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STIFFNESS ANALYSIS OF A CABLE-DRIVEN
COORDINATELY LIFTING ROBOT

Xijie WANG!

The dynamics and stiffness of a cable-driven coordinately lifting robot
(CDCLR) system is studied in this paper. Firstly, the mechanism composition and
working principle of the designed CDCLR were introduced. Secondly, the
kinematics and dynamics model of the CDCLR system were established, and on this
basis, a cable tension optimization method was given. The analytical expression of
the stiffness for the CDCLR system was then derived. Finally, the dynamic model of
CDCLR was verified, by a numerical example, and the stiffness distribution of the
CDCLR system was discussed. The research results will provide a theoretical basis
for the stability of the CDCLR and the motion planning control problem of the fixed
pulleys.

Keywords: coordinately lifting robot, cable-driven parallel robot, dynamics,
optimization method, stiffness.

1. Introduction

In recent years, the cable-driven parallel robots (CDPR) have been widely
used in the fields of rehabilitation, port hoisting, ocean engineering, radio
telescopes, and wind tunnel tests and so on [1-2], mainly because the workspace
and stiffness of this type of robot can be adjusted, and it has high motion speed,
good flexibility, strong reconfigurability and ability to complete more complex
lifting tasks [3], the CDPR has attracted the interest of many engineering
researchers.

Because the above-mentioned performance advantages and characteristics
of the CDPR, the application research of the CDPR system in lifting and
transportation aspect is of great significance. Prof. Zhao Z-g. studied a multi-robot
coordinately towing robot system. The motion error of the towing robot system
and the sensitivity of the error sources to the motion error of the lifted object were
analyzed using the total differential method of the matrix [4], and the dynamics of
the system was studied [5-6]. Liu. et al. studied the optimization problem of the
cable tensions using the adaptive genetic algorithm [7]. Su. et al. proposed an
optimization method of an Adaptive Multi-Island Genetic Algorithm based on
Information Entropy of the Population based on the genetic algorithm. The
optimization solution was carried out to analyze the cable tensions of the CDPR.
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The research results show that this method effectively improves the ability and
practicability of global optimization solution [8].

The stiffness of the CDPR system is of great significance to the motion
stability and motion accuracy of the lifted objects [9], so its stiffness problem is
studied by the scientists. Ma. et al. discussed the static stiffness of the multi-robot
towing robot system considering the stiffness of each robot, but the stiffness of the
cables did not considered [10]. Zi. et al. derived the analytical expressions of the
stiffness for the CDPR along the three coordinate axes [11]. Marc Arsenault
analyzed the feasible region and stiffness of the cable parallel mechanism
considering the cable quality [12]. Duan. et al. studied the stiffness of a CDPR
with a spring. After adding the spring, the fixed stiffness and controllable stiffness
of the system are increased [13-14], but the elasticity of the cables did not
considered. Therefore, it is necessary to consider the elasticity of the cables to
conduct in-depth research on the stiffness of the CDCLR system in order to
reasonably plan the work task of the lifted object and improve the structure of the
CDCLR.

Based on the above research work, a CDCLR is introduced in this paper.
The CDCLR has three degrees of freedom. It can realize the desired motion
control of the lifted object through the coordinated control of four groups of cable
drive units, and its dynamics and stiffness are analyzed. The other parts of this
paper are arranged as follows: the mechanism model and working principle of the
CDCLR are described in detail in Section 2. In Section 3, the kinematics and
dynamics models of the CDCLR are derived, and the optimization method of the
cable tensions is given through the minimum variance of the cable tensions. The
analytical expression of the stiffness for the CDCLR is derived in detail in Section
4. A simulation analysis is carried out through a special example in Section 5.
Finally, the conclusions of this paper and future work are given.

2. Mechanical design

The desired motion control of the lifted object for the CDCLR can be
realized through the coordinated movement of the cables. In the designed CDCLR
in this paper, the lifted object has three degrees of freedom. The structure model
of the CDCLR is shown in Fig. 1, which its mechanical system is mainly
composed of motors, guide pulleys, cables, lifted object and masts.

In the CDCLR system, one end of the cables is fixed to the lifted object,
and the other end is fixed to the winch mounted on the motor through the guide
pulley. According to the actual requirements, the motion control plan is completed,
in the control center, and the control command is generated and then sent them to
the lower computer to control the motion of the motors. The motor drive cable
motion to realize the elongation and contraction movement of the cable. The
spatial motion of the lifted object can be realized by the coordinated motion
control of the four sets of cables. The cable length displacement sensors and the
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tension sensors can collect the relevant movement data of the system, and then
transmit them to the control center to participate in the control calculation of the
CDCLR system. The closed-loop control of the CDCLR system can be realized.
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Fig. 1. The structure model of the CDCLR

In this study, it is assumed that all connection points are ideal. Due to the
mass and radius of the guide pulley used are small, the friction between the cable
and the guide pulley can be ignored. In addition, assuming that the cable is an
ideal straight line, the mass of the cable and the deflection deformation caused by
the cable mass are ignored.

3. Kinematics and dynamics analysis

The schematic diagram of the CDCLR is shown in Fig. 2. The global
coordinate system O-xyz is established. p; (i =1,2,3,4) represents the position of
the guide pulley, denoted as p; (xi, vi, zi). P denotes the lifted object, denoted as P
(x, ¥, z). [; denotes the length of the cable between the guide pulley p; and the
lifted object P, t; represents the cable tension. mg represents the gravity of the
lifted object.

The inverse kinematics problem is that when the expected position of the
lifted object in the global coordinate system are given, solving the motion
variables of the corresponding cables. Therefore, the inverse kinematics of the
CDCLR can be expressed as:

I,=0p,~OP (1)
1, =[op, - op| @
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Where I, denotes the length vector of the cables. Op, and OP represent the
position vector of the guide pulley p; and the lifted object P in the global
coordinate system, respectively.

The relationship between speed of the cables and the lifted object can be
expressed as:

L=JpP A3)

Where J, denotes the speed vector of the cable. P denotes the speed of the
lifted object. J denotes the Jacobian matrix of the CDCLR.
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Fig. 2. Kinematic model of CDCLR for the logistics warehouse

The inverse dynamics problem of the CDCLR is that when the expected
motion trajectory of the lifted object is given, solving all cable tensions.
According to Newton-Euler equation, the dynamic model of the CDCLR can be
obtained, which can be expressed as:

4
> () + mg =mP @)
i=1

Where P denotes the acceleration of the lifted object. g denotes the
acceleration of gravitation. u, denotes the unit vector of the i cable, which can

be specifically expressed as:
Op. - OP

" Jon,~or] ©
The dynamical model of the CDCLR can be further organized as:
JT=F (6)

Where T =[t,,t,,t,,t,]" is vector of the cable tensions. F =mP —mg .
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According to the configuration of the CDCLR, the matrix J is a non-
square matrix. Therefore, the cable tensions need to be solved by the pseudo-
inverse of the matrix. The cable tensions can be expressed as:

T=J'F+a-NWJ") (7)

Where J*=J"(JJ")" denotes the pseudo-inverse matrix of J . ais an
arbitrary vector. N(J") denotes the zero space vector of J .

Taking into account the load capacity of the motor and the stability of the
system, the cable tensions should meet the condition: Tmin<s T Tmax. Tmin is the
pretension of the cable to prevent the pseudo-drag problem of the cables. Tmax is

the maximum allowable cable tension determined by the cable material and the
load capacity of the motor, at this time, a satisfies the following conditions:

tom =t Lo =1, Lo =1 Towe — 1,
a,=max< min L <a <o, = min 4 max =
I 1\1\4{1< 4( N (JT) N (JT) )} @, 1<i <4{1\1\4£ N, (JT) Ni(JT) j} (8)

Where ¢, and o represent the upper and lower bounds of «, respectively,

t,, 1s the elements of the special solution vector of equation (6).

The CDCLR is a fully constrained mechanism, and there is a problem that
the cable tension is not unique. In order to meet the requirements of practical
applications, it is necessary to obtain the determined value of the cable tensions in
real-time. Therefore, further research on the optimization of the cable tensions is
required. The change of cable tensions and the uniformity of its distribution are of
great significance to the safe operation of the CDCLR. Therefore, the minimum
variance of cable tensions is chosen as the optimization objective function of
cable tensions in this paper. At this time, the optimization mathematical model of
cable tensions can be described as:

min f [24: E(t) }

1
st. J'T=F

g<o<aq,

©)

Where E()is the average value of cable tensions at the current moment.

The calculation diagram of optimization algorithm of the cable tensions
for the CDLR is shown in Fig.3.
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Fig. 3 Calculation diagram of optimization algorithm of the cable tensions for the CDLR

4. Stiffness analysis

The stiffness of the CDCLR mechanism refers to the amount of the
applied force required to cause the change of unit displacement of the lifted object.
The stiffness has a significant impact on the stability of the CDCLR system and
the position accuracy of the lifted object when the interference force is acted on.
The current research did not consider the elasticity of the cables. Therefore, the
cable model in this paper needs to be modified before analyzing the stiffness of
the CDCLR. In other words, in this study, the cables have a certain degree of
elasticity, which means that when the cable is under an external force, the elastic
deformation will occur.

According to the definition of mechanism stiffness, the stiffness of the
CDCLR can be expressed as:

_OF (oJ oT

——=(—T+J—j=KC+Kf (10)
5P _\sP 5P

Where the stiffness K represents the relationship between the interference
force SF and spatial displacementsP. K, is related to the cable tension and the

system structure, which can be controlled by the cable tension. Therefore, it is



Stiffness analysis of a cable-driven coordinately lifting robot 23

called the controllable stiffness of the CDCLR. K, is related to the system

structure and the position of the lifted object. Hence, it can be called the fixed
stiffness of the CDCLR.

Although the fixed stiffness of the CDCLR is not controlled by the cable
tension, it still has a greater impact on the system stiffness of the CDCLR. It can
be seen from equation (10) that the fixed stiffness of the CDCLR can be further
written as:

K, =g2Lol__jol (11)
ol 6P ol
Based on the cable model, one can obtain:
ot _E4 (12)
51[ ZiO

Where E, , 4 and [, respectively represent the elastic modulus, cross-

sectional area and static length of the cable.
Substituting Eq. (12) into Eq. (11) yields:

K, =—J-diag(EZlA', . EA“) J" (13)

10 l40
Assuming that when the position of the lifted object has a small deviation
5P, the unit vector of the cable changes frome toe, and the length vector of the
cable changes from /tol', then the change of the unit vector of the cables can be
derived as:

2

l' / xi -1 exieyi €€,
— ! — j— —_—— = 2 —
oe,=e —e = HIH ||l|| =| e, e, -1 e, |OP (14)
2
exiezi eyiezi ezi _l

Where e =[e;.e,e, ]

xi> S yid

Therefore, the controllable stiffness of the CDCLR can be written as:

2
4 ¢ i _1 eneu e)(lezl
_ i 2
Kc - I_ exieyi eyi 1 e)zezt (15)
=] i 2
T ege ee. e’ -1

Xi~zi yl zi Zl

Substituting Egs. (11) and (15) into Eq. (10), one can obtain the stiffness
of the CDCLR system, which can be expressed as:

2
4 t e" _1 e)ae/u exzezz E A E A
K= Z - €€, y' -1 €€, - Jdlag(# . : )J (1 6)
i=1 li 2 ll() l40
e.e, e, e, —1
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5. Numerical example

In order to analyze the rationality of the kinematics, dynamics and
stiffness models, a numerical example is carried out with the MATLAB software
for verification and analysis in this paper. The parameters of the example are
shown in Table 1.

Table 1. Parameters of the CDCLR

Parameters Value Parameters Value
Position of the point p; (10,0, 5) m  Cross-section of cable 4 2.54 mm?
Position of the point p» (0,0, 5) m  Elastic modulus of steel cable £ 194.02 GPa
Position of the point p3 (0, 10, 5) m  Tension range of cables [fmin, fmax] [10, 3500]N
Position of the point p4 (10, 10, 5) m Mass of the lifted object m 30 kg

The movement trajectory shown in equation (17) is selected as the
expectation of the lifted object, and the cable tensions are solved using the
minimum variance optimization method. In equation (17),  is the radius of the
spiral line. a is the frequency of the spiral line. b and ¢ are the velocity at which
the spiral line moves in the x and z directions, respectively. Let =0.3, a=0.3,
b=0.1, ¢=0.05, (xo, yo, z0)=(2.5, 3, 2)m. The expectation of the lifted object can be
written as:

x=rcos(2art)+bt +x,
y=rsin(2art)+y, 17
z=ct+z,

According to the above parameters and dynamical equation, the obtained
trajectory of the lifted object and the optimized cable tensions are shown in Fig. 4.
It can be seen that the trajectory of the lifted object is a spiral inclined in the
positive x direction. The corresponding change of the cable tensions is smoothly,
which has a positive meaning for the stability of the lifted object during the

movement.
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Fig. 4. Change curves of motion trajectory and cable tensions

When the position of the lifted object is (5, 4, 2.5) m, the cable tensions
are T =[242.51, 242.51, 192.88, 192.88]N calculated by the dynamical model and
optimization algorithm. The fixed stiffness matrix, controllable stiffness matrix
and system stiffness matrix of the CDCLR are as follows:

1.208 0 0

K,=10°x| 0  1.131 -0.0355
0 —0.0355 0.3019

—62.780 1.243x107* —6.217x107"
K, =| 1.243x107™" 68.525 —4.441
—6.217x107" —4.441 —103.895

1.208 1.243x1072 —6.217x107%
K =10°x| 1.243x10* 1.131 -3.55%107
—-6.217x10%  -3.55x107 0.3019

The expression and calculation results of the fixed stiffness K, show that

the fixed stiffness matrix is a symmetric matrix. The controllable stiffness is
significantly smaller than the fixed stiffness, which indicates that the stiffness of
the driving motion branch chain has a greater impact on the stiffness of the
CDCLR system. The diagonal elements K (1, 1), K (2, 2) and K (3, 3) in the
system stiffness matrix K represent the stiffness K x, Ky and K z of the robot
along the x, y and z axes, respectively. In addition, other elements in the matrix K
characterize the coupling stiffness of the mechanism in the corresponding
direction. It can be seen from the calculation results that the absolute values of
diagonal elements K (1, 1), K (2, 2) and K (3, 3) decrease in order, which shows
that when the lifted object is at the position (5, 4, 2.5)m, the stiffness of
movement along the x direction is the largest, and the stiffness of movement along
the z direction is the smallest.

In order to further analyze the stiffness of the CDCLR system in the entire
workspace, combined with the structure scheme of the CDCLR system and
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structural parameters, the stiffness value Kx, Ky and K z of the CDCLR system
along the x, y and z axes were calculated, respectively. The distributions in
different sections are shown in Fig. 5-6.
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Fig. 5. Stiffness distribution in different axis on the section x=2.5m

When the lifted object moves in the horizontal section x=2.5 m, the
stiffness distribution in different directions is shown in Fig. 5. In the horizontal
section, K x, Ky and K z are all symmetrically distributed about the center line of
the section, and there is an inverse growth phenomenon in the boundary area of
the section, which is caused by the correction of the cable tensions in the
boundary area. On the whole, the stiffness value K x is the largest and the
stiffness value K z is the smallest. In Fig. 6(c), the stiffness value K z is obviously
increased near the guide pulleys. This is caused by correcting the cable tension
through the optimization algorithm to prevent the pseudo-drag of the cables.

When the lifted object moves in the vertical section y=5 m, the stiffness
distribution in different directions is shown in Fig. 6. In the vertical section, K x,
Ky and K z are all symmetrically distributed about the straight line x=5 m. On
the whole, the stiffness value K x is the largest and the stiffness value K z is the
smallest. In Fig. 6(a) and (b), both K x and K y gradually increase as increase of
the value z, and K z gradually decreases as increase of the value z. Because the
structure of the CDCLR is symmetrically distributed, the stiffness distribution in
the x-vertical section is the same as the stiffness distribution in the y-vertical

section, so this paper will not repeat it.
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Fig. 6. Stiffness distribution in different axis on the section y=5m
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In summary, it can be seen that the overall stiffness of the CDCLR system
is larger in the upper and central areas of the workspace than in the lower and
boundary areas, which means that when the lifted object moves in the upper and
central areas of the workspace, the stability and positioning accuracy of the
system are better. Therefore, in practical applications, the height of the guide
pulleys can be appropriately reduced to improve its stability and positioning
accuracy based on actual needs and on the basis of meeting the motion planning
of the lifted object.

6. Conclusions

A CDCLR is introduced in this paper, and the dynamics and system
stiffness of the CDCLR are studied. The research results show that in the
workspace, the stiffness of the CDCLR system is larger in the upper and center
areas of the workspace than in the lower and boundary areas. In addition, at the
same position, the stiffness of the CDCLR system in the x-direction is the largest,
and the stiffness of the CDCLR in the z-direction is smallest. The research results
provide a basis for further research on key issues such as the stability of the
CDCLR system and impedance control strategy. For example, when the expected
trajectory of motion is given, the change law of cables lengths and cable tensions
will be obtained by the kinematic and dynamic models of the CDCLR system, and
a double closed-loop impedance controller that meets certain compliance
performance will be then designed in combination with the system stiffness model.
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