ are equated we find

(1 + c)A2 + 2λcA2 + λ2cB2 = bC2 (15)

(1 + c)A1 + cA1 + λcB1 = bC1 (16)

(1 + c)A0 + cB0 = −2cε
(
A2 + λB2

)
(17)

f1 = 2
c

b
εB1 (18)

f2 = 2
c

b
ε
(
B2 + A2

)
+ 2

c

b
ε3
(
B2 − A2

)
(19)
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and fk = 0 for k = 3, 4, ... .
Hence we get the expresion of the disturbance potential

ϕ (z) = f1
z −
√
z2 − 1 + ε2

1− ε2
+ f2

(
z −
√
z2 − 1 + ε2

1− ε2

)2

. (20)

Similarly, when the expresions (4), (13), (14) and (20) are substituted in
(12) and the coefficients of the same powers of ξ are equated we find

2λ (b− c)A2 − λ2 (1 + c− b)A2 + (b− c)B2 = 2λbC2 + bG2 (21)

λ (b− c)A1 − λ (1 + c− b)A1 + (b− c)B1 = λbC1 + bG1 (22)

− (1 + c− b)A0 + (b− c)B0 = 2ε (1 + 2c− b)
(
A2 + λA2

)
+ 2εcλ

(
A2 + λB2

)
(23)

d1 = −2ε
1 + 2c− b

b

(
A1 + A1

)
(24)

d2 = −2ε

(
1 + 2c− b

b

(
A2 + A2

)
− c

b

(
B2 + A2

))
+2ε3

(
1 + 2c− b

b

(
A2 − A2

)
− c

b

(
B2 − A2

))
(25)

∞∑
k=3

dk

(2h)k
ξ−k =

(
f1

1

2hξ
+ 2f2

1

4h2ξ2

)
1 + λ2

ξ2 − λ
(26)

From these relations we deduce the expresion of the other disturbance
potential

ψ (z) = d1
z −
√
z2 − 1 + ε2

1− ε2
+ d2

(
z −
√
z2 − 1 + ε2

1− ε2

)2

+f1
1 + ε2

(1− ε2)2

(
z −
√
z2 − 1 + ε2

)2
√
z2 − 1 + ε2

+ 2f2
1 + ε2

(1− ε2)3

(
z −
√
z2 − 1 + ε2

)3
√
z2 − 1 + ε2

3. Exact solution

The system of equations is not full coupled. Solving (15), (21) we obtain
A2, B2 and, next, f2 and d2 results using (19), (25). These constants depend
only on C2 and G2. Next, the constants A0 and B0 can be obtained solving
(17), (23).

From (16), (22) we find the constants A1, B1 and substituting them in
(18), (24) we get f1 and d1, both of them using only C1 and G1. This proce-
dure show that we can analyse separately constant stresses and linear stresses
imposed at infinity.
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3.1. Elliptic inclusion disturbing a constant stress field

If constant stresses σ∞xx, σ
∞
yy, σ

∞
xy are imposed at infinity, we have

C11 =
1

4

(
σ∞xx + σ∞yy

)
, G1 =

1

2

(
σ∞yy − σ∞xx

)
+ iσ∞xy.

Equating real and imaginar parts in (16), (22) we obtain two systems which
yelds

∆11A11 =
(
(b− 2c) + 2bε+ (b− 2c) ε2

)
C11 − c

(
1− ε2

)
G11,

∆11B11 = 2
(
1− ε2

)
(1 + 2c− b)C11 + (1 + ε)2 (1 + 2c)G11,

∆11 = (1 + ε)2 − 4
c

b
(1 + 2c− 2b) ε,

and

∆12A12 = c
(
1− ε2

)
G12,∆12B12 = (1 + ε)2G12,∆12 = (1 + ε)2 − 4

c

b
ε.

These results show that if shear modulus are different, µ1 6= µ2, or the inclusion
is not circular, ε < 1, then shearing imposed at infinity, σ∞xy = G12 6= 0, implies
also a rigid rotation (A12 6= 0) of the inclusion, wich was not present in the
solution done by Sendeckyj [4]. Our results agree with those obtained for this
problem of plane deformation using the method of Hardiman [1] for generalized
plane stress.

3.2. Elliptic inclusion disturbing a linear stress field

Equating real and imaginar parts in (15), (21) we obtain two systems
which yields

∆21A21 =
((

(b− c) (1 + ε)4 − 2c
(
1− ε2

)
(1− ε)2)C21 − c

(
1− ε2

)2
G21

)
∆21B21 =

(
2 (1 + 2c− b)

(
1− ε2

)
+ (1 + 5c− b) (1− ε)2) (1 + ε)2C21

+
(
(1 + c) (1 + ε)2 + 2c

(
1− ε2

))
(1 + ε)2G21

∆21 = (1 + ε)4 − 8
c

b
ε3 − 8

c

b
(1 + 2c− 2b) ε

and

∆22A22 =
(
(b− c) (1 + ε)4 + 2c

(
1− ε2

)
(1− ε)2)C22 + c

(
1− ε2

)2
G22

∆22B22 =
(
2 (1 + 2c− b)

(
1− ε2

)
− (1 + 5c− b) (1− ε)2) (1 + ε)2C22

+
(
(1 + c) (1 + ε)2 − 2c

(
1− ε2

))
(1 + ε)2G22

∆22 = (1 + ε)4 − 8
c

b
ε− 8

c

b
(1 + 2c− 2b) ε3

From (17), (23) we get
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A0 = −2εc

(
λ

1 + 3c− b
b

A2 +
1 + c

b
A2 + λ2 c

b
B2 + λ

b− c
b

B2

)
(27)

B0 = 2ε
1 + c− b

b

(
A2 + (1 + c)λA2 − λcB2

)
+2ε

c

b
(1 + c)

(
A2 + 2λA2 + λ2B2

)
(28)

which yields a rigid translation in the inclusion

κ1A0 −B0

2µ1

= −ε 1

µ2

(
2
c

b
λA2 +

1 + c− b
b

(
λA2 + A2

)
+ λ

c

b

(
λB2 −B2

))
+ε

µ2 − µ1

µ2µ1

(
A2 + λB2

)
If bending stresses are imposed at infinity σ∞xy = 0, σ∞yy = 8Sx cos t,

σ∞xx = −8Sy sin t, then C21 = G21 = S cos t and C22 = −G22 = S sin t in the
above formulas. For t = 0 we find A22 = B22 = 0 and

κ1A0 −B0

2µ1

= −ε 1

µ2

(
2
c

b
λA21 +

1 + c− b
b

(λ+ 1)A21 + λ
c

b
(λ− 1)B21

)
+ε

µ2 − µ1

µ2µ1

(A21 + λB21)

wich represents the rigid translation of the inclusion. On observe that this
translation is vanishing if µ1 = µ2 and κ1 = κ2. For µ1 6= µ2 or κ1 6= κ2 the
translation can be present even if the inclusion is circular, λ = 0. In conclusion,
bending field at infinity give rise also to a rigid translation of the inclusion.
This fact is omitted in the solution given by Sendeckyj [4].
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