

GRAPHENE OXIDE AS NANO ADDITIVES IN BIODIESEL: CHARACTERIZATION AND DISPERSION STABILITY

Shiv Kumar RAY^{1*}, Om PRAKASH²

Biodiesel can be a promising alternative to petroleum diesel, except its poorer performance and NOx production. Graphene oxide has become a popular additive for improving combustion efficiency and minimizing emissions. This study explored the stability characteristics of GO into waste cooking oil biodiesel, using a UV-Vis spectrophotometer. The GO suspension with 3 hours of sonication period found more stable. Highest absorbance value was found 0.620 for 100 ppm concentration with 3 hours of sonication period. The percentage drop in absorption after four days of 25 and 100 ppm concentration with 3 hours of sonication period was 21% and 4%, respectively.

Keywords: Nano Additives, Graphene oxide, Biodiesel, Waste cooking oil.

1. Introduction

Energy consumption has grown in synch with population expansion. Fossil fuels are the most widely used energy resources in industry; resulting in rising greenhouse gas emissions. Emissions from diesel fuel combustion are harmful to the ecosystem [1-3]. Diesel engines have a wonderful reputation for low specific fuel consumption and reliability, because of their high compression ratio [4]. The scientific community is exploring for alternative resources such as biodiesel as an alternative fuel [5-8]. Biodiesel has poorer performance and produces more NOx than petroleum diesel [9]. Fuel additives to improve biodiesel qualities are becoming more popular as a way to overcome these constraints, and they have the potential to improve combustion performance while lowering emissions without modifying the engine [10-11]. In the reviewed study, carbon allotropes such as carbon nano tube and graphene oxide were used as additives in diesel and biodiesel fuel mixes [12-14].

Very few of the previous research have documented the use of nano-additives in waste cooking oil biodiesel blends to overcome their limitations [15]. As a result, the usage of viscous biodiesel containing nano-additives, such as waste cooking oil biodiesel, has a gap. Hence, inclusion and dispersion stability of

¹ Research Scholar, National Institute of Technology Patna, India, e-mail: shivroy2k5@gmail.com

^{*} Assistant Professor, Bakhtiyarpur college of Engineering, Patna, India

² Professor, National Institute of Technology Patna, India, e-mail: om.prakash@nitp.ac.in

Graphene oxide as nano additives to waste cooking oil biodiesel at three different dosage levels of 25, 50, and 100 ppm is explored in this study.

2. Materials

The Graphene oxide (GO) with 99% purity was purchased from the Shilpa Enterprises and the waste cooking oil biodiesel (BWCO) was made by transesterification of waste cooking oil.

3. Characterization

The graphene oxide was powdered and black in appearance. Fig. 1 shows the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of graphene oxide.

The thickness of graphene oxide was 3 to 8 nm, with an average surface area of 180 m²/g. The length of GO was in the range of 5 to 10 microns and the thermal conductivity was 5000 W/m-K. The specifications of graphene oxide is given in Table 1.

Table 1

The specifications of graphene oxide	
Specification	Explanations
Product Name	Graphene oxide
Average Length	5 to 10 microns
Average Thickness	3 to 8 nm
Number of layers	3 to 6 layers
Surface Area	180 m ² /g
Purity	99%
Thermal Conductivity	5000 W/m-K

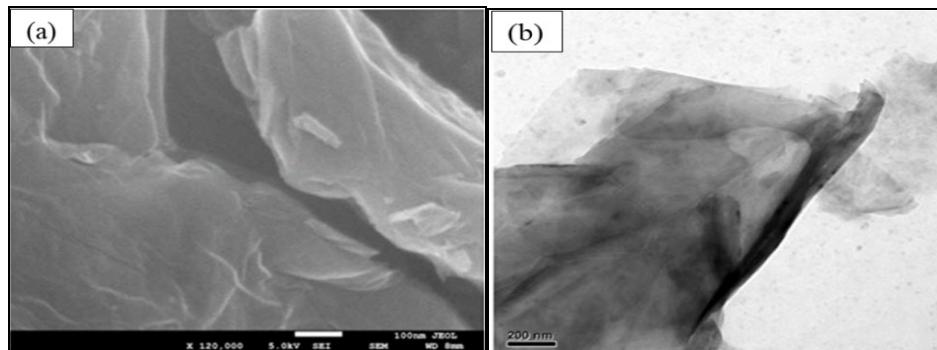


Fig. 1. (a) SEM and (b) TEM image of Graphene oxide

4. Preparation of dispersion

To create a homogeneous dispersion of 25, 50, and 100 ppm, the graphene oxide with weight of 1.25, 2.5 and 5 mg were mixed with 50 ml of BWCO. The dispersion were then homogenized for 1 hr, 2 hr, and 3 hr using a probe-based ultrasonicator (make LABMAN) device set to 24 kHz.

Fig. 2 and Fig. 3 show the setup of nanofluid preparation and the dispersed sample of GO in BWCO, respectively.

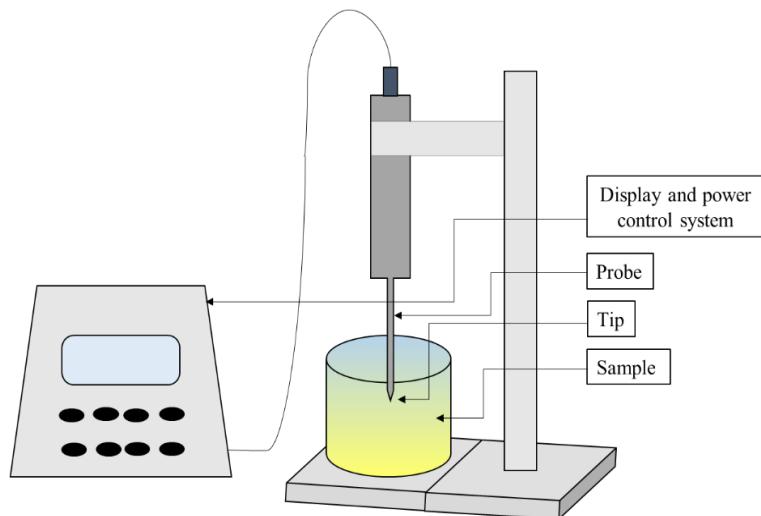


Fig. 2. Nanofluid preparation setup

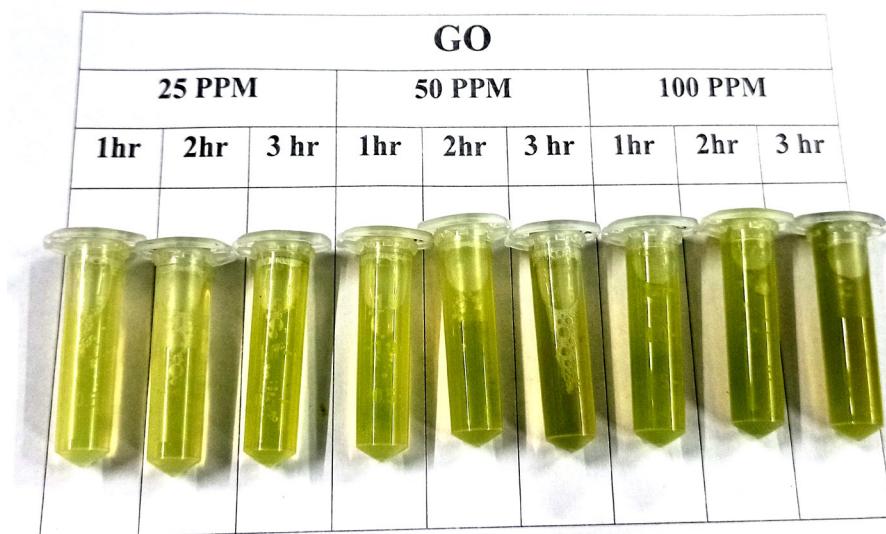


Fig. 3. Nanofluid sample of GO and BWCO

Fig. 4. V-730 UV-Vis spectrophotometer

5. Stability of the dispersion

Using a V-730 UV-Vis spectrophotometer (make JASCO), the dispersion characteristics of graphene oxide at varied concentrations and sonication times were investigated for four days. The V-730 UV-Vis spectrophotometer is shown in Fig.4.

BWCO was used as the reference sample, while the prepared dispersion as specimen sample. The reading was taken for the wavelength range of 200 to 1000 nm, scan speed of 400 nm/minute and a slit width of 5 nm.

6. Results and discussion

This section shows the effect of sonication time and GO concentration on nanofuels stability as a function of time.

Fig. 5, Fig. 6, and Fig. 7 show the effect of sonication duration on the stability of different GO concentrations. The absorbance decreased at the end of each day, because the graphene oxide started to agglomerate and settle with time. Furthermore, the absorbance drop of 25 ppm concentration with each day was more than that of 50 ppm and 100 ppm concentrations. This may be due to even sedimentation and agglomeration there was enough GO present to reflect more absorbance than that of a 25 ppm concentration. The GO suspension with 3 hours of sonication was more stable, regardless of concentration. These results are in close agreement with those of *Soudagar et al.* [13].

Fig. 8 and Fig. 9 show the absorbance values of GO nanofuels for all concentration. The highest absorbance value was 0.620 for GO concentration of 100 ppm with 3 hours of sonication period, while the lowest absorbance value was 0.095 for 50 ppm GO concentration with 2 hour of sonication period.

The percentage drop in absorption after four days of sample preparation of 25 ppm and 100 ppm concentration for 3 hours of sonication period was 21% and

4%, respectively, it indicates that even after four days, the sample with 100 ppm concentration was more stable than the sample with 25 ppm concentration.

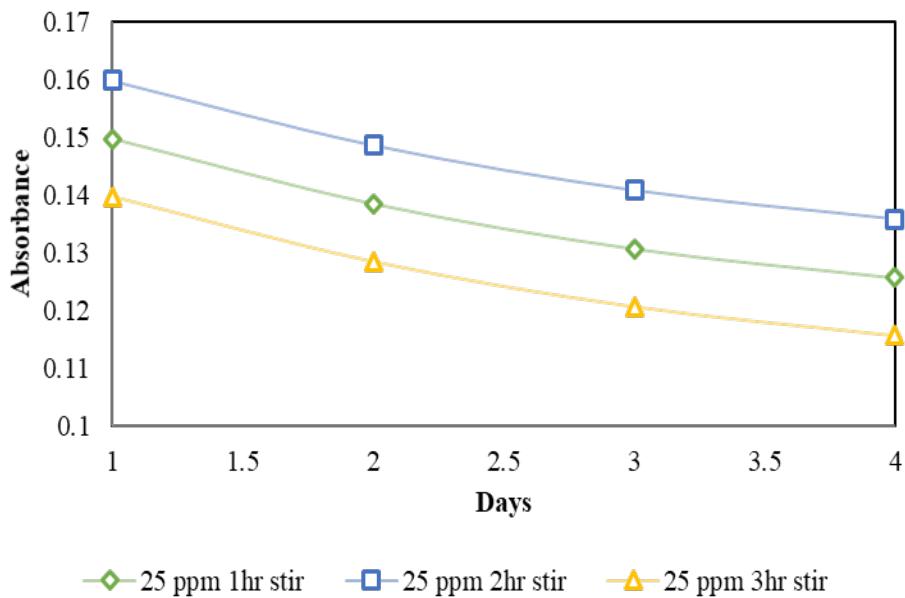


Fig. 5. Stability characteristic of 25 ppm BWCO

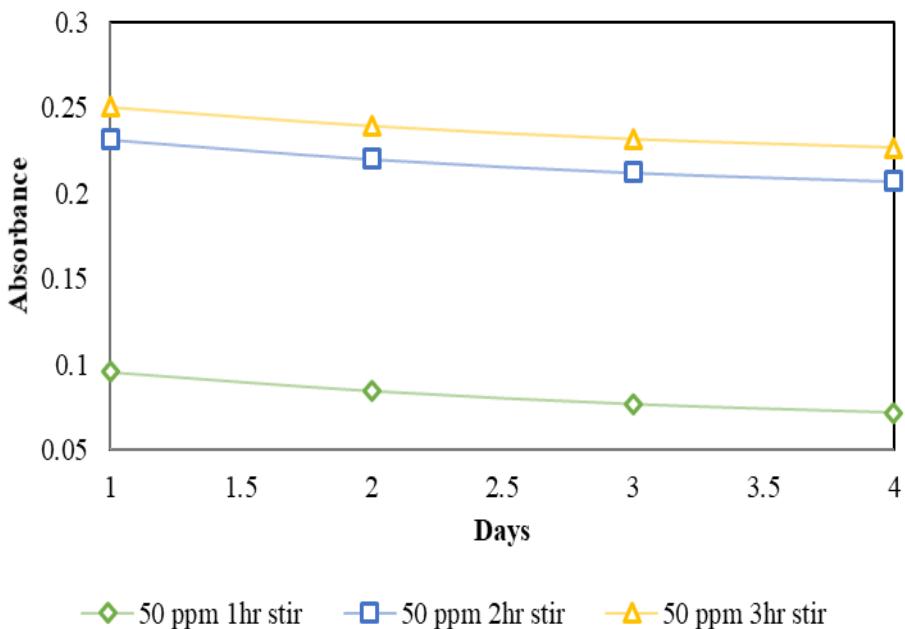


Fig. 6. Stability characteristic of 50 ppm BWCO

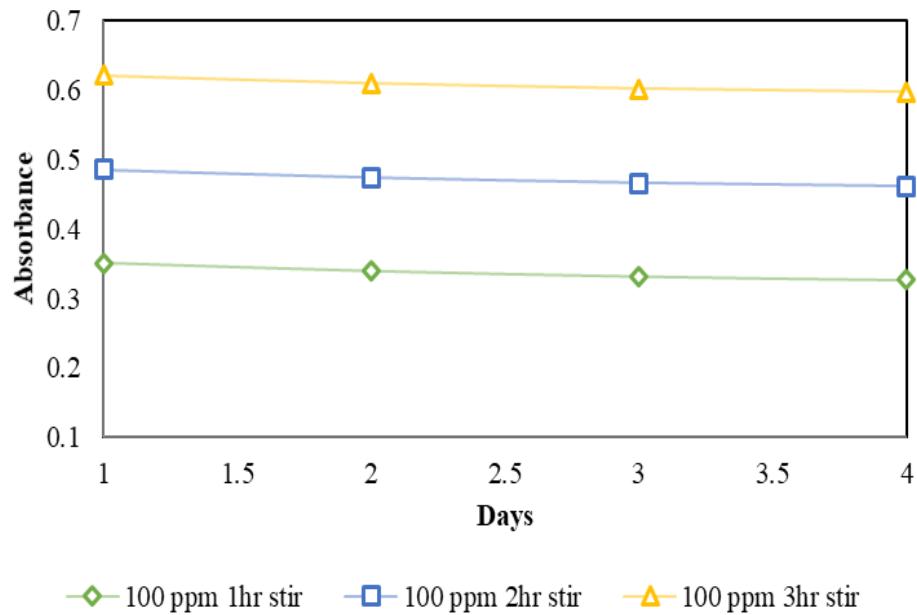


Fig. 7. Stability characteristic of 100 ppm BWCO

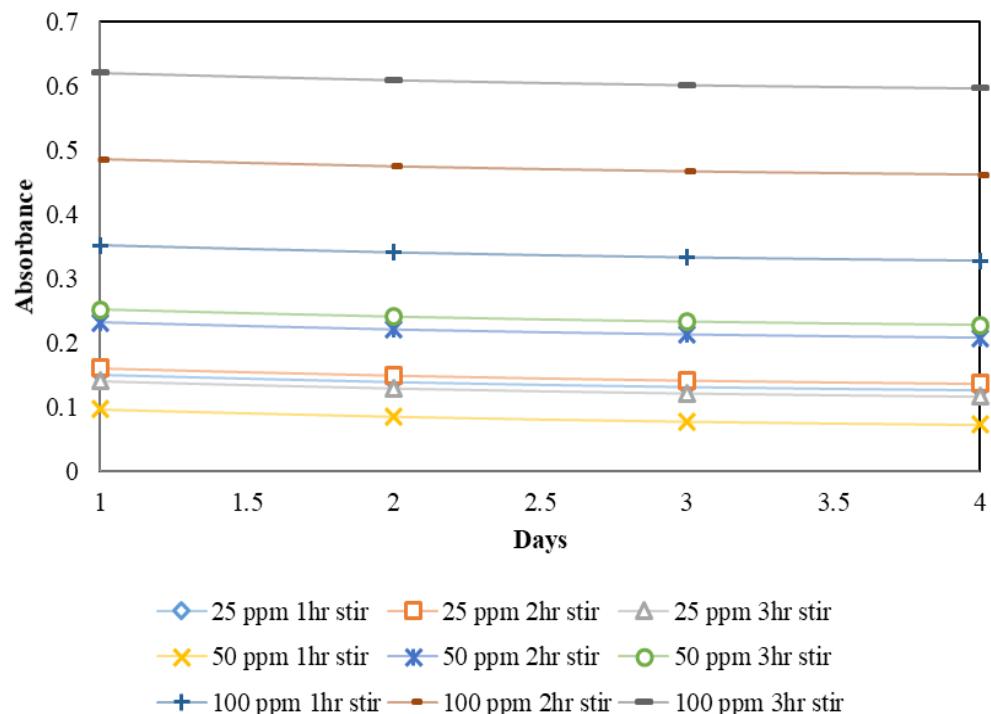


Fig. 8. Stability characteristic GO BWCO for all concentration

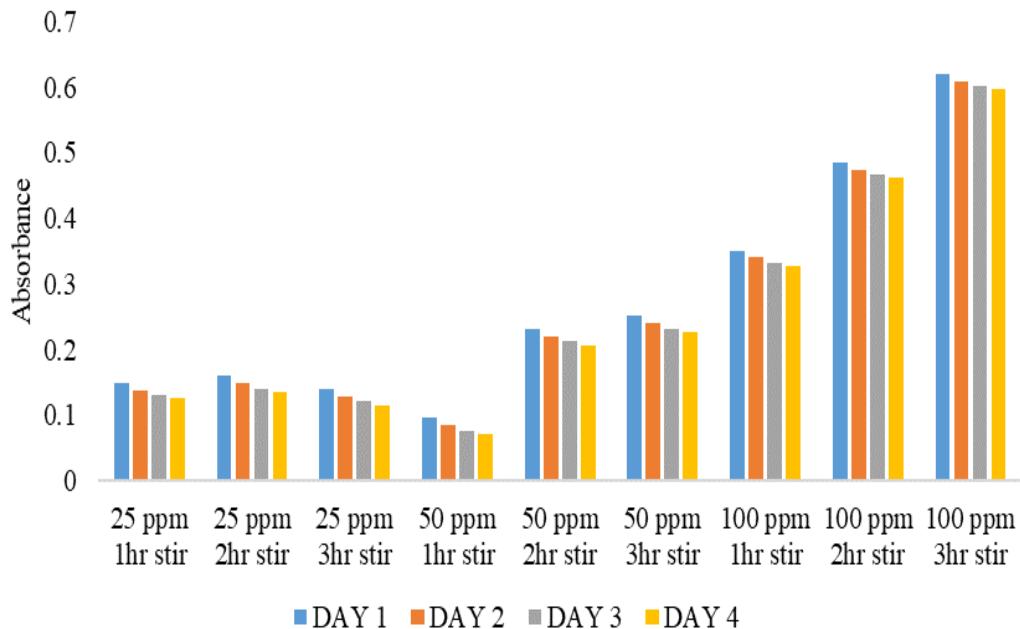


Fig. 9. Stability characteristic GO BWCO for all concentration

7. Conclusions

The impacts of GO nano-additives stability in biodiesel fuel for different concentrations and sonication durations were investigated in this paper. The sedimentation of GO nanofuels was studied using a UV-Vis spectrophotometer. The findings of the present investigation are listed below:

- (1) Regardless of concentration, GO started to cluster and settled by each day.
- (2) The GO suspension with 3 hours of sonication period found more stable for the concentration 25 ppm, 50 ppm and 100 ppm.
- (3) Highest absorbance value was 0.620 for 100 ppm concentration with 3 hours of sonication duration.
- (4) The percentage drop in absorbance after four days of 25 ppm and 100 ppm concentration with 3 hours of sonication duration was 21% and 4%, respectively, it shows that the sample with 100 ppm concentration was more stable.

R E F E R E N C E S

- [1]. *A. Shirneshan*, “HC, CO, CO₂ and NO_x emission evaluation of a diesel engine fueled with waste frying oil methyl ester”, *Procedia-Social and Behavioral Sciences*, **vol. 75**, Apr 2013, pp. 292-7.
- [2]. *D'Alessandro, G. Bidini, M. Zampilli, P. Laranci, P. Bartocci, F. Fantozzi*, “Straight and waste vegetable oil in engines: review and experimental measurement of emissions, fuel consumption and injector fouling on a turbocharged commercial engine” *Fuel*, **vol. 182**, Oct 2016, pp.198-209.
- [3]. *İA Reşitoğlu, K Altınışik, A Keskin*, “The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems”. *Clean Technologies and Environmental Policy*. **vol.1**, Jan 2015, pp.15-27.
- [4]. *M Suresh, CP Jawahar, RR Renish, A Malmquist*, “Performance evaluation and emission characteristics of variable compression ratio diesel engine using Argemone Mexicana biodiesel”, *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*. **vol. 43**, Jun 2021, pp. 1511-23.
- [5]. *A.M. Attia, A.E.Hassaneen*, “Influence of diesel fuel blended with biodiesel produced from waste cooking oil on diesel engine performance”, *Fuel*, **vol. 167**, Mar 2016, pp. 316-28.
- [6]. *P. Pradhan, S. Chakraborty, R. Chakraborty*, “Optimization of infrared radiated fast and energy-efficient biodiesel production from waste mustard oil catalyzed by Amberlyst 15: engine performance and emission quality assessments”, *Fuel*, **vol. 173**, Jun 2016, pp. 60-8.
- [7]. *T Balamurugan, A Arun, GB Sathishkumar*, “Biodiesel derived from corn oil–A fuel substitute for diesel”. *Renewable and Sustainable Energy Reviews*. **vol. 94** Oct 2018, pp. 772-8.
- [8]. *NL Panwar, HY Shrirame, NS Rathore, S Jindal, AK Kurchania*, “Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil”. *Applied Thermal Engineering*. **vol. 30**, Feb 2010, pp. 245-9.
- [9]. *MA da Silva, BL Ferreira, LG da Costa Marques, AL Murta, MA de Freitas*, “Comparative study of NO_x emissions of biodiesel-diesel blends from soybean, palm and waste frying oils using methyl and ethyl transesterification routes”. *Fuel*, **vol.194**, Apr 2017, pp.144-56.
- [10]. *JB Ooi, HM Ismail, BT Tan, X Wang*, “Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine”. *Energy*. **vol. 161**, Oct 2018, pp. 70-80.
- [11]. *K Heydari-Maleney, A Taghizadeh-Alisaraei, B Ghobadian, A Abbaszadeh-Mayvan*, “Analyzing and evaluation of carbon nanotubes additives to diesohol-B2 fuels on performance and emission of diesel engines”. *Fuel*. **vol. 196**, May 2017, pp.110-23.
- [12]. *A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset*, “Specific surface area of carbon nanotubes and bundles of carbon nanotubes”, *Carbon*. **vol. 74**, no. 4, Apr 2001, pp. 507-14.
- [13]. *M.E. Soudagar, N.N. Nik-Ghazali, M.A. Kalam, I.A. Badruddin, N. Banapurmath, T.Y. Khan, M.N. Bashir, N. Akram, A. Afzal*, “The effects of graphene oxide nanoparticle additive stably dispersed in dairy scum oil biodiesel-diesel fuel blend on CI engine: performance, emission and combustion characteristics”. *Fuel*, **vol. 257**, Dec 2019, pp. 116015.
- [14]. *SH Hosseini, A Taghizadeh-Alisaraei, B Ghobadian, A Abbaszadeh-Mayvan*, “Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends”. *Renewable Energy*. **vol. 111**, Oct 2017, pp.201-13.
- [15]. *V. W. Khond, V. M. Kriplani* “Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: A comprehensive review”, *Renewable and Sustainable Energy Reviews*. **vol. 59**, Jun 2016, pp. 1338-48.