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SOME NOVEL RESULTS OF T -PERIODIC SOLUTIONS FOR

RAYLEIGH TYPE EQUATION WITH DOUBLE DEVIATING

ARGUMENTS
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In this work, we study the following Rayleigh equation with double deviating
arguments:

x′′(t) + f(t, x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t).

Some criteria to guarantee the existence and uniqueness of periodic solutions of this
equation is given by using Mawhin’s continuation theorem and some new techniques.

Our results are new and complement some known results.
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1. Introduction

In this present paper, we investigate the existence and uniqueness of the periodic
solutions of the following Rayleigh equation with double deviating arguments

x′′(t) + f(t, x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t), (1.1)

where τ1, τ2 ∈ C(R,R); f, g1, g2 ∈ C(R2,R); τ1(t), τ2(t), f(t, x), g1(t, x), g2(t, x) are T -
periodic functions with respect to t, T > 0; f(t, 0) = 0 for all t ∈ R; e ∈ C(R,R), and e(t)
is a T -periodic function.

As it is well known, the Rayleigh equation can be derived from many fields, such as
physics, mechanics and engineering technique fields, and an important question is whether
this equation can support periodic solutions. During the past several years, many authors
have contributed to the theory of this equation with respect to existence of periodic solutions.
For example, in 1977, Gaines and Mawhin [2] introduced some continuation theorems and
applied them to discussing the existence of solutions of differential equations. In particular,
a specific example is provided in [2, p. 99] on how T -periodic solutions can be obtained by
means of these theorems for the Rayleigh equation

x′′(t) + f(x′(t)) + g(t, x(t)) = 0. (1.2)

In this direction, the researchers in [1,3,5–9,11–16,18,19] continued to discuss the Rayleigh
equation and got some new results on the existence of periodic solutions of (1.1), and
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generalized the results in [2]. Wang et al. [20–36] studied the existence and uniqueness of
the solution of the seepage equation. Ma et al. [37–60] studied the existence of the solution
of the seepage equation. However, as far as we know, much fewer authors have considered
the uniqueness of periodic solutions for Rayleigh equation (1.1), the main difficulty lies
in the middle term f(t, x′(t)) of (1.1), the existence of which obstructs the usual method
of finding some sufficient conditions to guarantee the uniqueness of periodic solutions for
Liénard equation or Duffing equation from working. For instance, if x(t) is a T -periodic
solution to Duffing type p-Laplacian equation

(ϕp(x
′(t)))′ + Cx′(t) + g(t, x(t)) = e(t), (1.3)

then
∫ T
0
Cx′(t)dt = 0, which is very useful to get some criteria for securing the uniqueness of

T -periodic solutions to (1.3) in [17]. But for (1.1), the corresponding middle term formula∫ T
0
f(t, x′(t))dt = 0 no longer holds, generally. Hence, it is essential to continue to study the

periodic solutions of (1.1) in this case.
The main purpose in this work is to give some criteria to guarantee the existence

and uniqueness of periodic solutions to (1.1). Some sufficient conditions for securing the
existence and uniqueness of T -periodic solutions of (1.1) are obtained by using Mawhin’s
continuation theorem and some new techniques. Our results are new and complement the
previously known results. An illustrative example will be provided to demonstrate the
applications of our results in Section 4.

2. Lemmas

Let us start with some notations. Define

|x|∞ = max
t∈[0,T ]

|x(t)|, |x′|∞ = max
t∈[0,T ]

|x′(t)|, |x|k =

(∫ T

0

|x(t)|kdt

)1/k

.

Let
C1
T := {x ∈ C1(R,R) : x is T -periodic}

and
CT := {x ∈ C(R,R) : x is T -periodic},

which are two Banach spaces with the norms

||x||C1
T

= max{|x|∞, |x′|∞}, ||x||CT
= |x|∞.

The following lemmas will be useful to prove our main results in Section 3.
Lemma 2.1. If x ∈ C2(R,R) with x(t+ T ) = x(t), then

|x′|22 ≤
(
T

2π

)2

|x′′|22.

Proof. Lemma 2.1 is a direct consequence of the Wirtinger inequality, and see [4,10]
for its proof.

Consider the homotopic equation of (1.1)

x′′(t) + λf(t, x′(t)) + λg1(t, x(t− τ1(t))) + λg2(t, x(t− τ2(t))) = λe(t), (2.1)

where λ ∈ (0, 1).
We have the following results.
Lemma 2.2. Assume that the following conditions are satisfied:

(H1): one of the following conditions holds

(1): (gi(t, u)− gi(t, v))(u− v) > 0 for all t, u, v ∈ R, u 6= v, i = 1, 2,

(2): (gi(t, u)− gi(t, v))(u− v) < 0 for all t, u, v ∈ R, u 6= v, i = 1, 2;
(H2): there exists a constant D ≥ 0 such that one of the following conditions holds
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(1): x(g1(t, x) + g2(t, x)− e(t)) > 0, for all t ∈ R, |x| ≥ D,

(2): x(g1(t, x) + g2(t, x)− e(t)) < 0, for all t ∈ R, |x| ≥ D.
If x(t) is a T-periodic solution of (2.1), then:

|x|∞ ≤ D +

√
T

2
|x′|2. (2.2)

Proof. Let x(t) be an arbitrary T -periodic solution of (2.1). Set

x(t̄max) = max
t∈R

x(t), x(t̄min) = min
t∈R

x(t), where t̄max, t̄min ∈ R.

Then we have

x′(t̄max) = 0, x′′(t̄max) ≤ 0;x′(t̄min) = 0, x′′(t̄min) ≥ 0. (2.3)

By (2.1) and f(t, 0) = 0 for all t ∈ R, (2.3) leads to

g1(t̄max, x(t̄max − τ1(t̄max))) + g2(t̄max, x(t̄max − τ2(t̄max)))− e(t̄max)

= −x
′′(t̄max)

λ
≥ 0, (2.4)

and

g1(t̄min, x(t̄min − τ1(t̄min))) + g2(t̄min, x(t̄min − τ2(t̄min)))− e(t̄min)

= −x
′′(t̄min)

λ
≤ 0. (2.5)

Since g1(t, x(t − τ1(t))) + g2(t, x(t − τ2(t))) − e(t) is a continuous function in R, it follows
from (2.4) and (2.5) that there exists a constant t1 ∈ R such that

g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− e(t1) = 0. (2.6)

Now we show that the following claim is true.
Claim. If x(t) is a T-periodic solution of (2.1), then there exists a constant t2 ∈ R such
that

|x(t2)| ≤ D. (2.7)

Assume, by way of contradiction, that (2.7) does not hold. Then

|x(t)| > D for all t ∈ R, (2.8)

which, together with H2 and (2.6), implies that one of the following relations holds:

x(t1 − τ1(t1)) > x(t1 − τ2(t1)) > D, (2.9)

x(t1 − τ2(t1)) > x(t1 − τ1(t1)) > D, (2.10)

x(t1 − τ1(t1)) < x(t1 − τ2(t1)) < −D, (2.11)

x(t1 − τ2(t1)) < x(t1 − τ1(t1)) < −D. (2.12)

Suppose that (2.9) holds, in view of (H1)(1), (H1)(2), (H2)(1) and (H2)(2), we will consider
fours cases as follows:

Case (i): If (H1)(1) and (H2)(1) hold, according to (2.9), we have

0 < g1(t1, x(t1 − τ2(t1))) + g2(t1, x(t1 − τ2(t1)))− e(t1)

< g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− e(t1),

which contradicts that (2.6). This contradiction implies that (2.7) is true.
Case (ii): If (H1)(2) and (H2)(1) hold, according to (2.9), we have

0 < g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ1(t1)))− e(t1)

< g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− e(t1),

which contradicts that (2.6). This contradiction implies that (2.7) is true.
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Case (iii): If (H1)(1) and (H2)(2) hold, according to (2.9), we have

0 > g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ1(t1)))− e(t1)

> g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− e(t1),

which contradicts that (2.6). This contradiction implies that (2.7) is true.
Case (iv): If (H1)(2) and (H2)(2) hold, according to (2.9), we have

0 > g1(t1, x(t1 − τ2(t1))) + g2(t1, x(t1 − τ2(t1)))− e(t1)

> g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− e(t1),

which contradicts that (2.6). This contradiction implies that (2.7) is true.
Suppose that (2.10)(or (2.11), or (2.12)) holds; using methods similar to those used

in Case(i)–(iv), we can show that (2.7) is true. This completes the proof of the above claim.

Let t2 = kT + t̃2, where t̃2 ∈ [0, T ] and k is an integer. Then noticing x(t) = x(t+ T )

and (2.7), for any t ∈ [t̃2, t̃2 + T ], we obtain

|x(t)| =
∣∣∣∣x(t̃2) +

∫ t

t̃2

x′(s)ds

∣∣∣∣ ≤ D +

∫ t

t̃2

|x′(s)|ds

and

|x(t)| =

∣∣∣∣x(t̃2 + T ) +

∫ t

t̃2+T

x′(s)ds

∣∣∣∣
≤ D +

∣∣∣∣∣−
∫ t̃2+T

t

x′(s)ds

∣∣∣∣∣
≤ D +

∫ t̃2+T

t

|x′(s)|ds.

Combining above two inequalities, we get

|x(t)| ≤ D +
1

2

∫ T

0

|x′(s)|ds.

Using Schwarz inequality yields

|x|∞ = max
t∈[t̃2,t̃2+T ]

|x(t)|

≤ D +
1

2

∫ T

0

|x′(s)|ds

≤ D +
1

2
|1|2|x′|2 = D +

1

2

√
T |x′|2. (2.13)

This completes the proof of Lemma 2.2. �
Lemma 2.3. Let (H1) hold. Suppose there exist some nonnegative constants C0, C1

and C2 such that

(H3): |f(t, u)− f(t, v)| ≤ C0|u− v|, for all t, u, v ∈ R,
(H4): |gi(t, u)− gi(t, v)| ≤ Ci|u− v|, for all t, u, v ∈ R, i = 1, 2,

(H5): C0
T
2π + (C1 + C2)T

2

4π < 1.

Then (1.1) has at most one T-periodic solution.
Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of (1.1). Then, we

have

[x1(t)− x2(t)]′′ + [f(t, x′1(t))− f(t, x′2(t))]

+[g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t)))]

+[g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t)))] = 0. (2.14)
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Set Z(t) = x1(t)− x2(t), then, from (2.14), we obtain

Z ′′(t) + [f(t, x′1(t))− f(t, x′2(t))]

+[g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t)))]

+[g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t)))] = 0. (2.15)

Since Z(t) = x1(t) − x2(t) is a continuous T -periodic function in R, there exist two
constants tmax, tmin ∈ R such that

Z(tmax) = max
t∈[0,T ]

Z(t) = max
t∈R

Z(t), Z(tmin) = min
t∈[0,T ]

Z(t) = min
t∈R

Z(t). (2.16)

Then we have

Z ′(tmax) = x′1(tmax)− x′2(tmax) = 0, Z ′′(tmax) ≤ 0, (2.17)

and

Z ′(tmin) = x′1(tmin)− x′2(tmin) = 0, Z ′′(tmin) ≥ 0. (2.18)

In view of (2.15)–(2.18), we get

g1(tmax, x1(tmax − τ1(tmax)))− g1(tmax, x2(tmax − τ1(tmax)))

+g2(tmax, x1(tmax − τ2(tmax)))− g2(tmax, x2(tmax − τ2(tmax)))

= −Z ′′(tmax)− [f(tmax, x
′
1(tmax))− f(tmax, x

′
2(tmax))]

= −Z ′′(tmax) ≥ 0 (2.19)

and

g1(tmin, x1(tmin − τ1(tmin)))− g1(tmin, x2(tmin − τ1(tmin)))

+g2(tmin, x1(tmin − τ2(tmin)))− g2(tmin, x2(tmin − τ2(tmin)))

= −Z ′′(tmin)− [f(tmin, x
′
1(tmin))− f(tmin, x

′
2(tmin))]

= −Z ′′(tmin) ≤ 0, (2.20)

which implies there exists a constant t0 ∈ R such that

g1(t0, x1(t0 − τ1(t0)))− g1(t0, x2(t0 − τ1(t0)))

+g2(t0, x1(t0 − τ2(t0)))− g2(t0, x2(t0 − τ2(t0))) = 0. (2.21)

From (H1) and (2.21), we have

Z(t0 − τ1(t0))Z(t0 − τ2(t0))

= (x1(t0 − τ1(t0))− x2(t0 − τ1(t0)))(x1(t0 − τ2(t0))− x2(t0 − τ2(t0)))

≤ 0,

which implies there exists a constant t00 ∈ R, such that

Z(t00) = 0

Set t00 = nT + t̃0, where t̃0 ∈ [0, T ] and n is an integer. Noticing Z(t+ T ) = Z(t), we get

Z(t̃0) = Z(nT + t̃0) = Z(t00) = 0. (2.22)

Hence, for any t ∈ [t̃0, t̃0 + T ], we obtain

|Z(t)| =
∣∣∣∣Z(t̃0) +

∫ t

t̃0

Z ′(s)ds

∣∣∣∣ ≤ ∫ t

t̃0

|Z ′(s)|ds
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and

|Z(t)| =

∣∣∣∣Z(t̃0 + T ) +

∫ t

t̃0+T

Z ′(s)ds

∣∣∣∣
=

∣∣∣∣∣−
∫ t̃0+T

t

Z ′(s)ds

∣∣∣∣∣ ≤
∫ t̃0+T

t

|Z ′(s)|ds.

Combining above two inequalities, we get

|Z(t)| ≤ 1

2

∫ T

0

|Z ′(s)|ds.

Using Schwarz inequality yields

|Z|∞ = max
t∈[t̃0,t̃0+T ]

|Z(t)| ≤ 1

2

∫ T

0

|Z ′(s)|ds ≤ 1

2
|1|2|Z ′|2 =

1

2

√
T |Z ′|2. (2.23)

Multiplying Z ′′(t) and (2.15) and then integrating it from 0 to T , by Lemma 2.1,
(H3), (H4), (2.23) and Schwarz inequality, we obtain

|Z ′′|22 = −
∫ T

0

[f(t, x′1(t))− f(t, x′2(t))]Z ′′(t)dt

−
∫ T

0

[g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t)))]Z ′′(t)dt

−
∫ T

0

[g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t)))]Z ′′(t)dt

≤
∫ T

0

|f(t, x′1(t))− f(t, x′2(t))||Z ′′(t)|dt

+

∫ T

0

|g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t)))||Z ′′(t)|dt

+

∫ T

0

|g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t)))||Z ′′(t)|dt

≤
∫ T

0

C0|x′1(t)− x′2(t)||Z ′′(t)|dt

+

∫ T

0

C1|x1(t− τ1(t))− x2(t− τ1(t))||Z ′′(t)|dt

+

∫ T

0

C2|x1(t− τ2(t))− x2(t− τ2(t))||Z ′′(t)|dt

≤
∫ T

0

C0|Z ′(t)||Z ′′(t)|dt+

∫ T

0

C1|Z(t− τ1(t))||Z ′′(t)|dt

+

∫ T

0

C2|Z(t− τ2(t))||Z ′′(t)|dt
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≤ C0

(∫ T

0

|Z ′(t)|2dt

)1/2(∫ T

0

|Z ′′(t)|2dt

)1/2

+C1

(∫ T

0

|Z(t− τ1(t))|2dt

)1/2(∫ T

0

|Z ′′(t)|2dt

)1/2

+C2

(∫ T

0

|Z(t− τ2(t))|2dt

)1/2(∫ T

0

|Z ′′(t)|2dt

)1/2

≤ C0|Z ′|2|Z ′′|2 + (C1 + C2)
√
T |Z|∞|Z ′′|2

≤
[
C0

T

2π
+ (C1 + C2)

T 2

4π

]
|Z ′′|22 (2.24)

Since Z(t), Z ′(t) and Z ′′(t) are continuous T -periodic functions, by Lemma 2.1, (H5) and
(2.23), we get

Z(t) = Z ′(t) = Z ′′(t) = 0, for any t ∈ [t̃0, t̃0 + T ].

Thus, x1(t) ≡ x2(t), for all t ∈ R. Hence, (1.1) has at most one T -periodic solution. This
completes the proof. �

Lemma 2.4. Suppose (H1)–(H5) hold.
Then the set of T -periodic solutions of (2.1) is bounded in C1

T .
Proof. Let S ⊂ C1

T be the set of T -periodic solutions of (2.1). If S = ∅, the proof is
ended. Suppose S 6= ∅, and let x ∈ S. Since f(t, 0) = 0 for all t ∈ R, by Lemma 2.1, Lemma
2.2, (H3), (H4), (2.1) and Schwarz inequality, we obtain

|x′′|22 = −λ
∫ T

0

f(t, x′(t))x′′(t)dt− λ
∫ T

0

g1(t, x(t− τ1(t)))x′′(t)dt

−λ
∫ T

0

g2(t, x(t− τ2(t)))x′′(t)dt+ λ

∫ T

0

e(t)x′′(t)dt

= −λ
∫ T

0

[f(t, x′(t))− f(t, 0)]x′′(t)dt

−λ
∫ T

0

[g1(t, x(t− τ1(t)))− g1(t, 0) + g1(t, 0)]x′′(t)dt

−λ
∫ T

0

[g2(t, x(t− τ2(t)))− g2(t, 0) + g2(t, 0)]x′′(t)dt

+λ

∫ T

0

e(t)x′′(t)dt
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≤
∫ T

0

|f(t, x′(t))− f(t, 0)||x′′(t)|dt

+

∫ T

0

|g1(t, x(t− τ1(t)))− g1(t, 0)||x′′(t)|dt

+

∫ T

0

|g1(t, 0)||x′′(t)|dt

+

∫ T

0

|g2(t, x(t− τ2(t)))− g2(t, 0)||x′′(t)|dt

+

∫ T

0

|g2(t, 0)||x′′(t)|dt+

∫ T

0

|e(t)||x′′(t)||dt

≤
∫ T

0

C0|x′(t)||x′′(t)|dt+

∫ T

0

C1|x(t− τ1(t))||x′′(t)|dt

+G1

∫ T

0

|x′′(t)|dt+

∫ T

0

C2|x(t− τ2(t))||x′′(t)|dt

+G2

∫ T

0

|x′′(t)|dt+ |e|∞
∫ T

0

|x′′(t)|dt

≤ C0

(∫ T

0

|x′(t)|2dt

)1/2(∫ T

0

|x′′(t)|2dt

)1/2

+C1

(∫ T

0

|x(t− τ1(t))|2dt

)1/2(∫ T

0

|x′′(t)|2dt

)1/2

+C2

(∫ T

0

|x(t− τ2(t))|2dt

)1/2(∫ T

0

|x′′(t)|2dt

)1/2

+(G1 +G2 + |e|∞)

(∫ T

0

12dt

)1/2(∫ T

0

|x′′(t)|2dt

)1/2

≤ C0|x′|2|x′′|22 + (C1 + C2)
√
T |x|∞|x′′|2

+(G1 +G2 + |e|∞)|1|2|x′′|2

≤ C0

2π
T |x′′|22 + (C1 + C2)

√
T (D +

1

2

√
T |x′|2)|x′′|2

+(G1 +G2 + |e|∞)
√
T |x′′|2

≤
[
C0

T

2π
+ (C1 + C2)

T 2

4π

]
|x′′|22 +G3

√
T |x′′|2, (2.25)

where G1 = max{|g1(t, 0)| : t ∈ [0, T ]}, G2 = max{|g2(t, 0)| : t ∈ [0, T ]} and G3 =
G1 +G2 + |e|∞ + (C1 + C2)D.
By (H5) and (2.25), there exists a constant M0 > 0 such that

|x′′|2 < M0. (2.26)

Since x(0) = x(T ), there exists a constant t̃ ∈ [0, T ] such that x′(t̃) = 0. For any t ∈ [t̃, t̃+T ],
by Schwarz inequality, we have

|x′(t)| =
∣∣∣∣x′(t̃) +

∫ t

t̃

x′′(s)ds

∣∣∣∣ ≤ ∫ T

0

|x′′(s)|ds ≤ |1|2|x′′|2 =
√
T |x′′|2,
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which implies

|x′|∞ = max
t∈[t̃,t̃+T ]

|x′(t)| ≤
√
T |x′′|2. (2.27)

By Lemma 2.1, Lemma 2.2, (2.26) and (2.27), there exists a constant M > M0 such that

|x|∞ < M and |x′|∞ < M.

This completes the proof. �
The following Mawhin’s continuation is useful in obtaining the existence of T -periodic

solutions of (1.1).
Let X and Y be real Banach spaces and let L : D(L) ⊂ X → Y be a Fredholm

operator with index zero, here D(L) denotes the domain of L. This means that ImL is
closed in Y and dim KerL=dim(Y /ImL)< +∞. Consider the supplementary subspaces X1,
Y1 of X,Y respectively, such that X = X1

⊕
KerL and Y = Y1

⊕
ImL and let P : X →

KerL and Q : Y → Y1 be the natural projections. Clearly, KerL∩ (D(L)∩X1)) = {0}, thus
the restriction LP := LD(L)∩X1

is invertible. Denote by L−1P the inverse of LP .

Let Ω be an open bounded subset of X with D(L) ∩ Ω 6= ∅. A map N : Ω → Y is
said to be L-compact in Ω, if QN(Ω) is bounded and the operator L−1P (I − Q)N : Ω → X
is compact.

Lemma 2.5. ([2, p. 40]) Let X and Y be two Banach spaces. Suppose that L :
D(L) ⊂ X → Y is a Fredholm operator with index zero and N : X → Y is L-compact on Ω,
where Ω is an open bounded subset of X. Moreover, assume that all the following conditions
are satisfied:

(i) Lx 6= λNx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(ii) Nx∈ ImL, for all x ∈ ∂Ω ∩KerL;
(iii) the Brouwer degree deg{JQN,Ω ∩KerL, 0} 6= 0,

where J : ImQ→ KerL is an isomorphism.
Then equation Lx = Nx has at least one solution on Ω ∩D(L).

3. Main results

Now we are in the position to give our main results.
Theorem 1. Suppose (H1)–(H5) hold. Then (1.1) has a unique T-periodic solution.
Proof. By Lemma 2.4, there exists a constant M > D such that, for any T -periodic

solution x(t) of (2.1)

|x|∞ < M and |x′|∞ < M. (3.1)

Set

Ω = {x : x ∈ C1
T , |x|∞ < M, |x′|∞ < M}. (3.2)

Define a linear operator L : D(L) ⊂ C1
T → CT by setting

D(L) = {x : x ∈ C1
T , x

′′ ∈ C(R,R)}
and for x ∈ D(L),

Lx = x′′. (3.3)

We also define a nonlinear operator N : C1
T → CT by setting

Nx = −f(t, x′(t))− g1(t, x(t− τ1(t)))− g2(t, x(t− τ2(t))) + e(t), (3.4)

Then, (2.1) is equivalent to the following operator equation

Lx = λNx, λ ∈ (0, 1). (3.5)

It is easy to see that

KerL = R and ImL =

{
x : x ∈ CT ,

∫ T

0

x(s)ds = 0

}
,
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Then, L is a Fredholm operator with index zero.
Also let projectors P : C1

T → KerL and Q : CT → CT /ImL defined by

Px = x(0) where x ∈ C1
T

and

Qx =
1

T

∫ T

0

x(s)ds where x ∈ CT ,

Hence, ImP=ImQ=KerL=R and KerQ=ImL.
Define the isomorphism as follows

J : ImQ→ KerL, J(x) = x. (3.6)

Let

LP := LD(L)∩Ker P : D(L) ∩Ker P → ImL,

Then, from [8], LP has a continuous inverse L−1P on ImL defined by

(L−1P x)(t) = − t

T

∫ T

0

(t− s)x(s)ds+

∫ t

0

(t− s)x(s)ds, (3.7)

In view of (3.2) and (3.7), N is L-compact on Ω. Note that (2.1) is equivalent to (3.5),
by Lemma 2.4 and (3.5), the set of T -periodic solutions of (3.5) is bounded in C1

T . Hence,
there exists a sufficient large positive constant M such that, the operator equation Lx 6=
λNx (where λ ∈ (0, 1)) for all x ∈ ∂Ω, where M and Ω were defined by (3.1) and (3.2)
respectively; which implies that the operator equation Lx 6= λNx (where λ ∈ (0, 1)) for all
x ∈ ∂Ω ∩D(L), and the condition (i) of Lemma 2.5 is satisfied.

In view of (H2)(1) and (H2)(2), we will consider two cases as follows:
Case(i): If (H2)(1) holds. Since

QNx = − 1

T

∫ T

0

[f(t, x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)]dt;

for any x ∈ ∂Ω ∩KerL, x = M or x = −M ; and f(t, 0) = 0 for all t ∈ R, we obtain

QN(M) = − 1

T

∫ T

0

[g1(t,M) + g2(t,M)− e(t)]dt < 0 (3.8)

and

QN(−M) = − 1

T

∫ T

0

[g1(t,−M) + g2(t,−M)− e(t)]dt > 0 (3.9)

which implies the condition (ii) of Lemma 2.5 is satisfied.
Moreover, define

H(x, µ) = −µx+ (1− µ)QNx

= −µx− (1− µ)
1

T

∫ T

0

[f(t, x′(t)) + g1(t, x(t− τ1(t)))

+g2(t, x(t− τ2(t)))− e(t)]dt,
in view of (3.8) and (3.9), we get

xH(x, µ) < 0, for all x ∈ ∂Ω ∩KerL and µ ∈ [0, 1].

Hence, H(x, µ) is a homotopic transformation, together with (3.6) and by using homotopic
invariance theorem, we have

deg{JQN,Ω ∩KerL, 0} = deg{QN,Ω ∩KerL, 0}
= deg{−x,Ω ∩KerL, 0} 6= 0,
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so condition (iii) of Lemma 2.5 is satisfied.
Case(ii): If (H2)(2) holds. Since

QNx = − 1

T

∫ T

0

[f(t, x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)]dt;

for any x ∈ ∂Ω ∩KerL, x = M or x = −M ; and f(t, 0) = 0 for all t ∈ R, we obtain

QN(M) = − 1

T

∫ T

0

[g1(t,M) + g2(t,M)− e(t)]dt > 0 (3.10)

and

QN(−M) = − 1

T

∫ T

0

[g1(t,−M) + g2(t,−M)− e(t)]dt < 0 (3.11)

which implies the condition (ii) of Lemma 2.5 is satisfied.
Moreover, define

H(x, µ) = µx+ (1− µ)QNx

= µx− (1− µ)
1

T

∫ T

0

[f(t, x′(t)) + g1(t, x(t− τ1(t)))

+g2(t, x(t− τ2(t)))− e(t)]dt,

in view of (3.10) and (3.11), we get

xH(x, µ) > 0, for all x ∈ ∂Ω ∩KerL and µ ∈ [0, 1].

Hence, H(x, µ) is a homotopic transformation, together with (3.6) and by using homotopic
invariance theorem, we have

deg{JQN,Ω ∩KerL, 0} = deg{QN,Ω ∩KerL, 0} = deg{x,Ω ∩KerL, 0} 6= 0,

so condition (iii) of Lemma 2.5 is satisfied. Therefore, it follows from Lemma 2.5 that there
exists a T -periodic solution x(t) of (1.1). The uniqueness of this x(t) is guaranteed by
Lemma 2.3. This completes the proof. �

Remark 1. If f(t, 0) 6= 0, the problem of the existence and uniqueness of T -periodic
solutions to (1.1) can be converted to the following equation

x′′(t) + f1(t, x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e1(t), (3.12)

where f1(t, x′(t)) = f(t, x′(t)) − f(t, 0), e1(t) = e(t) − f(t, 0). As f1(t, 0) = 0 for all t ∈ R,
(3.12) can be studied by Theorem 1 in this paper.

Remark 2. To our knowledge, except [7,18], [1–3,5,6,8,9,11–16,19] only considered
the existence of periodic solutions of many kinds of delay Rayleigh equations. In [7], Li and
Huang discussed the existence and uniqueness of periodic solutions of a Rayleigh equation
without any delays; in [18], Zhou et al. investigated the existence and uniqueness of periodic
solutions of the following Rayleigh equation with a deviating argument :

x′′(t) + f(x′(t)) + g(t, x(t− τ(t))) = p(t), (3.13)

and got some results as follows (for convenience of comparison, here we state their main
results in a somewhat different form):
Theorem A. Suppose (A1)(or (A2)) and (A3) hold. Then (3.13) has a unique T-periodic
solution.
Theorem B. Suppose (A1)(or (A2)) and (A4) hold. Then (3.13) has a unique T-periodic
solution.
If f(t, x′) = f(x′) and g2(t, x(t − τ2(t))) = 0, we can see that (1.1) reduces to (3.13) and
the condition (H3) equals the condition (A0); on the other hand, it is easy to see that the

condition (H5) is weaker than the inequality C1
T
2π + bT

2

2π < 1 in the condition (A3), so
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Theorem 1 improves Theorem A. If f(t, x′) 6= f(x′) or g2(t, x(t − τ2(t))) 6= 0, Theorem 1
have new meaning.

4. Example and remark

In this section, we apply the main results obtained in previous sections to an example.
Example 4.1. Consider the following Rayleigh equation with two deviating argu-

ments
x′′(t) + f(t, x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t), (4.1)

where T = 2π, τ1(t) = sin t, τ2(t) = cos t, f(t, x′(t)) = 1
20(1+sin2 t)

x′(t)

arctanx′(t), g1(t, x(t−τ1(t))) = 1
30(1+cos2 t)x(t−sin t), g2(t, x(t−τ2(t))) = 1

20 (2+sin t) arctan(x(t−
cos t) + 1) and e(t) = sin2 t.

Set C0 = π+1
40 , C1 = 1

30 , C2 = 3
20 , and let D be big enough. Then it is easy to check

that all the conditions of Theorem 1 in this paper hold, which implies (4.1) has a unique
2π-periodic solution.

Remark 3. (4.1) is a very simple version of Rayleigh equation with two deviating
arguments, all the results in [1–3, 5–9, 11–16, 18, 19] and the references therein cannot be
applicable to (4.1) for securing the existence and uniqueness of 2π-periodic solutions, which
implies the results in this paper are new and they complement the previously known results.
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