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EXACT SOLUTIONS FOR AN ELLIPTICAL INCLUSION IN
PLANE ELASTICITY

Romeo Bercial

In aceasta lucrare obfinem solutia exacta a problemei unei inclu-
ziuni elastice de profil eliptic intr-o matrice elastica infinita. FEste presu-
pusa stare de deformatie planda. La infinit sunt tmpuse tensiuni liniare,
ceea ce inglobeaza cazurile tractiunii, compresiunii, forfecarii simple sau
incovoierii. Metoda consta in determinarea potentialilor complecst ¢ and ¥
in interiorul si exteriorul incluziunii, care satisfac conditiile de aderentd la
interfata. Pentru tensiuni constante impuse la infinit regasim rezultatele lui
Hardiman. In cazul starii de incovoiere, punem in evidenta diferente fata
de solutia obtinutd de Sendeckyj.

In this paper, we shall give exact solutions for the problem of one elliptical
elastic inclusion in an infinite body. Plane deformation state is assumed
both in matriz and inclusion. Linear stresses are imposed at infinity, wich
means that simple tension, all-round tension, simple shear and bending at
infinity may be recovered as particular cases. The method consists in finding
the complex potentials p and 1) inside and outside the inclusion wich give the
continuity of resultant stress vector and displacement across the interface.
This yields much simpler equations, that not involve second order derivatives
of the potentials. For constant stresses at infinity, on obtain the same results
with the method used by Hardiman [1] for the plate in generalized plane
stress. In the case of a bending field at infinity, the solution show that
bending is induced inside the inclusion, but also a rigid translation is present
wich was not signaled by Sendeckyj [4].
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1. Problem statement

For an isotropic elastic solid, having shear modulus p and Poisson ratio
v, in a state of plane deformation parallel to the x,y plane, the displacements
and stresses can be written in terms of Muskhelishvili’s complex potentials
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o(2), ¥(2) [3]
Gret oy = 2(¢()+9(). M
Ow = e = 20y = 2 (207(2) + U(2)) 2)
2u(utiv) = rp(z) = 2p() — (), (3)

where kK = 3 — 4v.

Let X, ds and Y,,ds be the components of the stress vector applied to an
elem/egt of arc ds on the positive side of the normal. Then, for an arbitrary
arc AB the resultant stress vector is given by [3]

| (it ds = =i (o) + 27 + 90

Let Dy be an elastic infinite body that contains an elastic inclusion D;.
We assume that the two bodies are perfectly bonded on the interface I' =
D, N Dy and that both regions are is state of plane deformation.

The elastic matrix Dy is subjected to linear stresses at infinity, described
by the potentials

Poo(2) = Chiz + Co2%, oo (2) = Gz + G2, (4)

where C1; is real and Cy = Cy1 +1C5, Gy, = G +iGyo are complex constants.

Letting subscripts 1 and 2 on functions and elastic constants refer to the
inclusion and matrix respectively, the boundary conditions corresponding to
a perfect bond at the interface are the continuity of the displacements and
tractions along the interface I', namely

sy (ro02 = S 1) = g (e = A - 0) . O

2412
p2(2) + 205(2) + 1a(2) = @1(2) + 291 (2) + i (2), (6)
for z € I', where for definiteness, the condition

©2(20) — ¥5(20) + 12(20) — @1(20) + ¢ (20) — Y1(20) =
for zy € I' fixed, has been taken.

The presence of the inclusion give rise to disturbance of the remote fields.
We introduce the potentials of these disturbances

P (2) = ¢2(2) = 9o (2), ¥ (2) = P2 (2) — ¥ (2). (7)

Linear combinations of equations (5) and (6) give rise to the following equations

o) = o)+ (D RD) —eula), @)
0 = T+ )+ 2)

—2¢'(2) = 205 (2) = ¥ec (2) (9)
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for z € I', where

/€2+1ﬂc_ Ly — po
/<;1+1,u2’ l€1+1 2 .

2. Elliptic inclusion

Consider an elliptical elastic inclusion with the boundary I' described by

the equation

2
x2+y—2:1.
€

where 0 < € < 1. Let £ be a complex variable related to z by the transformation
z=w(@)=h(E+ X7, (10)
with h = £ and \ = + . Equation (10) maps the unit circle || = 1 in the

2
&-plane into the interface F in the z-plane and points exterior to the circle are

mapped uniquely into points exterior to I'.
In terms of &, equations (8)-(9) are

. 1t e cw(§) = c= R
PO = RO TSRO RO 2@, (1
5O = G+ 0O D (©

w(g) b—c ~ o~

+28 (20 - 10 - 100)). (12)

where g/g(f) = ¢ (w(&)).

Because limje| oo @ (§) = limjgj—oo 12({) =0and ¢ (¢), @E(f) are analytic
in |£] > 1, we write their Laurent expansions

o] dk e
Z ks (€)= Z(%)kﬁ- (13)

k=1

For the interior potentlals we assume
®1 (Z) = AO + Alz —+ AQZQ, 77/}1 (2) = BO + B12 + BQZQ, (14)

where A; = Aj; +iAj, and B; = Bj; + iBj, are complex constants.
When the expresions (4), (13), (14) are substituted in (11) and the coef-
ficients of the same powers of £ are equated we find

(1+c¢) Ay + 2XcAy + N’cBy = bCy (15)
(14¢) Ay +cA; +XeB, = bC) (16)
(14+c¢) Ao+ cBy = —2ce (Ay+ AB,) (17)
h = 2B (18)

C

fy = 255(E+A_2)+2gs3 (B, — 43) (19)
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and fp, =0 for k=3,4,....
Hence we get the expresion of the disturbance potential

z—\/z2—1+52+f (z—\/z2—1+52)2
2 )

p(2) = fi (20)

1 —g2 1 —¢e2

Similarly, when the expresions (4), (13), (14) and (20) are substituted in
(12) and the coefficients of the same powers of £ are equated we find

2A(b—c) Ay — N (1+c—b) Ay +(b—c)By = 2\bCy +bGy  (21)
Ab—c)A = A1 +c—bA +(b—c)B, = XC,+bG,  (22)

—(1+c—0b)Ag+ (b—c) By = 2e (14 2c — b) (As + AAy) + 2ech (Ay + ABy)

(23)
h = 2R () )
dy = —2 <#C_b (Ay +A4;) — g (FQ+A—2))
+2¢* (%C_b (A2 — A3) - g (Bz - A_2)> (25)
00 dk _ 1 1 1 +>\2
kzzg (Qh)’“5 - (ﬁﬂ i 2f24h2£2) €2 —\ (26)

From these relations we deduce the expresion of the other disturbance
potential

Y(z)=d

1—¢e2 1 —¢&2

z—\/z2—1+52+d (2—\/,22—1—1—82)2
2

1+ (—VE2—11&)
(1—e2)® V22—1+¢2

1+ (z—VZ—1+e2)
(1 —52)3 Vz2—1+4¢?

+2f2

+f1

3. Exact solution

The system of equations is not full coupled. Solving (15), (21) we obtain
Ay, By and, next, fo and ds results using (19), (25). These constants depend
only on Cy and G5. Next, the constants Ay and By can be obtained solving
(7). (23).

From (16), (22) we find the constants A;, By and substituting them in
(18), (24) we get f1 and dy, both of them using only C; and G;. This proce-
dure show that we can analyse separately constant stresses and linear stresses
imposed at infinity.
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3.1. Elliptic inclusion disturbing a constant stress field

If constant stresses 052, 0%, 02 are imposed at infinity, we have

zxs Y yy) xy

1

1
C'H:1(0%4—052),(}1:5(0;;—0;;)—1-2'03

Equating real and imaginar parts in (16), (22) we obtain two systems which
yelds

AHAH = ((b — 26) + 2be + (b — 26) 62) 011 —C (]. — 82) Glla
AnBn = 2(1—€%) (14+2c—b)Ci+ (1+¢)* (1 +2¢) G,
Ay = (1+5)2—4g (1+2c—2b)e,

and

&
A12A12 =C (1 — 52) G12; AlgBlg = (1 + 5)2 G12; Alg = (1 + €)2 — 458

These results show that if shear modulus are different, p; # o, or the inclusion
is not circular, € < 1, then shearing imposed at infinity, o3y = G12 # 0, implies
also a rigid rotation (Aja # 0) of the inclusion, wich was not present in the
solution done by Sendeckyj [4]. Our results agree with those obtained for this
problem of plane deformation using the method of Hardiman [1] for generalized
plane stress.

3.2. Elliptic inclusion disturbing a linear stress field
Equating real and imaginar parts in (15), (21) we obtain two systems
which yields
N1 Ay = (((b —¢)(1+¢e)" —2¢ (1-¢*)(1- 5)2) Cor —c(1— 82)2 Ggl)
ApBy = (2(1+42c=b) (1 =€)+ (1 +5c—b)(1—¢2)*) (1+¢e)*Cxn
(M +e)(1+e)+2¢(1—2%)) (1+¢)*Ga

Ao = (1+5)4—8gs3—8g(1+2c—2b)5

and
ApAyp = (b—c)(1+e)' +2c(1—€)(1—¢)*) Cop+c(l— 52)2 G2
ApBy = (2(1+2c—0b) (1—¢%) — (1 +5c—0b)(1—¢)*) (1 +¢)* Oy
+((1+e)(1+e)?—2c(1—¢€%)) (1+¢)* G

A = (1+5)4—8§5—8£(1+20—2b)53

From (17), (23) we get
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1 — 1 _ —
AO = —2ec ()\ + SbC bAQ + _;)_ CAQ + )\QEBQ + )\b b CBQ) (27)
1 —b __
By = 25% (Ag + (14+¢) AAs — /\cBg)
+25£ (1+4¢) (A2 + 2045 + A*By) (28)

which yields a rigid translation in the inclusion

k1Ay — By 1 c 1+c—b — c —
T = e (2[-)AA2 +— (Ma+ A4y) + A (AB;y — BQ))
z H
+2 7 (F, 4+ 0B,
M2

If bending stresses are imposed at infinity o7y = 0, o0 = 85w cost,
o0 = —8Sysint, then Uy = G = Scost and Uy = —Gyy = Ssint in the
above formulas. For ¢t = 0 we find Ay = By = 0 and

HlAO_FO 1 C 14+c—b C
——— = ——(2-)A — A+ 1A A~ (AN—=1)B
20 5@( b 21 + b (A+1) Ay + b( ) 21)
2T (A 4 ABy)
M2t

wich represents the rigid translation of the inclusion. On observe that this
translation is vanishing if pu; = ps and k1 = ko. For py # ps or k1 # Ko the
translation can be present even if the inclusion is circular, A = 0. In conclusion,
bending field at infinity give rise also to a rigid translation of the inclusion.
This fact is omitted in the solution given by Sendeckyj [4].
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