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PIECEWISE LINEAR APPROXIMATION OF LOGARITHMIC 
IMAGE PROCESSING MODELS FOR DYNAMIC RANGE 

ENHANCEMENT 

Corneliu FLOREA1, Constantin VERTAN2 

Modelele logaritmice de prelucrare a imaginilor oferă un cadru potrivit 
pentru vizualizarea şi îmbunătăţirea unei game variate de imagini digitale. Deşi 
iniţial aceste modele au fost dezvoltate pentru sisteme în care fenomenele fizice de 
bază sunt multiplicative, încadrarea ulterioară în structuri algebrice a permis 
diversificarea aplicaţiilor. În consecinţă, ne putem pune problema construcţiei 
matematice a unor modele neliniare care să ofere un cadru practic pentru aplicaţii 
specifice din domeniul prelucrării de imagini. În această lucrare vom deriva un set 
de condiţii suficiente pentru elaborarea unor asemenea modele care să aibă o 
structură algebrică de spaţiu vectorial. Pe baza acestora vom construi modele noi, 
liniare pe porţiuni, care, în plus, să reducă efortul computaţional necesar 
implementării directe a modelelor neliniare. În final, vom demonstra utilitatea 
practică a formalismului matematic dezvoltat prin descrirea unei aplicaţii simple de 
creştere a gamei dinamice a imaginilor achiziţionate cu camere fotografice digitale. 

It has been proven that Logarithmic Image Processing (LIP) models provide 
a suitable framework for visualizing and enhancing digital images acquired by 
various sources. The underlying initial reason for derivation of such models has 
been the necessity to deal with multiplicative phenomena. Later, it has been proven 
that LIP models have a precise mathematical structure and, hence, are suitable for 
various image processing applications, not necessarily of multiplicative nature. In 
this paper, we investigate, from a mathematical point of view, the set of sufficient 
conditions to derive such a non-linear image processing model that complies with 
the algebraic structure of a vector space. Given this set of conditions, we build new 
models, that are piecewise linear and reduce the intense computational effort 
required by the classical models. Finally, we prove the usability of the developed 
theory by proposing a simple and practical application of digital still camera 
dynamic range enhancement.  

Keywords: non-liniar image processing model, algebraic structure, piecewise 
liniarization, dynamic range enhancement. 
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1. Introduction 

In most imaginable circumstances, digital images are obtained by means 
implying machines with finite power supply; hence digital images are defined 
over a finite range of values. The image processing algorithms, traditionally, rely 
on classical real operations for implementations. Under certain circumstances, 
such a combination, named Classical Linear Image Processing (CLIP) – [1] 
proves its limitations. For instance, let us mention the upper range overflow, 
which is brutally solved by truncation. Consequently, more elaborate structures 
appeared, such as the logarithmic image processing (LIP) models. 

The starting point of the logarithmic image processing models lies in the 
homomorphic theory introduced by Oppenheim [2]. Implementations of the LIP 
models have been given, to our best knowledge, by Jourlin and Pinoli [3] and 
respectively by Pătraşcu [4]. Lately, the scheme of a new pseudo-logarithmic 
model has been proposed by Vertan et al, [5], [6]. Using these models, various 
applications have been developed: illumination correction [4], contrast 
enhancement [7], color image enhancement [4], histogram equalization [8], 
dynamic range enhancement [6], edge detection [5], etc. 

The first derivation of such a model, as proposed by Jourlin and Pinoli, has 
been developed for the case of transmitted light. The mathematical construction 
begins by defining the addition of two elements according to with the equivalent 
of a cascade of two initial transparent environments; the multiplication is derived 
by induction from repeated addition; the consequent properties arise naturally. 
Unlike his predecessors, Pătraşcu derived its model from a mathematical point of 
view by enforcing some defined properties to the basic laws (addition and scalar 
multiplication).  

The mathematical construction of such a non-linear model may start by 
defining the operational laws (the addition and the scalar multiplication) or, 
equivalently, by determination of a function that maps the investigated model 
definition set onto the real number algebraic structure. We will focus on the 
second alternative and we will investigate the restrictions that have to be imposed 
to the mapping (generative function), such that the new model obeys some 
practical properties and, thus, leads to a consistent mathematical form.  

Accordingly, we shall structure the remaining of the document as follows: 
we shall discuss the mathematical background of the problem in order to define 
the set of rules that guaranties the needed structure.  We shall continue by 
considering an example of generative function, which being piecewise linear is 
simpler to implement. The described formalism is evaluated in the framework of 
high dynamic range image enhancement. The paper ends with a summary and a 
discussion on further development. 
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2. Mathematical background 

In order to have practical usage, it is of common sense to impose some 
properties to any newly determined model. To be more precise, we shall 
investigate the nature of the definition set, the means of laws determination, the 
closing properties and we shall discuss the requirements to form a vector space. 
The mathematical formulation, described in this section, is a particular case of the 
more general homomorphic theory, particularized to discrete images.   

2.1. Defining the set and laws 

Let us consider a function, φ : E → F. Within this choice, the set E is the 
image definition set. Typically, if the image values are intensities, like any plane 
in RGB color representation, the set E has the form [0,M); in the case of YUV 
(YCbCr) space, for the color differences channels, the set E has a symmetrical 
form, like  ( )2;2 MM +− . Thus, in any circumstance, the set is bounded: 

 
)sup(,)inf( EMEm EE =∃=∃        (1) 

 
The function φ defines the model structure and maps the image definition 

set, E, onto a subset of real numbers, F.  
Furthermore, we shall add two operations to the given set, E: addition of 

two elements of the set,⊕ , and multiplication with an outer scalar,⊗ . Given a 
scalar, RK ⊆∈α , and two elements of the set, u and v, we can determine the 
exact formulas for the mentioned operations using the generative function φ: 

 
( ) ( ) ( ) Evuvuvu ∈∀+=⊕ ,,ϕϕϕ       (2) 

 
( ) ( ) Euuu ∈∀⋅=⊗ ,ϕααϕ          (3) 

  
Equations (2) and (3) are the conditions that must be fulfilled by a 

homomorphism between two similar algebraic structures. In our approach we 
assume the function φ to be known and we intend to use the mentioned relations 
to determine the analytic form of the addition and scalar multiplication laws; in 
such a case, the simplest solution is achieved when the function is a bijection and 
the laws are uniquely determined. The bijectivity implies surjectivity, which is 
deemed for solution existence, and injectivity - required for solution uniqueness. 

Now let us analyze equation (3). While u may be any element of the finite 
input set E, α is, typically, a real positive scalar ( +ℜ=K ). Under the assumed 
bijectivity condition, )inf()(, Fuu mm =∃ ϕ and respectively, )sup()(, Fuu MM =∃ ϕ . 
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If one writes down relation (3) for um, one will find that the resulting domain must 
include any upper vicinity of 0 and, therefore, 0)inf( =F ; similarly, for supra-
unitary constant one will find that +∞=)sup(F . Because image amplification and 
attenuation are common applications, we must enforce [ )+∞= ,0F . 

With respect to the bijectivity constraint (and, hence, the existence of φ-1), 
the definition laws are determined by: 

 
( )( )

( )( )uu
vuvu

ϕαϕα

ϕϕϕ

⋅=⊗

+=⊕
−

−

1

1 )(
      (4) 

2.2. Closing property 

The closing property of both addition and scalar multiplication is of 
paramount practical importance since the sum of any two images should lead to 
another valid image and, respectively, any amplified or attenuated image should 
be an image. Formally, one may write: 

 

EzvzKEu
EzvuzEvu

∈⇒⊗=∈∀∈∀
∈⇒⊕=∈∀

αα ,,
,,

                                              (5) 

 
 These properties hold under the assumed bijectivity hypothesis since:  
 
 ( ) EzExFxandvuz ∈⇒∈∈∀+= −− )(,)()( 11 ϕϕϕϕ  (6) 

2.3. Vector space structure 

 Given the two operative laws, ⊗⊕, , the vector set E and the outer scalar 
set K, the formal definition of the vector space implies several properties. 
Addition law must be associative, commutative, must have identity element and 
inverse element. Distributivity must hold for scalar multiplication over vector 
addition and for scalar multiplication in the field of scalars. Scalar multiplication 
must have identity element and to be compatible with multiplication in the field of 
scalars. 
 The commutative, associative and distributive properties of the implied 
laws are important because the order of operations should not matter in a 
weighted sum of images. Under the assumed hypothesis of bijective application 
and because the φ-1 function maps theℜ structure to the given set, these properties 
are verified.  
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 The existence of the identity element, u0, with respect to the addition, 
implies further conditions over the mapping function, φ. The condition is a 
consequence of the isomorphic behavior: 
 

( ) 0)(, 000 =⇒⋅=⊕⇒∃∈∀ uuuuuEu ϕϕ                                                (7) 
 

 The inverse element, u-, for asymmetrical spaces, like RGB, has rather 
impractical application: “given an intensity value, the inverse element is 
something that perfectly absorbs the light!?”. It is more important in defining the 
subtraction of one image from another to be consistent with the addition.  
However, the inverse element makes sense if we discuss about symmetrical color 
spaces, like U and V planes from YUV. In such a case, the mapping function must 
take values in a symmetrical interval:  
 

 ( ) )()(0)()(, 0 uuuuuuuuEu ϕϕϕϕϕ −=⇒=+⇒⋅=⊕⇒∃∈∀ −−−−     (8) 
  
 Similarly, the identity element of the scalar multiplication has to be 1: 
 

( ) 1},{ 1110 =⇒⋅=⊗⇒∃−∈∀ αϕαα uuuEu                                            (9) 
 
 In conclusion, the sufficient conditions that a mapping function, φ, has to 
fulfill in order to generate a usable non-linear image processing model are: 

• The target, should by ℜ=F . If we use an intensity based image 
representation, then the inverse element in the additive law does not exists 
and the subtraction cannot be defined; hence F becomes +ℜ . 

• φ should be bijective; this implies continuity by the nature of the problem; 
• φ(u0)=0: commonly the “black image” is represented by u0=0, and 

therefore:  φ(0)=0. 

3. Non-linear image processing models  

To the existing date, three non-linear image processing models have been 
developed. The first two, as mentioned, are logarithmic and have been proposed 
by Jourlin and Pinoli, [3], and respectively Pătraşcu, [4]. The generative functions 
for these cases are: 
 

(10) 
 

   

[ ] ( ) ( )xxM −−=∞−→ 1log)(,0,,0: ϕϕ
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for the Jourlin and Pinoli model and, respectively, for the Pătraşcu model: 
 
 

(11) 
  

 Obviously, the imposed conditions are verified by both functions; still the 
Jourlin and Pinoli model does not comply with theℜ target domain and, therefore, 
its additive law has not an inverse element; thus, it has a cone structure. By 
comparison, the Pătraşcu model introduces a vector space. Considering the fact 
that the generative functions are logarithmic, the models are known as logarithmic 
image processing (LIP) models. 
 The third model, proposed by Vertan et al. [5], [6], has been called 
pseudo-logarithmic image model and its mathematical structure was not fully 
investigated yet. In this case, the generative function is: 
    

   (12) 
 
 
Taking into account that the generative function is a bijection, with values 

on ),0[ +∞=F  and φ(0)=0, the model fulfills all the properties of a cone space 
structure. The extension to a vector space structure is achieved by the use of the 
following generative function: 
      
  (13) 

 

Fig 1a. The generative 
functions, in the positive 

range, for Jourlin and Pinoli 
model (dotted line), Pătraşcu 

model (dashed line) and 
Vertan model (solid line) 

Fig. 1b. Example of addition  
of element 64 with all the 

other possible integer values 
in the range [0,255],  using the 

model: Jourlin and Pinoli 
(dotted line), Pătraşcu (dashed 

line) and Vertan (solid line) 

Fig. 1c. Example of scalar 
multiplication of all the 

elements in [0,255] range with 
2. The operation has been 
performed with the model: 
Jourlin and Pinoli (dotted 

line), Pătraşcu (dashed line) 
and Vertan (solid line) 
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The plots of the three mentioned generative functions are shown in figure 
(1a). Figures (1b) and (1c) show examples of addition and scalar multiplication. 
As one can notice, all of the models share the same behavior in the positive range. 
If the Jourlin and Pinoli model and, respectively, Vertan model are extended by 
odd symmetry to the negative range, then all the models become similar. 

4. Piecewise linear approximation of non-linear models 

 The exercise developed in section 2, beyond pointing to a short-cut to the 
analysis of known models, gives the user the flexibility to choose the generative 
function according to his application particularities. In the current work we shall 
investigate a general problem. All of the known models share the same complex 
behavior, which leads to the practical problem of lack of efficiency in 
implementation. Hence, it make sense to try to build a piecewise linear model. 
Thus, we shall choose a piecewise linear generative function that complies with 
the rules determined in section 2 and we derive the remaining of the model later. 
 For simplicity of explanation let us consider a generative function 
composed of 2 segments. The general approach (n segments) can be developed 
straight-forward. Such a 2 segment function and its inverse have the form: 

 

( )
⎪
⎩

⎪
⎨

⎧
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∈+
∈
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022

01
1ϕ   (14) 

 
In the equations above, the offset constants are determined from continuity 
constraints. 

In order to determine the operational laws, one will replace the generative 
and inverse generative function formulas (equations (14)) in equation (6).  

The proposed model is function of the {a1, a2, x0} parameters. To 
determine their values, one may choose a non-linear model as target and perform 
parameter regression. But in section 2 we showed that it is no need to do that, 
because the known models span just a little part of the valid functions range. We 
have some degree of freedom in choosing the parameter set according to the 
envisaged application. The current exercise aims to efficient implementation. We 
consider the choice of a1 and a2 as power of 2 as being more important, such that 
the model implementation uses bit shift instead of the expensive multiplication 
and, especially, division. Under such an approach, the abscissa breaking point, x0, 
is a free parameter and is to be found after minimizing the mean squared error (or 
other similar criteria) in respect to a target model. 

Two possible generative functions, obtained after regression from the 
Vertan model (for 2 and 4 segments), are shown in figure 2. 
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Fig 2. The generative functions for the original  non-linear model  (Vertan – solid line) and 

piecewise linear approximations: left - 2 segment and right 4 segment approximation. 

5. Dynamic range enhancement 

The typical consumer digital still camera outputs images in the target 
range of [0,255]. By comparison, the human eye is capable of comprising unitary 
scenes with thousands of different levels. Therefore, there is need for methods to 
enlarge the dynamic range of digital camera acquired images. Due to the fact that 
the problem is known, the literature stores many proposed solutions, [9]. 

The typical approach is to acquire several images of the scene, with 
different exposures, and to combine them in a high dynamic range (HDR) 
resulting image. The different exposure ensures that different parts of the gamut 
are recorded correctly by different images. The combination, which is done by 
summation, preserves the information variation existing in the input frames. 
Lately it has been shown that logarithmic (and by extension all non-linear 
models), provide a better solution to the dynamic range problem than classical 
real operations. This solution was called log-bracketing [10] and it will be revised, 
in the light of the proposed approximation in the following sections. 

Let us consider, as input data, a set of frames (e.g. 3), f1, f2, f3 acquired 
with different exposures: Ev1=-1, Ev2=0, Ev3=+1. Ev is a logarithmic measure for 
relative exposure; Ev=0 is given to a picture, where the exposure time and 
aperture balance the scene illumination and internal camera amplification in order 
to have a near uniform resulting histogram. An image with Ev=-1 is acquired with 
half of the normal exposure time and, therefore, is underexposed. The Ev=+1 is 
obtained for an image with double of exposure time and, thus, is overexposed. 

Each such image correctly records one part of the gamut and is less 
accurate elsewhere: the underexposed image records correctly the upper part, 
while the lower one is degraded by quantization error and noise; the normal image 
is accurate in the center part, while the overexposed image is accurate in the lower 
part, while the upper range is degraded by near saturation. This information may 
be encoded by a set of weights, μ. A formal derivation of these weights may be 
found in [10]. An example of such weights is presented in figure 3. 
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Fig. 3. The weights that encode accuracy of information in an underexposed image (Ev=-1, left 
hand plot), normal image (Ev=0, center plot) and overexposed image (Ev=+1, right hand plot). 

The weights correspond to a consumer digital still camera 
 

 The mixing of the input frames takes the form of a convex combination: 
 

    
 

   (15) 
 
 
 

  
Fig. 4. Digital still camera acquisition of a natural scene. From left to right: underexposed, normal 

and overexposed image. All images are 24 bits per pixel (bpp) color images. 

  
Fig. 5. Digital still camera acquisition of radiographic film image of total hip prostheses (from left 
to right): underexposed, normal and overexposed image. All images are 8 bpp luminance images 

of the original 12 bpp equivalent film.
 

( )( )

( )∑

∑

=

=

⊗⊕
= N

i
i

N

i
ii

HDR

mlfiEv

mlfmlfiEv
mlf

1

1

),(),(

),(),(),(
),(

μ

μ



12                                                 Corneliu Florea, Constantin Vertan 

In the equation (15) the right hand multiplications and additions (implied 
by the sum) are performed in non-linear manner.  

6. Results 

An example of input images acquired under different exposures, are 
shown in figures 4 and 5. The resulting HDR images, computed according to the 
Jourlin, Vertan, and respectively piecewise-linear model (that follows Vertan 
model) are presented in figures 6 and 7.  

In order to evaluate the results, two methods have been proposed: 
subjective evaluation and objective evaluation. The subjective evaluation derives 
from the methods proposed in the television standard defined by recommendation 
ITU-R BT. 500-11. 

Given the specific requirements of the tested application (HDR 
enhancement), we claim that pixel values entropy can be used as objective 
measure because a HDR image must allocate comparable portions of the visible 
range to all objects; in such a case, the information (which is measured by 
entropy) should be maximum.  Indeed, as we expect, the HDR image exhibits the 
maximal range of values, their distribution resembling a uniform one. We 
measure the entropy effectiveness as:       

 

∑
−

=

−==
1

0max

log)(,)( M

i
ii hhfH

H
fHη      (16) 

 
where hi is the luminance histogram value corresponding to gray level i and M is 
the maximum number of different pixel values. The maximum value of the 
entropy maxH is the number of bits per pixel (which is 8 for natural images and 12 
for radiographic ones). 

 

  
Fig. 6. The results for high dynamic range enhancement of the natural scene using (images from 

left to right) : the Jourlin model, the Vertan, piecewise linear model with 2 segments, the piecewise 
linear model with 4 segments 
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Fig. 7. HDR enhancement for the medical image using (images from left to right): the Jourlin 

model, the Vertan model, piecewise linear model with 2 segments , piecewise linear model with 4 
segments - right hand image 

 
The subjective evaluation was performed by a panel of expert and non-

expert observers that graded the quality of obtained HDR images from worst 
quality (0) to the best quality (5).  Table 1 shows the mean opinion score (MOS) 
and the entropy effectiveness obtained for the proposed experiments. 

 
Table 1 

Evaluation measures of HDR images  

Image set Jourlin Vertan Linear – 2 Linear – 4 
MOS η [%] MOS η [%] MOS η [%] MOS η [%]

Natural-color 4.75 91.2 4.62 89.2 3.75 81.6 4.37 82.8 
Medical-gray 4.75 87.7 4.75 87.5 4.25 84.5 4.5 85.5 

 
We skip from evaluation the Pătraşcu model because it is the only 

symmetrical one. The piecewise linear model followed an asymmetrical behavior 
(the Vertan model), as required for HDR imaging [10]. 

The first observation is that entropy, which is a measure of the uniformity 
of the image histogram, is consistent with subjective evaluation. The next 
observation is that the Jourlin model is the most appropriate for the current 
experiment followed closely by the Vertan model. However, piecewise linear 
approximation also proves its utility because it leads to similar results. Another 
observation is that a higher number of pieces used in approximation provides  
more accurate results. Hence, the piecewise approximation exhibits accuracy of 
results and due to efficient implementation is suitable for practical applications. 

7. Conclusions and further work 

In this work we investigated the conditions under which a given mapping 
generates a valid non-linear image processing model. Once the conditions found, 
we have shown as an argument that all currently proposed models fulfill the 
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mentioned conditions. For any such model, we propose a piecewise linear 
approximation as an effective computational speedup.  

In the second part of the paper, a simple application of dynamic range 
enhancement of digital still camera has been presented. Using objective and 
subjective measurements we showed the usability of the proposed approximation. 

There are two directions for continuation of the current work. One is 
related to algebra and it refers to further investigation of the necessary (minimum) 
conditions that an application has to obey in order to derive a valid image 
processing model. The other direction refers to more practical issue. The 
formalism presented in section 2 cleared the path to new non-linear models, even 
to parametric ones. It is of maximum interest to use such parametric models to the 
known applications and to investigate their optimization with respect to 
application-specific objective measures.  
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