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PIECEWISE LINEAR APPROXIMATION OF LOGARITHMIC
IMAGE PROCESSING MODELS FOR DYNAMIC RANGE
ENHANCEMENT

Corneliu FLOREA', Constantin VERTAN?

Modelele logaritmice de prelucrare a imaginilor oferd un cadru potrivit
pentru vizualizarea si imbundtdtirea unei game variate de imagini digitale. Desi
initial aceste modele au fost dezvoltate pentru sisteme in care fenomenele fizice de
baza sunt multiplicative, incadrarea ulterioard in structuri algebrice a permis
diversificarea aplicatiilor. In consecintd, ne putem pune problema constructiei
matematice a unor modele neliniare care sa ofere un cadru practic pentru aplicatii
specifice din domeniul prelucrarii de imagini. In aceastd lucrare vom deriva un set
de conditii suficiente pentru elaborarea unor asemenea modele care sa aibd o
structurd algebricd de spatiu vectorial. Pe baza acestora vom construi modele noi,
liniare pe portiuni, care, in plus, sa reduca efortul computational necesar
implementdrii directe a modelelor neliniare. In final, vom demonstra utilitatea
practicd a formalismului matematic dezvoltat prin descrirea unei aplicatii simple de
crestere a gamei dinamice a imaginilor achizitionate cu camere fotografice digitale.

It has been proven that Logarithmic Image Processing (LIP) models provide
a suitable framework for visualizing and enhancing digital images acquired by
various sources. The underlying initial reason for derivation of such models has
been the necessity to deal with multiplicative phenomena. Later, it has been proven
that LIP models have a precise mathematical structure and, hence, are suitable for
various image processing applications, not necessarily of multiplicative nature. In
this paper, we investigate, from a mathematical point of view, the set of sufficient
conditions to derive such a non-linear image processing model that complies with
the algebraic structure of a vector space. Given this set of conditions, we build new
models, that are piecewise linear and reduce the intense computational effort
required by the classical models. Finally, we prove the usability of the developed
theory by proposing a simple and practical application of digital still camera
dynamic range enhancement.
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1. Introduction

In most imaginable circumstances, digital images are obtained by means
implying machines with finite power supply; hence digital images are defined
over a finite range of values. The image processing algorithms, traditionally, rely
on classical real operations for implementations. Under certain circumstances,
such a combination, named Classical Linear Image Processing (CLIP) — [1]
proves its limitations. For instance, let us mention the upper range overflow,
which is brutally solved by truncation. Consequently, more elaborate structures
appeared, such as the logarithmic image processing (LIP) models.

The starting point of the logarithmic image processing models lies in the
homomorphic theory introduced by Oppenheim [2]. Implementations of the LIP
models have been given, to our best knowledge, by Jourlin and Pinoli [3] and
respectively by Patrascu [4]. Lately, the scheme of a new pseudo-logarithmic
model has been proposed by Vertan et al, [5], [6]. Using these models, various
applications have been developed: illumination correction [4], contrast
enhancement [7], color image enhancement [4], histogram equalization [8],
dynamic range enhancement [6], edge detection [5], etc.

The first derivation of such a model, as proposed by Jourlin and Pinoli, has
been developed for the case of transmitted light. The mathematical construction
begins by defining the addition of two elements according to with the equivalent
of a cascade of two initial transparent environments; the multiplication is derived
by induction from repeated addition; the consequent properties arise naturally.
Unlike his predecessors, Pétrascu derived its model from a mathematical point of
view by enforcing some defined properties to the basic laws (addition and scalar
multiplication).

The mathematical construction of such a non-linear model may start by
defining the operational laws (the addition and the scalar multiplication) or,
equivalently, by determination of a function that maps the investigated model
definition set onto the real number algebraic structure. We will focus on the
second alternative and we will investigate the restrictions that have to be imposed
to the mapping (generative function), such that the new model obeys some
practical properties and, thus, leads to a consistent mathematical form.

Accordingly, we shall structure the remaining of the document as follows:
we shall discuss the mathematical background of the problem in order to define
the set of rules that guaranties the needed structure. We shall continue by
considering an example of generative function, which being piecewise linear is
simpler to implement. The described formalism is evaluated in the framework of
high dynamic range image enhancement. The paper ends with a summary and a
discussion on further development.
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2. Mathematical background

In order to have practical usage, it is of common sense to impose some
properties to any newly determined model. To be more precise, we shall
investigate the nature of the definition set, the means of laws determination, the
closing properties and we shall discuss the requirements to form a vector space.
The mathematical formulation, described in this section, is a particular case of the
more general homomorphic theory, particularized to discrete images.

2.1. Defining the set and laws

Let us consider a function, ¢ - £ — F. Within this choice, the set E is the
image definition set. Typically, if the image values are intensities, like any plane
in RGB color representation, the set £ has the form [0,M); in the case of YUV
(YCDbCr) space, for the color differences channels, the set £ has a symmetrical
form, like (— M/2;+ M) 2). Thus, in any circumstance, the set is bounded:

dm, =inf(E),IM , =sup(E) @)

The function ¢ defines the model structure and maps the image definition
set, £, onto a subset of real numbers, F.

Furthermore, we shall add two operations to the given set, £: addition of
two elements of the set,®, and multiplication with an outer scalar,® . Given a
scalar,x € K — R, and two elements of the set, # and v, we can determine the
exact formulas for the mentioned operations using the generative function ¢:

Plu®v)=ou)+o(v),Yu,ve E (2)
pla®u)=a-pu)VuecE 3)

Equations (2) and (3) are the conditions that must be fulfilled by a
homomorphism between two similar algebraic structures. In our approach we
assume the function ¢ to be known and we intend to use the mentioned relations
to determine the analytic form of the addition and scalar multiplication laws; in
such a case, the simplest solution is achieved when the function is a bijection and
the laws are uniquely determined. The bijectivity implies surjectivity, which is
deemed for solution existence, and injectivity - required for solution uniqueness.

Now let us analyze equation (3). While u may be any element of the finite
input set E, a is, typically, a real positive scalar (K =R"). Under the assumed
bijectivity condition, Ju, ,@(u, ) =1inf(F) and respectively, Ju,,,¢(u,,) = sup(F).
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If one writes down relation (3) for u,,, one will find that the resulting domain must
include any upper vicinity of 0 and, therefore,inf(#) =0 ; similarly, for supra-
unitary constant one will find that sup(F) =+o0. Because image amplification and
attenuation are common applications, we must enforce F = [0,+).

With respect to the bijectivity constraint (and, hence, the existence of ¢™),
the definition laws are determined by:

u®v=0p"(pu)+p()

a®u - (a-plu) @

2.2. Closing property

The closing property of both addition and scalar multiplication is of
paramount practical importance since the sum of any two images should lead to
another valid image and, respectively, any amplified or attenuated image should

be an image. Formally, one may write:

VuveE z=u®v=zekE

5
VueENaeK,z=a®v=zekE ®)
These properties hold under the assumed bijectivity hypothesis since:
z= gp’l((p(u) + gp(v)) and Vxe F,p ' (x)e E=>zeE (6)

2.3. Vector space structure

Given the two operative laws, ®,® , the vector set E and the outer scalar

set K, the formal definition of the vector space implies several properties.
Addition law must be associative, commutative, must have identity element and
inverse element. Distributivity must hold for scalar multiplication over vector
addition and for scalar multiplication in the field of scalars. Scalar multiplication
must have identity element and to be compatible with multiplication in the field of
scalars.

The commutative, associative and distributive properties of the implied
laws are important because the order of operations should not matter in a
weighted sum of images. Under the assumed hypothesis of bijective application
and because the ¢ function maps the R structure to the given set, these properties
are verified.
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The existence of the identity element, uy, with respect to the addition,
implies further conditions over the mapping function, ¢. The condition is a
consequence of the isomorphic behavior:

VueE,EIuO:>u(-Bu0=u|g0(-):> o(uy)=0 (7

The inverse element, u’, for asymmetrical spaces, like RGB, has rather
impractical application: “given an intensity value, the inverse element is
something that perfectly absorbs the light!?”. It is more important in defining the
subtraction of one image from another to be consistent with the addition.
However, the inverse element makes sense if we discuss about symmetrical color
spaces, like U and V planes from YUV. In such a case, the mapping function must
take values in a symmetrical interval:

Vue E,q3u >u®u” =u0‘(o(-): pw)+pu )=0=pu )=-pu) ()

Similarly, the identity element of the scalar multiplication has to be 1:
VueE—{u,}, 30, = o, Qu=up()= o, =1 )

In conclusion, the sufficient conditions that a mapping function, ¢, has to
fulfill in order to generate a usable non-linear image processing model are:

e The target, should by FF =R. If we use an intensity based image
representation, then the inverse element in the additive law does not exists
and the subtraction cannot be defined; hence F becomes R*.

e ¢ should be bijective; this implies continuity by the nature of the problem;

o  ¢(uy)=0: commonly the “black image” is represented by uy=0, and
therefore: ¢(0)=0.

3. Non-linear image processing models

To the existing date, three non-linear image processing models have been
developed. The first two, as mentioned, are logarithmic and have been proposed
by Jourlin and Pinoli, [3], and respectively Patrascu, [4]. The generative functions
for these cases are:

¢:[0,M] > (-2,0), p(x) =—log(1-x) (10)
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for the Jourlin and Pinoli model and, respectively, for the Patrascu model:

Q: (— 1,1) - (— oo,+oo), o(x)= %log[t—ij

(11)

Obviously, the imposed conditions are verified by both functions; still the
Jourlin and Pinoli model does not comply with the R target domain and, therefore,
its additive law has not an inverse element; thus, it has a cone structure. By
comparison, the Patrascu model introduces a vector space. Considering the fact
that the generative functions are logarithmic, the models are known as logarithmic
image processing (LIP) models.

The third model, proposed by Vertan et al. [5], [6], has been called
pseudo-logarithmic image model and its mathematical structure was not fully
investigated yet. In this case, the generative function is:

9:[0,1) > [0,40), (x) = i (12)

Taking into account that the generative function is a bijection, with values
on F =[0,+0) and ¢(0)=0, the model fulfills all the properties of a cone space

structure. The extension to a vector space structure is achieved by the use of the
following generative function:

9 (=L1)—> (=o0,+00), o(x) = I—L|x| (13)

Fig la. The generative Fig. 1b. Example of addition Fig. lc. Example of scalar
functions, in the positive of element 64 with all the multiplication of all the
range, for Jourlin and Pinoli other possible integer values  elements in [0,255] range with
model (dotted line), Patrascu  in the range [0,255], using the 2. The operation has been
model (dashed line) and model: Jourlin and Pinoli performed with the model:

Vertan model (solid line) (dotted line), Patrascu (dashed Jourlin and Pinoli (dotted
line) and Vertan (solid line) line), Patrascu (dashed line)
and Vertan (solid line)
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The plots of the three mentioned generative functions are shown in figure
(1a). Figures (1b) and (1c) show examples of addition and scalar multiplication.
As one can notice, all of the models share the same behavior in the positive range.
If the Jourlin and Pinoli model and, respectively, Vertan model are extended by
odd symmetry to the negative range, then all the models become similar.

4. Piecewise linear approximation of non-linear models

The exercise developed in section 2, beyond pointing to a short-cut to the
analysis of known models, gives the user the flexibility to choose the generative
function according to his application particularities. In the current work we shall
investigate a general problem. All of the known models share the same complex
behavior, which leads to the practical problem of lack of efficiency in
implementation. Hence, it make sense to try to build a piecewise linear model.
Thus, we shall choose a piecewise linear generative function that complies with
the rules determined in section 2 and we derive the remaining of the model later.

For simplicity of explanation let us consider a generative function
composed of 2 segments. The general approach (n segments) can be developed
straight-forward. Such a 2 segment function and its inverse have the form:

ax,x €[0,x,) v/a,y€l0,y,)
(p(x)z a,x+by,xel[x,,M) > (oil(y): (y_bz)/az V€V ) (14)
+OO,x:M May:yM

In the equations above, the offset constants are determined from continuity
constraints.

In order to determine the operational laws, one will replace the generative
and inverse generative function formulas (equations (14)) in equation (6).

The proposed model is function of the {a; a, x,' parameters. To
determine their values, one may choose a non-linear model as target and perform
parameter regression. But in section 2 we showed that it is no need to do that,
because the known models span just a little part of the valid functions range. We
have some degree of freedom in choosing the parameter set according to the
envisaged application. The current exercise aims to efficient implementation. We
consider the choice of a; and a, as power of 2 as being more important, such that
the model implementation uses bit shift instead of the expensive multiplication
and, especially, division. Under such an approach, the abscissa breaking point, x,
is a free parameter and is to be found after minimizing the mean squared error (or
other similar criteria) in respect to a target model.

Two possible generative functions, obtained after regression from the
Vertan model (for 2 and 4 segments), are shown in figure 2.
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Fig 2. The generative functions for the original non-linear model (Vertan — solid line) and
piecewise linear approximations: left - 2 segment and right 4 segment approximation.

5. Dynamic range enhancement

The typical consumer digital still camera outputs images in the target
range of [0,255]. By comparison, the human eye is capable of comprising unitary
scenes with thousands of different levels. Therefore, there is need for methods to
enlarge the dynamic range of digital camera acquired images. Due to the fact that
the problem is known, the literature stores many proposed solutions, [9].

The typical approach is to acquire several images of the scene, with
different exposures, and to combine them in a high dynamic range (HDR)
resulting image. The different exposure ensures that different parts of the gamut
are recorded correctly by different images. The combination, which is done by
summation, preserves the information variation existing in the input frames.
Lately it has been shown that logarithmic (and by extension all non-linear
models), provide a better solution to the dynamic range problem than classical
real operations. This solution was called log-bracketing [10] and it will be revised,
in the light of the proposed approximation in the following sections.

Let us consider, as input data, a set of frames (e.g. 3), fi, f>, f3 acquired
with different exposures: Ev,;=-1, Ev,=0, Ev;=+1. Ev is a logarithmic measure for
relative exposure; Ev=0 is given to a picture, where the exposure time and
aperture balance the scene illumination and internal camera amplification in order
to have a near uniform resulting histogram. An image with Ev=-1 is acquired with
half of the normal exposure time and, therefore, is underexposed. The Ev=+1 is
obtained for an image with double of exposure time and, thus, is overexposed.

Each such image correctly records one part of the gamut and is less
accurate elsewhere: the underexposed image records correctly the upper part,
while the lower one is degraded by quantization error and noise; the normal image
is accurate in the center part, while the overexposed image is accurate in the lower
part, while the upper range is degraded by near saturation. This information may
be encoded by a set of weights, u. A formal derivation of these weights may be
found in [10]. An example of such weights is presented in figure 3.
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P ﬁ

Fig. 3. The weights that encode accuracy of information in an underexposed image (Ev=-1, left
hand plot), normal image (Ev=0, center plot) and overexposed image (Ev=+1, right hand plot).
The weights correspond to a consumer digital still camera

The mixing of the input frames takes the form of a convex combination:

N

> ® (ulEv(i), £,(1,m))® fi(1,m))

Supr(lsm) = =

N (15)
> BV, f,(1m))

i=1

Fig. 4. Digital still camera acquisition of a natural scene. From left to right: underexposed, normal

and overexposed image. All images are 24 bits per pixel (bpp) color images.

A A

Fig. 5. Digital still camera acquisition of radiographic film image of total hip prostheses" (from left
to right): underexposed, normal and overexposed image. All images are 8 bpp luminance images
of the original 12 bpp equivalent film.
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In the equation (15) the right hand multiplications and additions (implied
by the sum) are performed in non-linear manner.

6. Results

An example of input images acquired under different exposures, are
shown in figures 4 and 5. The resulting HDR images, computed according to the
Jourlin, Vertan, and respectively piecewise-linear model (that follows Vertan
model) are presented in figures 6 and 7.

In order to evaluate the results, two methods have been proposed:
subjective evaluation and objective evaluation. The subjective evaluation derives
from the methods proposed in the television standard defined by recommendation
ITU-R BT. 500-11.

Given the specific requirements of the tested application (HDR
enhancement), we claim that pixel values entropy can be used as objective
measure because a HDR image must allocate comparable portions of the visible
range to all objects; in such a case, the information (which is measured by
entropy) should be maximum. Indeed, as we expect, the HDR image exhibits the
maximal range of values, their distribution resembling a uniform one. We
measure the entropy effectiveness as:

_H(f)
=n

max

9H(f):_ﬁ424hi log 7, (16)

where 4; is the luminance histogram value corresponding to gray level i and M is
the maximum number of different pixel values. The maximum value of the
entropy H .. is the number of bits per pixel (which is 8 for natural images and 12

for radiographic ones).

= : » L. = |
Fig. 6. The results for high dynamic range enhancement of the natural scene using (images from

left to right) : the Jourlin model, the Vertan, piecewise linear model with 2 segments, the piecewise
linear model with 4 segments
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-
Fig. 7. HDR enhancement for the medical image using (images from left to right): the Jourlin
model, the Vertan model, piecewise linear model with 2 segments , piecewise linear model with 4
segments - right hand image

The subjective evaluation was performed by a panel of expert and non-
expert observers that graded the quality of obtained HDR images from worst
quality (0) to the best quality (5). Table 1 shows the mean opinion score (MOS)
and the entropy effectiveness obtained for the proposed experiments.

Table 1
Evaluation measures of HDR images

Jourlin Vertan Linear — 2 Linear — 4

Image set MOS [ n[%] | MOS [ n[%] | MOS [ n[%] | MOS [ n[%]

Natural-color 4.75 91.2 4.62 89.2 3.75 81.6 4.37 82.8

Medical-gray 4.75 87.7 4.75 87.5 4.25 84.5 4.5 85.5

We skip from evaluation the Patrascu model because it is the only
symmetrical one. The piecewise linear model followed an asymmetrical behavior
(the Vertan model), as required for HDR imaging [10].

The first observation is that entropy, which is a measure of the uniformity
of the image histogram, is consistent with subjective evaluation. The next
observation is that the Jourlin model is the most appropriate for the current
experiment followed closely by the Vertan model. However, piecewise linear
approximation also proves its utility because it leads to similar results. Another
observation is that a higher number of pieces used in approximation provides
more accurate results. Hence, the piecewise approximation exhibits accuracy of
results and due to efficient implementation is suitable for practical applications.

7. Conclusions and further work

In this work we investigated the conditions under which a given mapping
generates a valid non-linear image processing model. Once the conditions found,
we have shown as an argument that all currently proposed models fulfill the
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mentioned conditions. For any such model, we propose a piecewise linear
approximation as an effective computational speedup.

In the second part of the paper, a simple application of dynamic range
enhancement of digital still camera has been presented. Using objective and
subjective measurements we showed the usability of the proposed approximation.

There are two directions for continuation of the current work. One is
related to algebra and it refers to further investigation of the necessary (minimum)
conditions that an application has to obey in order to derive a valid image
processing model. The other direction refers to more practical issue. The
formalism presented in section 2 cleared the path to new non-linear models, even
to parametric ones. It is of maximum interest to use such parametric models to the
known applications and to investigate their optimization with respect to
application-specific objective measures.
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