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A TECHNIQUE FOR BI-DIMENSIONAL CONTOUR
CONSTRUCTION

Valeriu VILAG', Corneliu BERBENTE?

In lucrare este prezentatd o tehnicd relativ noud de construire a unor
contururi bidemensionale cu posibild aplicatie la obtinerea de profile aerodinamice.
Proiectantul poate obtine geometrii ce urmeaza a fi validate in medii Computational
Fluid Dynamics. Tehnica furnizeaza o relatie biunivoca intre geometria obfinuta §i
un set de sase parametri completat de cdteva constrangeri. Acest aspect puternic
sustine faptul ca modul prezentat de a construi contururi bidemensionale poate fi
utilizat in algoritmi de optimizare pentru profile aerodinamice si in special
algoritmi evolutivi.

In the paper is presented a relatively new technique for bi-dimesnional
contours construction which may be applied to obtain aerodynamic profiles. The
designer is able to obtain geometries to be validated into Computational Fluid
Dynamics environments. The technique provides a biunivoque relation between the
obtained geometry and a set of six parameters completed with some constraints.
This strong point states that the presented way of constructing bi-dimensional
contours may be used into optimization algorithms for airfoils and especially
evolutionary algorithms.
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1. Introduction

Construction of bi-dimensional contours is a mandatory step when
designing geometries to be verified from different technical points of view such as
aerodynamic performances. When speaking about aerodynamic shapes, there are
many ways of defining bi-dimensional contours named airfoils, and those
definitions are used for having the correct language while speaking about the
proposed geometry [1]. In order to allow the repeatability of the proposed
geometry over a large number of studies tmany ways to obtain the contours have
been proposed, the most popular being the ones proposed by the National
Advisory Committee for Aeronautics (NACA) from United States of America.
Besides NACA, who performed extensive tests since 1935 [2], there are many
others like Office National d’Etudes et Recherche Aérospatiales (ONERA) from
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France, Royal Aircraft Factory (RAF) from United Kingdom, Central
Aerohydrodynamic Institute (TsAGI) from Russia etc. which proposed their own
contours to be used as airfoils and the designer may consider one to have
advantages or disadvantages. The technical development lead to changes in the
design technique for these contours spotted from the last decade of the past
century by many authors and even multidisciplinary design optimization [3].

In this context of constant development of design methods for airfoils
based on parametric geometries, some using Computer Aided Design approaches
[4,5], this paper presents a relatively new of them technique of constructing bi-
dimensional contours to be verified from the aerodynamic point of view. It is
believed that this technique can be used in optimization algorithms for airfoil
design.

2. Geometry definition

We define the geometry of an aerodynamic profile or airfoil using the
notation from Figure 1. This definition help in showing the general shape of bi-
dimensional contours verified and confirmed as airfoils.

\¥

suction side
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trailing edge X

pressure side

Fig. 1. Aerodynamic profile geometry definition

The geometry is constructed into the xOy Cartesian system and it is placed
tangent to the two axes, Ox and Oy, by the two circles at the leading and at the
trailing edge, with their respective radii, R and r, and centers, O1 and O2.

The “suction side” is the curve from Sj. to S¢ and it is tangent to the two
circles mentioned above into these two points.

The “pressure side” is the curve from Py to Py and it is tangent to the two
circles into these two points.
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¢, 1s the chord of the profile having the magnitude of the segment obtained
by projecting the entire profile on the Ox axis.

The “camber line” is the curve considered to be equally spaced from the
suction and pressure sides. Some may call this curve “mean camber line”.

tmax 18 the maximum thickness of the profile and it is defined as the length
of the biggest segment which can be placed perpendicular to the camber line from
pressure side to the suction side.

3. Contour simplification and parameterization

This section is dedicated to the proposal of some simplification and
parameterization to be used when proposing bi-dimensional contours to be
verified from the aerodynamic point of view and confirmed as airfoils.

For the leading edge, we consider that S is placed into the second
quadrant of the respective leading edge circle. Thus, the first derivate of the
suction side in Sy, is strictly positive. We consider that Py, is placed into the fourth
quadrant of the same circle resulting. Thus, a strictly positive first derivate of the
pressure side into Py, Fig. 2 a).

For the trailing edge, we consider that S, is placed into the first quadrant
of the respective trailing edge circle. Thus, the first derivate of the suction side in
S is strictly negative. We consider that Py is placed into the third quadrant of the
same circle resulting. Thus, a strictly negative first derivate of the pressure side
into Py Fig. 2 b).

Fig. 2. Placement of the points into the quadrants of the two circles

For the proposed way of constructing bi-dimensional contours we consider
a parabolic distribution for the thickness of the profile and a parabolic shape for
the camber line. For both parabolic issues we use the parabola portions as
displayed in Fig. 3a) and b).

thickness distribution

VY camber line AY
X X
a) b)

Fig. 3. Parabola portions for: a) camber line, b) thickness distribution



92 Valeriu Vilag, Corneliu Berbente

The camber line is computed from the respective parabola portion and the
thickness distribution is computed as the absolute distance from the y coordinate
of the current point on the parabola portion and the x axis.

We may consider that each parabola is defined by the equation:

y=—44(x>—x) , A€ 0:1]. (1)
The interval for A4 is considered to limit the maximum possible curvature
of the parabola.
Now, in order to obtain only a portion of the parabola, we define the
starting point:
x=8B @)
y=—44(B" - B)
with B €[0;1) and the ending point:
x=B+C(1-B) )
y= —4A{[B +C(1-B)} -[B+C(1- B)]},

with C € (0;1].
We can see that for the three parameters 4, B and C each parabola portion

is fully defined, Figure 4.
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Fig 4. Fully defined parabola portion with the help of 4, B and C

So, in order to obtain two parabola portions, we will have three parameters
for the camber line 4, € (0;1], B, €[0;1), C, €(0;1] and three parameters for the
thickness distribution: 4, € (0;,1/, B, € [0,1), C, €(0,1].

The parabola portion for the camber line must be first scaled and then
rotated to fit between O, and O, points. The scale sc; can be obtained as the ratio
between two Euclidian norms:

\/ 2 2
(x01 _xoz) + (y01 - yoz)

\/(xl —x2)2 +(—»,)

: “4)

sc, =
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where the coordinates xi, x», y1, 2> can be calculated with the three parameters of
the first parabola portion and equations (2) and (3), and the rotating angle a is the
angle between the line passing through the start and end point of the
corresponding parabola portion and the line passing through O; and O,. This
angle is given by:

o= atan[uj—atan [MJ &)
X2 =X X02 ~X01
In equations (4) and (5) the coordinates of O1 and O2 are defined by:
Xor =R Yoy =R Xy =C, =1 Yop =T (6)

The signs of the angles coming out of the arctangent evaluation are easy to
impose such as to make the proper difference when calculating the exact value of
the angle a.

The thickness distribution must be scaled with respect to the maximum
thickness f,.. This scale, sc,, is computed as the ratio between f,, and the
maximum thickness computed for the second parabola portion. The computed
maximum thickness can be either the y coordinate of the peak of the respective
parabola, 4,, or one of the y coordinate of the end points of the second parabola

portion.
4, Contour construction

Now, we shall start the construction of the contour, with pressure and
suction sides, using the values obtained before. We will consider for this the
portion of the camber line placed outside the two circles from the leading and the
trailing edge.

We divide this portion of the camber line into n curves of equal length
obtaining n+1 points, C;, C,, ..., C,, C,s1, on which we put the corresponding
thickness obtained from the second parabola portion. C; and C,; are easy to be
obtained knowing the two radii R and r.

The equal lengths are computed as integrals on the unrotated parabola

portion which helps in finding the exact locations of C,, ..., C,:
Cr7+
L H” ()" b ¢,
=== % = [l oDy, y =446 -2, i=Tn. (@)
¢,

Now we only need to calculate the tangential direction onto the camber
line in each of the C;, C,, ..., C,, C,+ points and to find points on the pressure
side, Py, P», ..., P,, P,+1 and on the suction side, Si, S, ..., S,, S,+1.
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The points on the pressure and suction sides are obtained by putting
segments on the calculated direction, segments equal to half of the corresponding
thickness, Figure 5.

Fig. 5. Placement of points onto the pressure and suction side

The angle of the tangential direction for each S;P; into C; is computed as
the complementary angle f; given by the first derivative of the unrotated and
unscaled camber line:

b= arctg(% -y (xjcl j v, =—44, (x2 - x), i=1n. ®)

Since the angle calculated from equation (8) can be either positive or
negative, we keep in mind that S; is above C; which is above P;, meaning:

Vs, > Ve, >Vp, Vi=lLn+l

The thicknesses ¢ are computed from the corresponding parabola portion:
t, = y2(xi)’ x, =B, +(i_l)M’ Y2 = _4A2(x2 _x)’ i:m' (9)
n

Since problems may occur due to scaling and rotating issues we will show
later in the paper an example of how all data is used into Computer Aided Design
(CAD) software. Also, problems can occur for the first and the n+1 thickness so
we may not consider them when drawing the geometry.

We now have n+1 points on the pressure side and n+1 points on the
suction side but there are still missing some curves to completely define the bi-
dimensional contour: (Pie;P1), (Pu+1;Pte), (Sie;S1), (Sn+1; Ste). Since we have to
build the entire contour anyway, we will use cubic splines curves for creating the
pressure and suction sides. The cubic spline, or short c-spline, for the pressure
side will contain all the following points: Py, Py, Ps, ..., P, Py, P and it will be
tangent to the leading edge circle into Pj. and tangent to the trailing edge circle
into Pi. Similarly, the c-spline for the suction side will contain S, Si, Sy, ..., S,,
S.+1, Ste and will be tangent to the leading edge circle into Sj. and tangent to the
traoling edge circle into Sg.

The term spline comes from the analogy to a draughtsman’s approach to
pass a thin metal or wooden strip trough a given set of constrained points and was
first studied from an energetic point of view considering the materials properties
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for bending to touch the given points [6]. Since this approach is rather difficult
and has limited application some other ways to construct splines were found
namely here polynomials splines. C-splines are curves based on third degree
polynomial interpolation between the constrained points [7].

We present the approach for the suction side, the one for pressure side
being very similar. For our problem we may consider the following sets of
functions which define the c-spline curve of the suction side:

f(X)=a, +a, x+a, x> +a,x’, i=0,n+1. (10)

The function f; define, the curve over the portion between S; and S;i;
curves on the suction side. For i=0 we consider the curve from Sy=S;. to S;, and
for i=n+1 we consider the curve from S,+; to S,12=Se.

We impose the condition that the c-spline contains all the points
previously defined:

filxs)=ys, fi(xs, )=y, i=0n+l (11)
Two other conditions refer to the “smoothness” of the c-spline, namely

two adjacent third degree polynomial functions have the first and second
derivatives equals in the control points (tangent and curvature):

](i, (x5,,)= f,+1 (x5, f, (x5,,) = f,+1 (x5, ), i=0,n (12)
We must pay attention to the fact that the exact coordinates for the lateral

points Si. and S, are unknown but we know that they are positioned on the two
leading and trailing edge circles, meaning:

R*=(R=x) + (v, =R, 7 =[r=(e, = Df + 00 =2 (13)
Also, the c-spline of the suction side contains these two points:

4 R_xS] 4 r_(ca_‘xS )
Jo(xs, )= = S (X ) =
ysle -R Ys, —F

te

(14)

If we calculate the number of unknowns we will count 4(n+2), the a
coefficients of the polynomial functions from equation (10) and 4 coordinates (2
for Si. and 2 for Si), equals (4n+12) unknowns. The count for the equations is
now 2(n+2) from equation (11), 2(n+1) from equation (12), 2 from equation (13)
and 2 from equation (14), equals to (4n+10). We see that two equations are still
missing. These equations come from the conditions for Sj. and S to be in the
second and first quadrants of their respective circles, meaning:

(O<x, <R) & (vs. >R), [(c, =1 <xs <c,] & (s, >7)
or (15)

'

[/:8.)>0] & [£..(5.)<0]
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The conditions from equation (15) make the difference between curves 1,
the correct one, and 2, the wrong one, from Figure 6.

A
v\

curve 1

/ S;

Fig. 6. Example of the condition from equation (15) for the leading edge
(curve 1 is the correct c-spline for the suction side)

Having the complete system with (4n+12) unknowns and equations one
can solve it using a predefined system of equations solver from a developer
resource [8] and therefore determine the entire suction side and respectively the
pressure side. It is clear that the obtained solution is unique this giving an
important attribute to the technique: it creates a biunivoque relation between the
six parameters defining the parabola and the resulting geometry if some additional
constraints are imposed: the chord, two radii, and the maximum thickness.

5. Application

This section illustrates a short example of constructing a bi-dimensional
contour to be verified and confirmed as airfoils starting from the six parameters
described above and the constraints on its general dimensions. The constraints are
related to technological issues when speaking about the trailing edge radius r,
stress evaluation when speaking about the maximum thickness #,,,, general
dimensions of the desired geometry when speaking about the chord c,,
aerodynamic efficiency for off-design functional points when speaking about the
leading edge radius R etc.

Let’s consider the following values for the six parameters defining the two
parabola portions:

A4, =03 B, =0.6; C,=09; 4,=08 B,=0.3; C,=009. (16)

The two parabola portions will have the exact shape displayed in Figure 7,
with defined starting and ending points as previously shown.

We impose for the possible aerodynamic profile the chord c,, radius of the
leading edge R and of the trailing edge » and the maximum thickness 7,4

c,=1 R=0.03; r=0.005 ¢, =0.09. (17)

From the data obtained so far we can calculate the scales sc; and sc, and
the angle of rotation « obtaining the following values:
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0
sc, =2.225612 sc, =0.1125, a=32.417". (18)
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Fig. 7. Two parabola portions obtained using the parameters from the example

Now, we present the construction of the bi-dimensional contour into a
CAD software using its features to draw the necessary geometry and n=12 the
number of equal curves on the camber line, Figure 8.

Step 1- camber line drawing, scaling by the calculated scale sc; and
drawing of the two circles from the leading and trailing edge;

Step 2- scaling of the thicknesses and placement of the respective
segments perpendicular in the calculated points to the scaled camber line;

Step 3- drawing of the c-splines for the suction and pressure sides, rotation

and translation of the geometry near the origin.
Y Step 1 AY
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Fig. 8. Steps for creating the airfoil geometry using a CAD software
6. Conclusions

The technique presented in the paper is dedicated to the creation of bi-
dimensional contours shaping possible aerodynamic profiles starting from six
parameters.
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An obtained contour can be evaluated from aerodynamic point of view
using classical analytical methods, own algorithms based on numerical methods
for fluid dynamics [9] or using Computational Fluid Dynamics tools.

Moreover, the proposed technique can be easily used for design
optimization with evolutionary algorithms [10] since it provides a clear and
biunivoque relation between the obtained geometry and the set of six parameters
along with the chord, the leading and trailing edge radii and the maximum
thickness of the possible aerodynamic profile.

In practice, before proceeding to the optimization algorithm, the design
space offered by the proposed technique must be carefully examined. Some
constraints onto the six parameters will result or, before calling the evaluation tool
for aerodynamics, the obtained geometry must be somehow checked. These steps
are necessary in order to avoid unnecessary evaluations for obvious wrong
geometries.

Also, its application with the help of CAD software makes it easy to use
with Computational Fluid Dynamics environments where the geometry needs to
be inserted into the solver as it was created by the designer.
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