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CONFORMAL ANTI-INVARIANT RIEMANNIAN MAPS TO
KAHLER MANIFOLDS

Mehmet Akif AKyorL! and Bayram SAHIN?

We introduce conformal anti-invariant Riemannian maps from Riemann-
ian manifolds to almost Hermitian manifolds and show that they include both anti-
tnvariant submanifolds and anti-invariant Riemannian maps. We give non-trivial
examples, investigate the geometry of certain distributions and obtain decomposi-
tion theorems for the base manifold. The harmonicity and totally geodesicity of
conformal anti-invariant Riemannian maps are also obtained. Moreover, we study
weakly umbilical conformal Riemannian maps and obtain a classification theorem
for umbilical conformal anti-invariant Riemannian maps.
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1. Introduction

Let (M, Jy) be an almost complex manifold with almost complex structure
Jy. A totally real submanifold (anti-invariant submanifold) M is a submanifold such
that the almost complex structure Jy; of the ambient manifold M carries a tangent
space of M into the corresponding normal space of M. A totally real submanifold
is called Lagrangian if dimgrM = dimcM. Real curves of Kéhler manifolds are
examples of totally real submanifolds. The first contribution to the geometry of
totally real submanifolds was given in the early 1970’s [3]. For details, see [13].

As a generalization of isometric immersions and Riemannian submersions,
Riemannian maps were introduced in [4] as follows. Let F': (M,g,,) — (N, g,) be
a smooth map between Riemannian manifolds such that 0 < rankF < min{m,n},
where dimM = m and dimN = n. Then we denote the kernel space of F, by kerF
and consider the orthogonal complementary space H = (kerF,)* to kerF, in T M.
Then the tangent bundle of M has the following decomposition

TM = kerF, & K.
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We denote the range of F, by rangeF, and consider the orthogonal com-
plementary space (rangeF.) to rangeF, in the tangent bundle TN of N. Since
rankF < min{m,n}, we always have (rangeF,)*. Thus the tangent bundle TN of
N has the following decomposition

F~YTN) = (rangeF,) & (rangeF,)*.

Now, a smooth map F : (M;',g,,) — (Mj,g,) is called Riemannian map at
p1 € M if the horizontal restriction F:pl . (kerFyp,)t — (rangeF.p,) is a lin-
ear isometry between the inner product spaces ((kerFip, ), g,, (p1) | (ker F*pl)i) and

(rangeFip,, gy (P2) |(rangeF.p,)), P2 = F(p1). Thus F, satisfies the equation
gN(F*XvF*Y) :gM(X)Y) (1)

for X,Y vector fields tangent to H. Indeed, it follows that isometric immersions
and Riemannian submersions are particular Riemannian maps with kerF, = {0}
and (rangeF,)* = {0}. It is known that a Riemannian map is a subimmersion
[4] and this fact implies that the rank of the linear map Fy, : T,M — Tp,)N is
constant for p in each connected component of M, [1] and [4]. It is also important
to note that Riemannian maps satisfy the eikonal equation. Different properties of
Riemannian maps have been studied widely by many authors, see: [5], [6], [8], and
[9]. Recently, conformal Riemannian maps as a generalization of Riemannian maps
have been defined in [12] and the harmonicity of such maps have been also obtained.

On the other hand, as a generalization of totally real submanifolds, anti-
invariant Riemannian maps from Riemannian manifolds to almost complex man-
ifolds were defined and studied in [11]. In this paper, we are going to introduce
and study conformal anti-invariant Riemannian maps from Riemannian manifolds
to almost complex manifolds as a generalization of totally real submanifolds and
anti-invariant Riemannian maps.

2. Preliminaries

In this section, we recall some basic materials from [2, 14]. A 2n—dimensional
Riemannian manifold (M, g, J) is called an almost Hermitian manifold if there exists
a tensor field J of type (1,1) on M such that J? = —I and

g(X,Y)=g(JX,JY), VX,Y e I(TM), (2)

where I denotes the identity transformation of 7, M. Consider an almost Hermitian
manifold (M, g, J) and denote by V the Levi-Civita connection on M with respect
to g. Then M is called a Kahler manifold [14] if J is parallel with respect to V, i.e.

(Vi)Y =0, (3)
VX,Y € T(TM).

We now recall the notion of harmonic maps between Riemannian manifolds.
Let (M, g) and (N, gn) be Riemannian manifolds and suppose that ¢ : M — N is
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a smooth map between them. Then the second fundamental form of ¢ is given by
~ ~ ~ M ~
(Vo) (X,Y) = V. (Y) = pu(VY) (4)

for X,V € I(TM), where V¥ is the pullback connection. It is known that the
second fundamental form is symmetric. The tension field of ¢ is the section 7(p) of
the pullback bundle I'(¢~!T'N) defined by7(¢) = div . = > | (Vi) (€4, i), where
{e1,...,em} is the orthonormal frame on M. A smooth map ¢ satisfying 7(¢) = 0 is
called a harmonic map, see [2].

We denote by V2 both the Levi-Civita connection of (N,gy) and its pull-
back along F. Then according to [7], for any vector field X on M and any sec-
tion V of (rangeF.)*, where (rangeF,)" is the subbundle of F~1(T'N) with fiber
(F.(T,M)):— orthogonal complement of F,(T,M) for gn over p, we have V?{J—V
which is the orthogonal projection of V_Q)ZV on (F.(T,M))1— such that VI1gy = 0.
We now define Ay as

ViV =-AyFX + ViV (5)
where Ay F,X is tangential component (a vector field along F') of V%V It is easy

to see that AVF*X is bilinear in V and F, and AVF*X at p depends only on V,, and
F,, X,. By direct computations, we obtain

for X,Y € T'((kerF,)*) and V € I'((rangeF,)'). Since (VFE,) is symmetric, it
follows that Ay is a symmetric linear transformation of rangeF.

3. Conformal anti-invariant Riemannian maps

In this section, we define and study conformal anti-invariant Riemannian
maps, give examples, investigate the geometry of leaves of the distributions which
are defined on the target manifolds. We also give a decomposition theorem and ob-
tain necessary and sufficient conditions for such conformal Riemannian maps to be
totally geodesic. We first recall that, in [12], the second author of the present paper
showed that the second fundamental form (VF,)(X,Y),VX,Y e I'((ker F},)1), of a
conformal Riemannian map is in the following form

(VE,)(X,Y)rasels — X(In\)F,Y + Y(n N F.X — g1(X,Y)F.(gradln)). (7)

)J_

Thus if we denote the (rangeF.)*— component of (VF,)(X,Y) by (VF.)(X,Y)rangeFx)~
we can write (VF,)(X,Y) as

(VE)(X,Y) = (VE)(X, V)9 4 (VE)(X,

) (rangeFy)+

: (8)
for X,Y € I'((ker F,)1). Hence we have
(VE)(X,Y) = X(InANFEY +Y(In\)F.X — g1(X,Y)F,(gradln\)
+H(VE)(X, V) renoef)” 9)
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We now present the following definition for conformal anti-invariant Riemann-
ian maps as a generalization of totally real submanifolds and anti-invariant Riemann-
ian maps.

Definition 3.1. Let F' be a conformal Riemannian map from a Riemannian mani-
fold (M, g1) to an almost Hermitian manifold (Ma, ga,J). Then we say that F' is a
conformal anti-invariant Riemannian map at p € M if J(rangeF.), C (rangeF.,)*.
If F' is a conformal anti-invariant Riemannian map for any p € M, then F is called
a conformal anti-invariant Riemannian map.

We are going to give some examples of conformal anti-invariant Riemannian
maps.

Example 3.1. [13] Every anti-invariant submanifold of an almost Hermitian man-
ifold is a conformal anti-invariant Riemannian map with A =1 and kerF, = {0}.

Example 3.2. [11] Every anti-invariant Riemannian map from a Riemannian man-
ifold to an almost Hermitian manifold is a conformal anti-invariant Riemannian map

with A = 1.

We say that a conformal anti-invariant Riemannian map is proper if A # I.
We now present an example of a proper conformal anti-invariant Riemannian map.
In the following R?"™ denotes the Euclidean 2m-space with the standard metric. An
almost complex structure J on R?™ is said to be compatible if (R?*™,.J) is com-
plex analytically isometric to the complex number space C™ with the standard flat
Kihlerian metric. We denote by J the compatible almost complex structure on R?™
defined by

J(@,...,G2m) = (—G2, a1, ..., —A2m, Q2m—1)-

Example 3.3. Consider the following map defined by

F: R* — R*
(ZT1,%2,T3,74) (e™ sinTa, 0, e*! cos Ty, 0).
We have
kerFy = span{Z; = 0%3, Zy = 074}
and

(kerF*)J‘ = span{H; = "' sinT20T1 + €' cos To0T2, Hy = €™ cos To0T1 — €™ sin To0To }.

By direct computations, we have rangeF, = span{F,Hy = e**10y,, F.Hy = **10y5}
and (rangeF,)*+ = {%, 8%4}' It is also easy to check that

g2(FuHy, FoHy) = €7 gy (Hy, Hy)

and
QQ(F*HQ, F*H2) = 625191(1{27 HZ)?
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which show that F is a conformal Riemannian map with X\ = €. Moreover, it is
easy to see that JF,Hy = 6251% and JF,Hy = e%lé%, where J 1s the canonical
complex structure of R* defined by

J (192,93, U1) = (=2, Y15 = Y3, Ya)-
As a result, F' is a conformal anti-invariant Riemannian map.

Let F' be a conformal anti-invariant Riemannian map from a Riemannian
manifold (My, g1) to an almost Hermitian manifold (Mg, g2, J). First of all, from
Definition 3.1, we have J(rangeF,) N (rangeF,)* # {0}. We denote the comple-
mentary orthogonal distribution to J(rangeF) in ((rangeF.)*) by p. Then we
have

(rangeF.)* = J(rangeF,) ® p. (10)

It is easy to see that p is an invariant distribution of (rangeF,)*, under the endo-

morphism Jy. Thus, for V € I'((rangeF,)*), we have
JV = BV 4V (11)

where BV € T'(rangeF,) and CV € T'((rangeF,)™").
We now investigate the geometry of the leaves of (rangeF,) and (rangeF,)*.
First, we give the following result.

Theorem 3.1. Let F be a conformal anti-invariant Riemannian map from a Rie-
mannian manifold (My, g1) to a Kdhler manifold (Mg, g2, J). Then (rangeF,) defines
a totally geodesic foliation on My if and only if

> v\ (rangeFi )+ v\ Fl \

G2(VE)(X, Y ronseE)™ JRY) = go(VERTRY, CW) (12)
for any W € T((rangeF,)") and X,Y,Y" € T((kerF,)™"), such that F,Y' = BV,
Proof. For X,Y € I'((kerF,)*) and W € I'((rangeF,)*), using (2) we have

@(VEEY W) = go(VRIEY , JW).
Thus from (11) we obtain
G (VEFY W) = —go(VEEY' JEY) + go(V%JEY, CW),

where F,Y' = BW for Y’ € I'((kerF,)"). Since F is a conformal Riemannian map,
using (4), (5) and (8) we obtain

92(VEEY W) = —go((VE) (X, Y)emoels 4 (VE)(X,¥")renseF)™ 4 B (VXY") JR.Y)
gl
+g2(—A X + VELIRY W),
Hence, we arrive at
R(VEEY, W) = —g(VE) (X, V)P )" JRY) 4 go(VELIRY, eW).

From above equation, (rangeFy) defines a totally geodesic foliation on My if and
only if (12) is satisfied. O

In a similar way, we obtain the following Theorem:
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Theorem 3.2. Let F' be a conformal anti-invariant Riemannian map from a Rie-
mannian manifold (My, g1) to a Kéhler manifold (Ma, g2, J). Then (rangeF,)*" de-
fines a totally geodesic foliation on My if and only if

(i) (rangeF,)* defines a totally geodesic foliation on M.
(ii) F' is a horizontally homothetic conformal Riemannian map.

(ili) go(BV, Aev FuX + F.(VE1Z)) = —ga(CW, (VE,)(X, Z')(reanoeF
— g2(W, [V, F.X])

" viLey)
for any V,W € I'((rangeF,)*) and X, Z' € T'((kerF,)") such that F,Z' = BV.

Proof. For X € T'((kerF,)*) and V,W € T'((rangeF,)*), since My is a Kahler

manifold, using (2) we have
@(VEW, F,X) = —ga2(W, [V, F.X]) = g2(JW, V2_LJV).
Then using from (11), (4) and (5) we obtain

$(VEW, F.X) = —go(W, [V, . X]) — g2(BW, (VE)(X, Z') + F.(V¥' Z))
— g2(BW, —Aey F.X + VEICV) — go(CW, (VE)(X, Z') + F.(V}' Z'))
— g2(CW, —Aey F.X + VEEEV),
where F.Z' = BV ¢ I'(rangeF,) for Z' € T'((kerF,)*). Since F is a conformal
Riemannian map, using (8), we arrive at
92 (ViW, F.X) = —g2(W, [V, F.X]) — g2(BW, (VE)(X, Z') ") — g5(BW, FL(VE' Z'))
% v v\ (rangeFy)* Fl
+ g2(BW, Aey F. X)) — g2(CW, (VE,)(X,Y')rensel)™) — go(ew, VELEY)

Then from (9), we get

92(ViW, F.X) = —go(W, [V, . X]) — g2(BW, Fu (VY1 Z')) + g2(BW, Aey F.X)
— g2(CW, (VE)(X,Y")rensel)™) — gy (ew, viitev)
— g2(BW, X(In N F,.Z' + Z'(In \)F, X — g1(X, Z')F.(gradIn X))

or

g2(VIW, F.X) = —g2(W, [V, F.X]) — g2(BW, PV Z')) + g2(BW, Aey F.X)
— 92(CW, (VE,)(X, V") rmoet) ) — g, (€W, VELEV)
— g1(X, gradln N)go(BW, F.Z') — g1(Z', gradIn \) g2 (BW, F, X))
+ 91(X, Z')g2(BW, Fy(gradIn \))
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Hence we have
92(ViW, F.X) = —gs(W, [V, F.X]) — g2(BW, Fu (VY1 Z')) + g2(BW, Ay F.X)
o v (rangeFi)® Fl
— g2(CW, (VE) (X, Y")ranael) ™y — gy (eW, VELCY)
— q1(X, Hgradln N go(BW, F,Z') — g1(Z', Hgradln X) g2 (BW, F, X)
+ 91(X, Z") g2 (BW, F,(gradIn \))

)_
)_

From above equation, we can conclude that the two assertions in Theorem 3.2 imply
the third. n

We now recall the following characterization for locally (usual) product Rie-
mannian manifold from [10]. Let g be a Riemannian metric tensor on the manifold
M = M; x My and assume that the canonical foliations Dy, and Dy, intersect
perpendicularly everywhere. Then g is the metric tensor of a usual product of Rie-
mannian manifolds if and only if Dy, and Dy, are totally geodesic foliations. From
Theorem 3.1 and Theorem 3.2, we have the following theorem;

Theorem 3.3. Let F' be a horizontally homothetic conformal anti-invariant Rie-
mannian map from a Riemannian manifold (My, g1) to a Kahler manifold (Ma, g2, J).
Then the base manifold is a locally product manifold Mz (ranger.) X M2(ranger, )t of
and only if

)J_

R((VE)(X,Y) oot JRY) = go(VE TRY , €V)

and
92(BV, Aey F.X + F (V1 Z')) = —ga(CW, (VE)(X, 2/)("emoel)™ + vitev)
— g2(W, [V, F.X])

for any V,W € T((rangeF,)*:) and X,Y,Y', Z' € T'((kerF,)*) such that F.Y' =
BW and F.Z' = BV.

In the sequel we are going to investigate the harmonicity of conformal anti-
invariant Riemannian map. We first have the following general result.

Theorem 3.4. Let F be a conformal anti-invariant Riemannian map from a Rie-
mannian manifold (My,g1) to a Kdhler manifold (Ms, g2, J). Then F' is harmonic
if and only if the following conditions are satisfied;

(a) the fibres are minimal,

(b) traceBV{-JF.() - F*(V%V_t) () =0,

(c) traceJ Asp, () — (?Vf)lJF*(.) =0.
Proof. For U € I'(kerFy), using (4), we have
(VEN(U,U) = —F(V0). (13)
For X € I'((kerF.)"), using (4) and (3), we have

(VE)(X,X) = VEF.X - F.(VIIX) = —JVLJFX — F(V{1X).
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From (5),(8) and (11) we obtain
(VF*)(X', X‘)(mngeF*) + (VF*)(X" X’)(mngeF*)J‘ — ‘]AJF*XX _ BV?LJF*X
—eVELJRX - F(VIEX). (14)

Then taking the (rangeF,)— components and ((rangeF,)*)— components of above
expression (14), we arrive at

v v \(rangeFy) __ Fl % M1 v
(VE)(X, X)ronoels) = —gvEL TP X — F(VEX) (15)
and
(VE)(X, X)ranoeF)" = ja - o X — eVELIR.X, (16)
Then proof follows from (13), (15) and (16). O

Definition 3.2. Let F' be a conformal Riemannian map from a Riemannian man-
ifold (My,g1) to a Riemannian manifold (Ma, g2). Then we say that F is a hori-
zontally homothetic conformal Riemannian map if the gradient of its dilation X\ is
vertical, i.e., H(grad\) = 0.

From Theorem 3.4, we have the following result.

Corollary 3.1. Let F : (My,g91) — (M2, g2,J) be a conformal anti-invariant Rie-

mannian map such that n # %, where (My,g1) is a Riemannian manifold and
(Mg, g2, J) is a Kdhler manifold. If F' satisfies

traceBV{_j)LJF*(.) - F*(V?f[) () =0,

then F is a horizontally homothetic conformal Riemannian map.
We recall that a differentiable map F' between Riemannian manifold (M, g1)

and (M, g2) is called a totally geodesic map if (VF,)(X,Y) = 0 for all X,Y €
['(TM;). We have the following theorem.

Theorem 3.5. Let F' be a conformal anti-invariant Riemannian map from a Rie-
mannian manifold (My, g1) to a Kdihler manifold (Mg, g2, J). Then F' is totally ge-
odesic if and only if

(2) g2(BVEL TR, Fu(2)) = X1 (VY'Y, 2)
(b) JAJF*Y/QX = Cv?(J_JF*}/Q
for any X,Y = Y1 + Ya,Z € T(TM,), where Y1 € U(kerF,),Ys € T((kerF.)™b).

Proof. For X,Y € T(TM;) and Y; € T'(kerF.),Ys € T'((kerF.)"'), using (4), (3) and
(5), we have

(VE)(X,Y) = =J(=Ap 3, X + VEIRY,) = F(VEY).
Then from (11) we get
(VE)(X,Y) = JA; 3, X — BVSRIRY, — CVELJRY, — F(VEY).
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Since F' is conformal Riemannian map, using (8), we get
v v \rangeFy o v\ (rangeFy)t ¥ Fl \/
(VE)(X,Y)renoel 4 (VE)(X,Y)rmel)™ = JA . 5 X — BVELTRY,
— CVELJRY, - F(VYY).
Then taking the (rangeF,) and ((rangeF.)*) components we arrive at
(VE)(X,Y)renoc) — BYELTRY, + F.(VE'Y)

and
)J_

(VE)(X,Y)ramseF)™ = JA o X — CVERIRY:.

Thus (VE,)(X,Y) = 0if and only if (VF,)(X,Y)reeF = 0 and (VF,)(X,Y)(rangelF:)" =
0. Hence we have

92(BVELTE.Y,, Fu(2)) = =g (VY , Z)
and

. P
JA 7, X = CVELIRY, =0,

which complete the proof. O

We also have the following result for totally geodesic conformal anti-invariant
Riemannian maps.

Theorem 3.6. Let F' be a conformal anti-invariant Riemannian map from a Rie-
mannian manifold (M, g1) to a Kdahler manifold (Mg, g2, J). Then F' is totally ge-
odesic if and only if

(a) The horizontal distribution (kerF,)* defines a totally geodesic foliation on
M.

(b) all the fibres F~(y) are totally geodesic for y € M.

(c) (rangeF,)* defines a totally geodesic foliation on Ms.

for any X,Y € I'(kerF,)* and V € I'(rangeF,).
Proof. For X,Y € T'(kerF,)* and U € I'(kerF,), using (4), we have
92((VE)(X,U), F.Y) = =N (VEU,Y).
Since VM1 is a Levi-Civita connection, we obtain
92((VE)(X,U), F.Y) = X1 (U, VEY), (A #0).

Hence (VFE,)(X,U) =0 for X € I'(kerF,)* and U € I'(kerF,) if and only if (a).
For U,V € I'(kerF,) and X € I'(kerF,)*, we have
R(VE)(U,V), EX) = =XV V.Y), (A #0)

Thus (VF,)(U,V) =0 for U,V € I'(kerF,) if and only if (b).
For X,Y € I'(kerF,)* and V € I'(rangeF,), since My is a Kihler manifold,
using (2), (4), (11) we have

G2(VE)(X,Y),V) = g2(VERY' JEY) 4+ g2(VLJEY , €V),
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where F,Y’' = BV for Y’ € I'((kerF,)%). Since F is a conformal Riemannian map,
using (4), (5) and (8) we obtain

)J_

#(VE)(X,Y),V) = —g2(VE)(X,Y) o9l ™ JEY) + go(VELTRY  CV).

Thus, (VE,)(X,Y) =0 for X,Y € I'((kerF,)*) if and only if (c). O

4. Umbilical conformal anti-invariant Riemannian maps

In this section, we investigate the umbilical case for the conformal anti-invariant
Riemannian maps. We first recall the following definition.

Definition 4.1. [7] Let F' be a map from a Riemannian manifold (My,g1) to a
Riemannian manifold (Ma, g2). Then F' is called a weakly g1—umbilical if there exist

(1) a field € along F, nowhere 0, with values in (kerF,)*,
(2) a field Z on M such that for every X,Y on I'(T M) we have

(VE)(X,Y) = gi(X,Y)[F.(2) +€]. (17)
F is called strong g1 —umbilical if Z = Q.
Using the above definition, we can give the following theorem.

Theorem 4.1. Let F' be a g1—umbilical conformal Riemannian map from a Rie-
mannian manifold (My, g1) to a Riemannian manifold (Ms, g2) such that dim(H) >
2. Then F is a totally geodesic map.

Proof. We suppose that F' is a weakly g;— umbilical conformal Riemannian map
such that dim(JH) > 2. Then from (9) and (17) we have

X(InNEY +Y(In\)F.X — g1(X,Y)F.(gradln )\) = g1 (X,Y)F.Z  (18)
and
(VE)(X,¥)remsef)™ = gy (X, Y. (19)
Since dim(JH) > 2, we can choose X and Y such that g;(X,Y) = 0. Then we get
X(InM\)FEY +Y(In\)F,X =0.
Since X and Y are orthogonal and F' is a conformal Riemannian map, we have
@(F.X,FY) =g (X,Y)=0.
F*X' and F*f/ are also orthogonal. Then we get
X(In\)EY =0, Y(In\)E.X =0.

Thus F' is a horizontally homothetic Riemannian map. Since F' is horizontally
homothetic, from (18), we get Z = 0. Thus (VF,)(X,Y) = ¢1(X,Y)¢ for X,Y €
[(TM). In particular, for U,V € I'(kerF), we get

—E(VyV) =q(U,V)E.
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The right side of this equation belongs to I'((rangeF,)") while the left side of this
equation belongs to I'(rangeFy). Hence Fy(VyV) = 0 and £ = 0 which proves our
assertion. O

From Theorem 3.6 and Theorem 4.1, we have the following result.

Corollary 4.1. Let F be a gi—umbilical conformal anti-invariant Riemannian map
from a Riemannian manifold (My, g1) to a Kdahler manifold (Ma, g2, J) such that
dim(H) > 2. Then we have the following assertions:

(a) The horizontal distribution (kerF,)* defines a totally geodesic foliation on
M;.

(b) all the fibres F~'(y) are totally geodesic for y € M.

(c) (rangeF,)* defines a totally geodesic foliation on Ms.

From the above Theorem 4.1, we can give the following;

Theorem 4.2. Let F : (My,91) — (Ms, J, g2) be a g1—umbilical conformal anti-
invariant Riemannian map from a Riemannian manifold (My, g1) to a Kdhler man-
ifold (Ma, g2, J). Then at least one of the following is satisfied:

(a) The horizontal distribution (kerF,)* is 1 dimensional distribution.
(b) F is a totally geodesic conformal Riemannian map.

Proof. We suppose that F' is not a totally geodesic g;— umbilical conformal Rie-
mannian map. Then for wy,wy € I'((kerF,)*), since My is a Kéhler manifold, using
(6), (4) and (17) we obtain

— A p, (w1) Fe(W2) + V(1) I Fe(w1) = g1 (w1, wa) JE + g1 (w1, w) JFu(Z) + JFu(Vy,wr).
Taking inner product with F,(ws) in the above equation, we get
—92(A P, () Fe(w2), Fu(w2) = —g1 (w1, w2)g2(§, J Fi(w2)). (20)

From (6), (17) and (20), we get

g1(w2, w2)g2(&, JF(w1)) = g1(wi, w2)ga(§, J Fu(ws)). (21)
Interchanging the role of w; and wy in (21), we obtain

g1(wr, w1)g2(&, JFu(w2)) = g1 (w1, w2)ga(§, J Fu(wr)). (22)
From (21) and (22), we get

g1 (w1, ws)?

92(&, JFu(w2)) = g1(wr, wr)g1 (wa, wa)

92(&, JF(w2)). (23)

From (23), w; and wy are linear dependent, which gives the proof. O
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5. Conclusions

In this paper, we just introduce a general Riemannian map from a Riemannian

manifold to an almost Hermitian manifold. From the theory of submanifolds of

almost Hermitian manifolds, one can see that there are many new research problems

to be investigated.
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