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CYCLIC CODES AS IDEALS IN F[x:aN,],, F,[x]
A LINKAGE

AND F,[xiN,]

an’ abn

Tariq SHAH,', Asma SHAHEEN 2

Random error correcting codes are not efficient for correcting burst errors;
therefore, it is required to design specialized codes which can correct burst errors.
In this study, construction technique of cyclic codes is improved by using monoid
rings instead of polynomial ring. The new scheme is formulated in such a way, that,
for a given n length binary cyclic codec , three different binary cyclic codes
C,..C,, and ¢ of length an, bn and abn are constructed. It is proved that these
binary cyclic codes are interleaved codes of depths a,b, and ab respectively.
Therefore, if the initial code C, corrects t errors, then the interleaved codes C..»

C,, and C,,, correct t bursts of length 4, and ab or less.

Keywords: Monoid rings, binary cyclic codes, generating and parity check
matrices, interleaved codes.

1. Introduction

Algebraic coding theory is one of the most effective and widely applied
branch of abstract algebra. It forms the basis of modern communication systems
and is used in essentially all hardware level implementations of smart and
intelligent machines, such as scanners, optical devices, and telecom equipment. It
is due to the algebraic codes that we are able to communicate over long distances
and are able to achieve megabit, bandwidth over a wireless communication
channel.

One of the important class of algebraic codes is cyclic codes. Cyclic codes were
initially studied by Prange in the year 1957 ([19], [20]). He noticed that the class
of cyclic codes has a rich algebraic structure, the first indication that algebra
would be a valuable tool in code design. Since then, advancement in the theory of
cyclic codes for correcting random as well as burst errors has been encouraged by
many coding theorists (see [4], [18], [8], and [5]). Cyclic codes were first studied
over the binary field F,, then were extended to to its Galois field extension F,

where q-p~, p is a prime number and m>1. The correspondence of cyclic codes

with ideals was observed independently by Peterson [17] and Kasami [7]. A
cyclic code C of length n over a Galois field F, can be viewed as an ideal of the

factor ring ('?n[jl]) . Many authors have considered properties of cyclic codes defined

as ideals in ring constructions (see [9], [12], [13], [14] and [15]).
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Cyclic codes are effectively applied for correcting random as well as burst errors.
A burst of length 1>1 is a binary vector whose nonzero components are confined
to | cyclically consecutive positions, with the first and last positions being
nonzero. The binary vector oo11010000 has a burst of length 4. A code is called an
Iburst error correcting code if it can correct all burst errors of length | or less.
Cyclic codes for single burst error correction were first studied by Abramson ([1],
[2]). The most efficient cyclic codes for the correction of random as well as burst
errors are interleaved codes. By interleaving a t random error correcting
(n,k) cyclic code to degree s, we obtain a (s, s) cyclic code which is capable of

correcting any combination of t bursts of length s or less [11, Section 9.4].

In a sequence of papers [3], [21], [22], [23], [24], [25] and [26], cyclic codes
using different monoid rings, over a local finite commutative ring were
constructed. However, in this study our focus is on binary field F,, since in present

digital computers and digital data communication systems, information is coded
in binary bits, therefore it is more applicable than local finite commutative rings.
To construct cyclic codes using the monoid ring F,[x;2N,], where a and b are

integers satisfying ab>1 with b=a+1, we will first construct cyclic codes using
the monoid ring F,[x;aN,]. This is certain because F,[x;2N,] does not contain the
polynomial ring F,[x] for a,b>1, whereas the ring F,[x;aN,] is properly contained
in both the rings F,[x] and F,[x;2N,].

The factor rings fzij?)i’“f)], Rbiel - gnd RN gre denoted by F,[x;aN,],,
- ((xP )1 (O®)™"-1)

F,[x2N,],, and F,[xiN,],,, Where (x*)"-1), (') -1 and (x)= _1) are the principal
ideals in the monoid rings F,[x;aN,], F,[x2N,] and F,[xiN,] respectively.
Consequently, a method is devised such that; for a given (n,k) binary cyclic code
c, generated by rdegree (generalized) polynomial g(x*)eF,[x;aN,], We get
(an,ak), (bn,bk) and (abn,abk) binary cyclic codes c,, c,, and c,, generated by
ar,br and abr degree (generalized) polynomials g(x) e F,[x], g(x*)<F,[x;2N,] and
g(x*) e F,[x;tN,]. By [18, Theorem 11.1], the binary cyclic codes c_, c,, and c,,
are interleaved codes of degree a, band ab, respectively. Therefore, if the initial
code c, corrects up to t errors, then the interleaved codes c_, c, and c,,
correct t bursts of length a,b and ab or less. Whereas this t bits error in each row
will be corrected by the base codec, . The interleaved codes c_, c, and c  are
capable of correcting all bursts of length al, bl and abi or less, whenever the base
code ¢, corrects all bursts of length 10r less.

This paper is organized as follows: Section 1 describes a brief introduction to the
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semigroup rings. In section 2, the construction of binary cyclic codes c_, c,, and
C....as ideals in the rings F,[x],, F,[x2N,],, and F,[x;iN,],,. IS explained. In

section 3, the relationship among all of these binary cyclic codes is obtained
through interleaving technique and by their generator and parity check matrices.
Their error correction capability and decoding is discussed in section 4. The last
section 5 concludes the findings.

2. Semigroup Rings
Throughout, z denotes the ring of integers, N, the additive monoid of all non-
negative integers, and F, is a Galois field of q elements, where q is a prime or a

power of a prime.
Let F, be a binary field, and let x be a variable. For an additive semigroups,

F,[x;S] denotes the set of all finite sums of the form 3 ¢ 4=, where nen,,
i=1

0+ f eF, and s, eS. The set F,[x;S] is a ring with respect to binary operation

addition defined as; S S 31 o (1)
where neN,, f,g,eF, and s, eS. Whereas multiplication is defined by the
distributive law and the rule 1 xs.,x* = (f,.f,)x**. (2)

In particular we have m 3
p Z fIXsI'ZgJXS‘:Z(flg])xs“s" ( )
i=0 j=0 i

where nmeN,, f,g,<F, and s,s, 5. The set F,[x;S] is called a semigroup ring
of s overF,. If s is a monoid, then F,[x;S] is called a monoid ring. The monoid
ring F,[x;S] is a polynomial ring in one indeterminate if the monoid S is N,. Let

us refer to [10, Section 3.2], for an alternative equivalent definition of a
semigroup ring.

In semigroup rings, the concepts of degree and order are not defined generally.
However, if s is a totally ordered semigroup then, the degree and order of an
element of the semigroup ring F,[x;s] is defined as: Let ¢ _5 ¢4 be the arbitrary

nonzero element in F,[x;S], where s <s, <---<s,, then s is the degree of f and
the order of f is s,.

In this study, the monoid S is taken to be totally ordered monoids an, ={0,a,2a,..}
and N, ={0,¢,2,..3, Where a and b are integers satisfying a, b >1 withb=a+1.

b b o

3. Cyclic codes as ideals in F,[x;2N,],,

Definition 1: A subspace of the vector space of all n-tuples over the binary field
F, is called a linear code C of length n.



208 Tariq Shah, Asma Shaheen

Definition 2: A linear code c over F, is a cyclic code, ify=(,,v,,.-v,,)ec, then
every cyclic shift vo -, v,,---,v ,)ec,Where v, eF, and o<i<n-1.
Due to the fact that F,[x]< F,[x;2N,], the generator polynomials of cyclic codes in

-1 - - - -
(szn—[xll) and “EaM! have a relationship. But since F,[x]¢F,[x2N,], this posed a
B (CORSY

hurdle to construct the cyclic codes in the factor ring 2X:™! However, the fact
((x0)"-1)

F,Ix;aN,]c F,[x;2N,] Provides a justification for constructing the binary cyclic
codes in F,[x;2N,],, by using an n length cyclic code c, obtained from
F,[x;aN,], . Let
F(X®) = fy + £, (X) + 50 (X2)? 4o £, (x*)" €F,[x;aN,] (4)
be a generalized polynomial of degree n, then f(x®) has degree bn in the monoid
ring F,[x;2N,] and is represented by
FOE) = T+ £,06) + 1, () oot £, (). ()
If ) is monic, then the factor ring FZ[X—{N“ is the ring of residue classes of
(f ()
generalized polynomials in F,[x;2N,] modulo ideal (f(x*)). Thus, if we take f(x)
to be (x")™ -1, then the factor ring is
Flxi§No] _ (6)

- {(:0+cl/i!Jr...Jrci(H)/i“”’1 © €1 Curn Cupyy € R
(COREE) “ " T
Where g denotes the coset xi(xi)-1. AlSo, (s =0, When g satisfies the

relation g™ _1-0. By writing x* in place of pgthe ring FiN becomes
()" -1)

F,[x2N,],, in which the relation (x')» -1 holds. The factor ring F,[x;2N,],, IS
algebra over the field F,. The multiplication « in the ring F,[x;2N,],, is defined
as: for c(x*) in F,[x;2N,],, the product (x})«c(x’) is given by:
() () = () (6 +€, () + €, (XF)? + ey (X)) )
= Capy + G () 0 () + ke, ()
Following results give a method of obtaining the generator generalized
polynomial, which generates a principal ideal of the factor ring F,[x;2N,],,-

Theorem 1: A subset ¢, in F,[x2N,],, is a binary cyclic code if and only if c,
is an ideal in the ring F,[x;2N,],, -

The following Theorem extends [16, Theorem 4.3.6] for the monoid ring
F[X 5 Nol-

Theorem 2: Let ¢, be a nonzero ideal in the ring F,[x;zN,],,- Then the following
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hold.
1) There exists a unique monic generalized polynomial g(x%) of least degree in

Cbn’
2) g(x*) divides (xby™ -1 in F,[x;2N,],
3) Forall ¢(x*)ec,,, it follows that g(x)divides c(x*) in F,[x;2N,], and

4) c, =(g(x'))-

Conversely, if ¢, is the ideal generated by p')er,[x2N,],.then pii) is a
generalized polynomial of least degree in ¢, if and only if p(x*) divides (x*)> -1
N F,0 5Nl -

Similar to [N], the following Theorem gives the generator matrix of the binary
cyclic code c, .

Theorem 3: Let c, cF,[x2N,], be a binary cyclic code with generator
polynomial

9) = 0o+ 0, (<) 40, ()P 4 s g ()" g, =11 (8)
Then c,, is of dimension bk =b(n-r) , Which has a generator matrix of order
bk x bn glven by g% 0 - 0g 0 - 0 g, 0 0 - 0 (9)
0 g, 0 - ob g. 0 - 0 . 9. 0 - 0
Gu=l s ’ : ' ;
o - 0g¢g O 09, O - 0 -0 9.

The sequence o...0 betweeng,'s in g, has length b-1.

Definition 3: The generalized polynomial n(x%), such that (') —1-gxi)h(xt), 1S
called the check generalized polynomial of binary cyclic code
C,  FIx2N,],., Where g(x*) is the generator generalized polynomial of .

Theorem 4: Let ¢, be a bn length binary cyclic code in F,[x;2N,],, With check
generalized polynomial n(x*). Then ax)ec,,, Where aixf)cF,[x2N,],,, if and only if
a(x*)#h(x*)=0.
The following Theorem gives a parity check matrix for a binary cyclic code ¢, in
F[% 5 Nol, -
Theorem 5: Let ¢, be a binary cyclic (bn,bk) code with check generalized
polynomial

h(x) = by + 0. () +-+ by, (), h,, =1 (10)
Then the pn-k)xbn Matrix given by:



210 Tarig Shah, Asma Shaheen

h%k 0 .- 0 h%(H) o R 0 - 0 (11)
0 h%k 0o -~ 0 h%(H) o h 0 -0

Pae| ¢ :
0 -~ 0h, O .. 0 hg(m) ey

is a parity check matrix for ¢, and the sequence 0---0 in H,, has length b-1.
Remark 1: All of the above results follow for F,[x;aN,], by taking b=1.
Now shift the generalized polynomial f (x*)of arbitrary degree n in F,[x;2N,] t0 a
generalized polynomial f(x*) in F,[x;iN,] @s

FOC) = fot £ () + £, 06 ) oot £, ()™ (12)
The degree of an arbitrary generalized polynomial in F,[x;2N,] has exceeded
from n to an in F,[x;1N,]. Consequently, the degree of the generator generalized
polynomial g((x*)) also exceeds from r—pr t0 r"—apr, Where g(x¢) divides
(x)* -1 and generates a binary cyclic (abn,abk) code C,,, in F,[x;1N,]
Thus, from the generator and parity check matrices of the code ¢, we obtain the
generator and parity check matrices of the code c_, .
Theorem 6: Let c, cF[xiN,], D€ a binary cyclic code with generator
polynomial 96D = 0o +,00)" +0,0¢)” +--+,0¢)", g, =1 (13)
Then ¢, is of dimension apk =ab(n-r), Which has a generator matrix of order
abkxabn given by

abn *

abn

g% 0 -0
0g 0 -

R N : :

0 ~0g 0 09 0 -0 00g

Where the sequence o.--0 between g;'sin g, has length ap-1.

Theorem 7: Let ¢, be a binary cyclic (abn,abk) code with check generalized

%
0

0 g 000 (14)
, 0 -0

0
g 0 0 --g O

polynomial h(x*) = hy +h, () + -+ h, ()™, h, =1, (15)
Then the ap(n-k)xabn Matrix given by

h% 0 -+ 0 hyy - h 0 - 0 (16)

0 h 0 - d Ny o hy 0 -0

Hay = : B v :

0 - 0 h% 0 o 0 hey o o hy
is a parity check matrix for ¢ and the sequence 0---0 between h's in H_ has
length ab-1.

Example 1: Let g(x*)=1+()+(x?)? eF,[x2N,] be the generalized polynomial with
degree r=2 and divides(x*)*-1. Clearly g(x*) generates a binary cyclic (3,1) code
in F,[x;2N,], which has a generator matrix
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G,=ft 1 1] (17)
In  F,[x], the polynomial g(x?)=g(x)=1+x?+x" has degree 4 = 2rand divides x* —1.
Therefore, generates a binary cyclic (6,2) code in F,[x], which has a generator
matrix

010101
Since (x)*-1=@1+x*+(A)?)A+(x%), it follows that n(x?)=1+(x?) is the parity check
generalized polynomial of (31) code in F,[x;2N,],. This gives the parity check
matrix

G4:|:l 0101 0:|. (18)

" {1 1 o}. (19)

011
In F[x], (x)*-1 becomes x®-1=(1+x2+x*)+x?). Hence n(x)=1+x> is the parity
check polynomial of (6,2) code and the corresponding parity check matrix is
10100 0] (20)

01 01 00
001010
000101

Letg(x')=1+(x*)* +(x*)* be a generator generalized polynomial of degree 6 and it
divides (x%)°-1, then g(x%)generates a binary cyclic (9,3)code with generator
matrix

Whereas, in F,[x;iN,], g(x’) becomesg(x)=1+(x*)* +(x*)* and has degree 12 and
divides (x:)# -1. Thus, it generates a cyclic s 6) code having generator matrix

H, =

o - o

01
00
10

o O

0
0
1

o O
o = o
= O O

1
0
0

} (21)

100000100000100000 (22)
010000O0O10O0O0OO0OOTI11IO0O0TQO0OO
G 00100O0O0OO0O1I0O0OO0OO0OO0OT1IO0O0OTO
710001000001 00000100
00O0O01O0O0OO0OO0OO0OI1IO0O0OO0OO0OO0OTIIO
000O0OO0O1O0O0OO0OOOTI1IO0O0OO0OO0OU 0?11
The parity check generalized polynomials are
h() =14 () and h((x*)) =1+ (x)°. (23)
Which give the following parity check matrices
1 0 0 1 0 0 0 00O (24)
01 00 1 0000
001001000
H, = and
00 0 1 0 0 1 00O
000010010
00 00 O0OT1O0 01
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(25)

O o o0oo0oooookr oo

O o o0ooooor ooo

O 0o or oo oo o
OO0 o0 or oo oo o kr o
O o0 or oo oo o oo

©Or o0 oo or oo o
O OO0 OO0 OoOr oo o o

O o0 ooopr oo o oo
O o o0oookr oo oo o o
O oo or oo oo o o o
O o or oo oo oo o o
O OoOr OO0 o0 oo oo o o
O r OO0 oo oo oo oo
P oooooooo oo o

1
O 0000000 oo o kR
©O 0o oo ooooor o
©O 0o oo o okr oo oo
OO0 o0oo0oo0oor oo oo o

0 0 0

4. Relationship among the cyclic codes C,.C...C,, andc,,

In this section, we demonstrate the association between the binary cyclic codes
C,.C...C,, and c_ by two ways:

(i) Using the technique of interleaving,. (ii) Through the generator and parity
check matrices of the binary cyclic codes ¢, c,,,, c,, and C, .

Relationship of c_,c, ,c,, and ¢, by interleaving

For a given (n,k) cyclic code, a (pn, p) cyclic code can be constructed by
interleaving. This is done by simply arranging s code vectors in the original code
into p rows of a rectangular array and then transmitting them column by column.
In this way a codeword of gndigits is obtained whose two consecutive bits are
now separated by -1 positions. The parameter g is called interleaving degree.
Proposition 1: The codes c_, c,, and c,, are interleaved codes of degree a, b
and ab respectively, where the code c_ is the base code.

Proof: Take a code vectors from the base code ¢, and arrange them into a rows

of an axn array. Then by transmitting this code array column by column in serial
manner we get the binary cyclic code c_ . Similarly, the binary cyclic code c,, is

obtained by taking b code vectors from the base code c_,arranging them into b

rows of an bxn array and then transmitting it column by column in serial manner.
In this way codewords of an and bn digits are obtained whose two consecutive
bits are now separated by a-1 and b-1 positions respectively. Now, by arranging
ab code vectors from the code ¢, and arranging them into ab rows of an abxn

array and then transmitting it column by column, the binary cyclic code c is

obtained. This gives codewords of abn digits whose two consecutive bits are
separated by ab -1 positions.
Example 2: In Example 1, the (31) code c, acts as a base code. The code c, is

obtained by arranging 2 codewords 111 and 000 in c, into 2 rows of an 2x3
array, that is: 111 (26)
0 0 o0

0 1
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and then by transmitting this code array column by column we get 101010, which
is a codeword in c,. Similarly, by arranging 3 and 6 codewords in ¢, into 3 and

6 rows of an 3x3 and 6x3 arrays, that is:
(27)

o
o
o
®
=1
a
P O o o r o
» o o o r o
» o o o r o

we get the codewords by transmitting them column by column
101101101 and 0100010100 01010001 in C, and C,j.

Relationship of c ,c_ .c,, and c_ by the generator and parity check matrices
Now, we explain the relationship between the codes ¢ ,c,,c, and c_ through

their generator and parity check matrices, using the notion of direct sum of codes.
Definition 4: [6] (a) Let ¢, be an (n, k) code, where ie{, 2}, both having symbols

from the same Galois field F_ . Then their direct sum
C.®C, ={(c,c,)|c, €C,c, eC,} IS @ (n, +n, k +k,) code.
(b) For ieq1,23, if C, has generator matrix G, and parity check matrix H,, then

G, H, 0 (28)
0 0 H,

are the generator and parity check matrices for the code ¢ ec .

The following result explains the relationship between the binary cyclic codes
c,.C...C, and c, through their generator matrices.

Theorem 8: Let G,,G,,G,,, and G, be the generator matrices corresponding to
the generator generalized polynomials

GOR) =14 )+ -+ (), GO =14 X% 44 X7, G(XT) =L+ (K)o (xF)™ and g((x*)?) =L+ (X )2 ++--(xF)®"
Of the blnary CyCIIC COdes Cn’Can’Cbn and Cabn in FZ[X;aNO]n' Fz[x]an' FZ[X;%NO]bn
and F,[x;1N,1,,- Then the following conditions hold.
1) g, ~eG, ,
2) G, ~G, @G, ~@'G,, and
3) Gabr ~®?Gbr ~®1aGr ®Gar ~®1abGr '
Proof: As g(x*)=1+(x*)+---+(x*)" divides (x*)" -1 in F,[x;aN,], therefore the generator
matrix G, has order kxn, where k=n-r In F,[x], the generalized polynomial
g0 =g(x) =1+x* +--+x* divides x* -1. Consequently, a generator matrix G_ of
order akxan is obtained which after some suitable column operations becomes

0
G, @G, = and H,® H, =
GZ

abn
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G 0 (29)

0 .-

0 G, 0. 0

. 0 N .
0

G, ~

0

This implies that g, contains a blocks of G, at its main diagonal and hence
G, ~@:G, Similarly, gx¢)=1+(x*)+.-+(x*)> divides x_1, which have generator
matrix g, of order bkxbn. On applying suitable column operations, blocks of G,

and G, are obtained at the main diagonal of G,,

r Ja(kxn)

.. {Ga, 0} (30)
0 Gr (a+1)(kxn)
Putting the value of G from (31) in (32) we get,

G, 0 - 0 (31)
0 G 0- 0

Gy ~| . . .
: 0 . :
0 0 - G

r J(a+1)(kxn)
The generator polynomial g(¢)?)=1+(x*)® +--+(x)® divides x*' -1 and gives a
generator matrix G, of order apkxabn Which after suitable column operations
gives

G, 0 - 0 (32)
0 G, 0. 0

Gar ~ . :
0 0 - G,

a(bkxbn)

Putting the value of G, from (33) we get

G, 0 0 (33)
Ga.br 5 0 Gr 0

: 0o . :

0 0 - G

) P
which shows that G, contains ab blocks of G, , thatis, 6, ~@*G, .

The following example illustrates Theorem 8.

Example 3: Let a=2, b=3 and r=2. From Example 1 equation 24 we get the
generator matrix G,, which after applying some suitable column operations
becomes:

(34)

o o o o~
o o o o+ O
o o o r o o
O O O © O
o o o o r o

o or oo

o o o o~
o o o o+ O
o o o r o o

o+ o o o
o r O O o o
» O O o o o

o +r o o o
o r O o o o
» O O o o o
o o r o o o
o r O O o o
» O O O O O

0 00 0 0
By Example 1 equation 14 itis clear that g, ~ 6, @ G, -

Again on applying suitable column operations on c_, it gives
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101010000 (35)
G ~/010101000
000000111
~ G, @G,
and similarly G, becomes _ {1 1100 0} (36)
! 000111

~ G,®G,.
So, G, ~G, ®G,®G,and G, ~G, ®G, ®G, ®G, DG, ®G,.
Encoding: In the matrix G, , the matrices G, G, and G, exist as block matrices
and the generator generalized polynomial of the cyclic (abnabk) code ¢, can be

abn

used for encoding. So, a message word ueF;™ is encoded as uG,, . Hence the
code ¢ ={UG,, : ueF™}. On partitioning u as u=(Uy, Suy), where u, eF*,

abr . ulxa

Upa Eank and Uy € sz » We get Caor ~{UpsGpr 1 UpyGyr 1 Uy G}
Example 4: Let a=2, b=3 and r=2, then ueF; isgivenby u=p1 1 0 0 1 1.
The row matrix u has order 1x6. By partitioning the matrix u we get
U:[l 1 0]l><3 :[O l]1><2 :[l]m]:[ul P ua] and
UG, = [UG,,, :UuG,, : UG, 1] (37)
= 110110110010101111
Thus, the message word u is encoded as the codeword uG,, .

For parity check matrix, Theorem 8 doesn't hold, whereas it holds for the
canonical parity check matrix. In general, for a linear code, a generator matrix G
is transformed into the canonical form by applying elementary row operations.
But, in the case of a cyclic code, the canonical form can be obtained by using the
generator generalized polynomial and the division algorithm in the Euclidean
domain F,[x;2N,]. For any generalized polynomial ¢(xi)cr,x2n,], 1€ r(f(x'))
denote the remainder on dividing f(x:) by g(x?).
Theorem 9: Let g(x%) be the generator generalized polynomial of a binary cyclic
(bn,bk) code C,, in F,[x;2N,],, and A be a pkxb(n-k) matrix whose i-th row is
r((xh)ev+ty, for i=1,....k. Then the canonical generator and parity check
matrices of C, respectively are

Gur:[lbk : /‘\)r]and ku:[(Av)T : Ib(n*)]' (38)
Theorem 10: Let A, A, A, and A be the matrices as taken in Theorem 9 with
respect to the corresponding generator (generalized) polynomials gx*), g(x),
Q(X%) and g((xi)) in F,[x;aNy ], +F[Xl.,» F[%E N, and Fz[X;%NO] reSpECtively'
Then
16p ~oin . 26 ~non, -~ and 3C A ~aip ~oia @A, ~OPA .
Proof: For the generator generalized polynomial g(x*)=1+(x*)+--+(x)", the
remaindersr(x®)i, where n-k<j<n-1 give the matrix A of order kx(n-k).

abn
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Similarly, for g(x)=1+x*+---+x*, the matrix A_ of order akxa(n—k) is obtained
through the remainders r(x'), where a(n-k)< j<an-1. After applying suitable

column operations on A_, it gives
A 0 0- 0

0 0--- 0 (39)
A A o
o 0 - A a(kxn-k)
~ A,

For the generator generalized polynomial g(x')=1+(x")° +---+(x)>, the remainders
r((x*)') gives the matrix A, of order bkxb(n-k), Where bn-k)<j<bn-1. On
applying suitable column operations it gives submatrices of order akxa(n-k) and
kxn—k, that is,

A O
A~ e

o A (a+1)(kxn—k) (40)
ABA,
~ ®1a+1:b A

Finally, forg(x')®)=1+(x")®+--+(x)®, the remainders (), where
ab(n—k) < j<ab(n-1) gives A, of order abkxab(n-k). Which on applying suitable
column operations gives submatrices of order bk xb(n-k), that is,

13

A, 0 0
Ap ~ | 5 T
L 5 e (41)
~ O A ~BIAGA,
~ OrA,

which proves the theorem.
The following example illustrates Theorem 10.
Example 5: To find the parity check matrix for (18,6) code obtained by the
monoid ring F,[xiN,], we first divide (x°)) by g(x)=1+0)°+(x'y2, Where
j=1213---17, to get the remainders
FOC)? =1+ (C)°, 10C) = () + (), (42)
FOC) = (0)7 + ()", r(C)® = ()" + ()",
rOe)® = (60)" + (), r(e)T = () + ()"

Therefore, 100000100000 (43)
010000010000
A |00 1000001000
71000 100000100
0000100000 10
00000100000 1
Accordingly, Ho=[A)" & 1) (44)
Similarly,
(45)

1 0 0 1 0 O 10 1 0
01 0 0 1 O0f,A,-= and A, = L 1] gives
0 0 1 0 1
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He=[(A) & 1] Ho=[A)™ i 1]and H, =[(A)" i 1] (46)
Thus by Theorem 10,
Ho=[02(A) L) Ho=[A) @A) ¢ 1 ]andn,=[e2a, i 1] (47)

5. Decoding procedure

The codes c,, c,,, c,, and c,, have the same minimum distance and hence the

same error correction capability along with the same code rate, but as it is shown
in section sec4, the codes c_, ¢, and c_ are interleaved codes of degree a,b

and ab, where the base code ¢, is cyclic. Thus, if the initial code C, is capable of
correcting t errors, then the interleaved codes c,, c, and c,, are capable of
correcting t bursts of length a,b and ab or less, no matter where it starts, will

affect no more than t bits in each row. This t bits error in each row will be
corrected by the base code c, . If ¢, is capable of correcting all bursts of length |

or less, then the interleaved codes c,,, c,, and c,, are capable of correcting all
bursts of length al, bl and abl or less.

We give decoding scheme only for the code ¢, , through which decoding of c,
and c_ can easily be obtained. Decoding of the code ¢, can be obtained by
shifting (x*) to (x¥)2.

The following theorem gives the syndrome for binary cyclic codes c,, through its
canonical parity check matrixy,, .

Theorem 11: Let ¢, be a binary cyclic (bn,bk) code in F,[x;2N,],, With generator
polynomial g(x*) and the canonical parity check matrix H,, . Then, for any vector
ceF", the syndrome s(c) =r((x*)°" c(x))-

In a similar way, we get the syndromes for the binary cyclic codes ¢, and c_
through their canonical parity check matrices 1, and H_, .

In a binary cyclic code c, , with generator generalized polynomial ¢(x*), two
vectors c,d e )" lie in the same coset if and only if g(xi) divides c(x*)-d(x*), that
IS, r(c(x*))=r@d(x")). Let V(X%)ecbn be a generalized code polynomial, and u(x*) be a
generalized received polynomial. Then, vx‘)=u(x*)-e(x’), Where ex) is a
generalized error polynomial. Then their syndromes
S(v) = S(u)-S(e) implies S(u) = S(e)as S(v) = 0. Based on the previous discussion, we
deduce the following decoding steps.

Decoding Algorithm
1) For the received vector U=(Up Uy Uy ) €F with generalized received
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polynomial U0 =ty 1,0 -+ O, find the syndrome s = r((x*)2t“u(x%)).

2) Construct a syndrome table for the generalized error polynomials.

3) Verify by the table that for which i, where 1<i<n-1, Su)=S(e). Then the
generalized error polynomial ¢, (x*) for the generalized received polynomial
u(x¥) is obtained.

4) Consequently, v(x*)=u(x*)—e(x*) is the generalized decoded code polynomial
of the binary cyclic code ¢, .

5) The received interleaved sequence in ¢, is de-interleaved and rearranged
back to a rectangular array of b rows of the binary cyclic code c . Then each
row is decoded based on binary cyclic code c, .

Example 6: In Example 1, the (3,1) code acts as a base code capable of correcting

single error. Let n=9, k=3 and g(x’)=1+(x')*+(x')° eF,[x;2N,],, be the generator

generalized polynomial. Let u(x’)=1+(x’)+(x’)° eF,[x.2N,], be the generalized
received polynomial, then following are the syndrome tables of error generalized
polynomials e (x%), for 0<i<s and e (x‘), for o<i<17:

Syndrome Table | Syndrome Table 11
&(x") |e(x) | S(e) e () |e(x) |S()
e, (x%) |1 1+ (x5)? e, (x%) |1 14 (x%)°
g () ¢ () +(x)* e, 06) |7 | ) + ()
&, () | ()" | () + (x)° e () | ) | )+ ()e
ea(xi) (><j)3 1 ] ew(x%) (X%)s 1
&) L 6)" | (<) e 6)) |0 [ 00)?
e ) [0)" 'y o 0 |0 [0
es(x;) (x:)7 (><;)A ean(0) | 07 [ (0)°
e, () [ o) [ () S
es(xé) (X%)E (x§)5 e14‘15(xl) (Xz) (Xg)

B (X)) | (7)™ | (x°)"

From the Syndrome Table I we find that s(u)=s(e,)+S(e,) . SO the generalized error
polynomial is e(x*) = (x*)+ (x*)* which has error pattern e-010100009 Which is a
burst of length 3. Therefore, v(x®)=u(x®)—e(x’)=1+(x*)*+(x*)°, which is the
generator generalized polynomial of the code c,, its vector form is 100100100.
Now, on shifting the generalized received polynomial
UXE) =1+ () + (X*)° o u(x?) =1+ (x*)? + (x*)2 e Fz[x;%No]m,

we get the received word u =101000000000100000 in C,,. The syndrome of u(x’) is
S(u)=(x*)® +(x*)? +1. From the Syndrome Table Il we get s(u)=s(e, ,(x*)) + S(e, , (x*)).
This gives the generalized error polynomial e(x:)=(x*)+(x*) Which has error
pattern e = 001000100000000000, Which is a burst of length 5.
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Therefore, vy =u(x)—e(’) =1+ (x*)° + (x*), 1S the generator generalized polynomial of
the binary cyclic code c,,, and its vector form is 1000001000 00100000 . The vector
u in ¢, is formed by interleaving 3 rows u, =101, u, =100 and u, =000 in ¢, which
have respectively the error vectors e, =010, e, =100 and e, =000. On interleaving
the vectors u, =101 and u, =100 in C,, we get a received vector u=110010 in c,. Its

decoding gives the error vector e =011000 Which is a burst of length 2. Hence, the
interleaved codes (18,6), (9,3) and (,2) are capable of correcting single burst of
length 6, 3 and 2 or less.

6. Conclusions
In this study, a new technique of constructing binary cyclic codes is
introduced using the monoid rings F,[x;aN,], F,[x2N,] and F,[xiN,] instead of

the polynomial ring F,[x]. So, a scheme is articulated in such a manner that; for
an n length binary cyclic code c_, an ideal in the factor ring F,[x;aN,],; there
exists binary cyclic codes ¢, c, and c,, of lengths an, bn and abn. The

pronouncements of this study are as follows:
1) The generator and parity check matrix of the binary cyclic code ¢, contains

blocks of the generator and parity check matrices of the binary cyclic codes
c,.C, and c, . Hence, encoding and decoding of all the binary cyclic codes

Cc,, C, and ¢, can be done simultaneously by the encoding and decoding of
the binary cyclic code c_, .

2) The constructed binary cyclic codes c,, ¢, and c,, are interleaved codes of
degree a, b and ab, respectively, where the binary cyclic code c_ is the base
code. Therefore, if the base code ¢, corrects t errors, then the interleaved
codes c,,, c,, and c,, are capable of correcting t bursts of length a, b and
ab or less. If c_ is capable of correcting all bursts of length | or less, then the
interleaved codes c_, c, and c,, are capable of correcting all bursts of
length al, bl and abl or less.

This study can further be extended to q-array cyclic codes instead of 2-array.

Also, using the same monoid rings, the BCH codes can be constructed for better
error correction capability.

REFERENCES

[1]. N. Abramson, A class of systematic codes for non-independent errors, IRE Trans. Inf. Theory,
IT-4(4) (1959), 150-157.

[2]. N. Abramson and B. Elspas, Double-error-correcting coders and decoders for non-independent
binary errors, presented at the UNESCO Inf. Process. Conf. Paris, (1959).



220 Tarig Shah, Asma Shaheen

[3]. A.AA. Andrade, T. Shah and A. Khan, A note on linear codes over semigroup rings, TEMA -
Tend. Mat. Apl. Comput. 12(2) (2011), 79-89.

[4]. E.R. Berlekamp, Algebraic coding theory, McGraw-Hill, NewYork, (1968).

[5]. I.F. Blake and R.C. Mullin, The mathematical theory of coding, Academic Press, New York,
(1975).

[6]. W.C. Huffman and Vera Pless, Fundamentals of error-correcting codes, Cambridge University
Press, (2003).

[7]. T. Kasami, Systematic codes using binary shift register sequences, J. info. Processing Soc.
Japan 1 (1960), 198-200.

[8]. T. Kasami, N. Tokura, Y. lwadare, and Y. Inagaki, Coding theory, Corona, Tokyo, (1974).

[9]. A.V. Kelarev and P. Solé, Error-correcting codes as ideals in group rings, Contemp. Math. 273
(2001), 11-18.

[10]. A.V. Kelarev, Ring Constructions and Applications, World Scientific, River Edge, (2002).

[11]. S. Lin, D.J. Costello, Jr., Error control coding fundamentals and Applications, Prentice-Hall,
Inc., Englewood Cliffs, N. J., (1983).

[12]. S.R. Lopez-Permouth, B.R. Parra-Avila and S. Szabo, Dual generalizations of the concept of
cyclicity of codes. Adv. Math. Commun. 3(3) (2009), 227-234.

[13]. S.R. Lopez-Permouth and S. Szabo, Convolutional codes with additional algebraic structure,
J. Pure Appl. Algebra, 217(5) (2013), 958-972.

[14]. S.R. Lépez-Permouth and S. Szabo, On the Hamming weight of repeated root cyclic and
negacyclic codes over Galois rings. Adv. in Math. of Comm. 3(4) (2009), 409-420.

[15]. S.R. Lépez-Permouth, H. Uzadam and S. Ferruh, Polycyclic codes over Galois rings with
applications to repeated-root constacyclic codes, Finite Fields Th. App. 19 (2013), 16-38.

[16]. S.R. Nagpaul, S.K. Jain, Topics in Applied Abstract Algebra, Thomson, Brooks/Cole,
(2005).

[17]. W.W. Peterson, Encoding and error-correction procedures for the Bose-Chaudhuri codes, IRE
Trans. IT-6 (1960), 459-470.

[18]. W.W. Peterson and E.J. Weddon, Jr., Error correcting codes, 2nd edittion, MIT Press
Cambridge, Mass., (1972).

[19]. E. Prange, Cyclic Error-correcting Codes in two Symbols (AFCRC-TN-57-103, Air force
Cambridge research center, Cambridge, Mass. 1957).

[20]. E. Prange, The Use of Coset Equivalence in the Analysis and Decoding of Group Codes
(AFCRC-TR-59-164, Air force Cambridge research center, Cambridge, Mass. 1959).

[21]. T. Shah, Amanullah and A.A. Andrade, A method for improving the code rate and error
correction capability of a cyclic code, Comput. Appl. Math. 32(2) (2013), 261-274.

[22]. T. Shah, Amanullah and A.A. Andrade, A decoding procedure which improves code rate and
error corrections, JARAM. 4(4) (2012), 37-50.

[23]. T. Shah and A.A. Andrade, Cyclic codes through B[x], BIX; & Z,] and B[X;ﬁzor A

comparison, J. Algebra Appl. 11(4)(2012),(19 pages).

[24]. T. Shah and A.A. Andrade, Cyclic codes through B[X;2Z,](2eQ",b=a+1) and Encoding,
DMAA. 4(4)(2012), (8 pages).

[25]. T. Shah, A. Khan and A.A. Andrade, Encoding through generalized polynomial codes,
Comput. Appl. Math. 30(2) (2011), 349-366.

[26]. T. Shah, A. Khan and A.A. Andrade, Constructions of codes through semigroup ring
B[x;£Z,] and encoding, Comput. Math. Appl.



