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ADAPTIVE CUBATURE KALMAN FILTERING WITH NOISE 

STATISTIC ESTIMATION BASED ON EXPECTATION-

MAXIMUM ALGORITHM WITH OPTIMIZED MOVING 

HORIZON STEPS 

Xiaoyi ZHENG1*, Xiaomin FANG2, Peijiang LI2 

For noise statistic estimation problem in nonlinear Gaussian systems, an 

adaptive Cubature Kalman Filtering (CKF) with noise statistic estimation is 

presented in this paper, while the noise statistic estimation is derived by an 

expectation-maximum (EM) algorithm with optimized moving horizon steps. Firstly, 

we propose a common form of nonlinear Gaussian system that satisfies some 

assumptions in order to facilitate further research, and some reasonable assumptions 

are presented. Secondly, the maximum likelihood principle (MLP) based noise 

statistic estimation model is proposed, then the moving horizon estimation (MHE) is 

used to optimize this model. One step further, EM Algorithm is introduced to 

iteratively estimate the noise statistics, and the moving horizon steps is optimized by 

the given index to reduce the computational cost while maintaining the accuracy of 

calculations. Finally, an experiment is implemented and three common situations are 

conducted to verify the proposed algorithm from different perspectives, and the 

experimental results show the effectiveness of our work product.  

Keywords: Noise Statistic Estimation, CKF, MLP, EM Algorithm, MHE 

1. Introduction 

In recent years, various control scenarios and control systems have 

increasingly high requirements for filtering accuracy [1]. Due to its ability to 

achieve high filtering accuracy, nonlinear filtering algorithms have received 

widespread attention from experts and scholars in related fields [2,3]. The extended 

Kalman filter (EKF) is a popular nonlinear filtering algorithm, and it is based on 

the idea of performing first-order Taylor expansion on the nonlinear system model 

and then using the Kalman filter algorithm for calculation [4]. However, for 

strongly nonlinear systems, significant estimation errors or even divergence 

occurred when EKF is adopted. Moreover, the complex calculation of Jacobian 

matrix also limits the application of EKF in practical problems [5,6]. 

Based on the above problems, the researchers from McMaster University, 

Ienkaran Arasaratnam and Simon Haykin [7] proposed a new filtering algorithm 
 

1 Associate Prof., Dept. of Information Engineering, Quzhou College of Technology, Quzhou, 

China, e-mail: zxy_xmu@163.com. 
2 Prof., Dept. of Information Engineering, Quzhou College of Technology, Quzhou, China. 



112                                         Xiaoyi Zheng, Xiaomin Fang, Peijiang Li 

named CKF. The detailed description of CKF can be found in literature [7], and it 

is omitted here. The same with EKF algorithm, when we use the CKF to solve 

nonlinear problems, the prior statistical characteristics of system noise are also 

assuming already known. However, the assumption is difficult to satisfy in most 

practical situations, leading to a decrease in filtering accuracy or even divergence 

[8-10]. 

Regarding the existing issues, it is necessary to conduct research on 

estimating the statistical characteristics of noise, and some related works have been 

done in last few years [11-13]. In literature [14], an adaptive SRCKF algorithm with 

noise estimator is designed by introducing the principles of strong tracking filter 

and maximum a posterior (MAP). In literature [15], a new adaptive UKF based on 

MAP and random weighting is proposed. In literature [16], a singular value 

decomposition and maximum likelihood criterion combined adaptive CKF 

algorithm is presented to apply in integrated navigation systems. In literature [17], 

a noise estimation and filtering method is proposed by combining EM algorithm 

and suboptimal unbiased MAP to form an adaptive UKF. In literature [18], the 

authors present a new adaptive Kalman filter based on moving weighted average 

and MLP, and the estimated result is optimized with computationally efficient. 

There are also some other results and developments in this domain, see in literatures 

[19-21] and the references therein.  

From the above literature, we can see the methods of MAP, MLP, EM and 

so on are usually used in the problem of noise statistic estimation, but the 

calculation complexity are always not considered. In our work, we deal with the 

problem of process noises and measurement noises statistic estimation based on 

MLP and EM algorithm, and the calculation complexity is considered 

simultaneously. The main contributions of this article are as follows. (1) The MHE 

concept is introduced to optimize the noise statistic estimation model in order to 

reduce the calculation complexity, and the moving horizon steps is calculated by 

the index function defined by us. (2) By introducing the EM algorithm, the iterative 

calculation process is accomplished to estimate the noise statistics. Therefore, the 

computed result can be given step by step with efficiency. In addition, an 

experiment with three situations is conducted, and shows the effectiveness of the 

scheme we propose clearly.  

We make the arrangements for the rest of our work as follows. In part 2, a 

common form of nonlinear Gaussian system is presented, and some reasonable 

assumptions are stated. In Part 3, noise statistic estimation model based on MLP is 

designed, then the model is optimized by MHE, based on which EM algorithm is 

introduced to achieve system noise statistic estimation. In part 4, an illustrated 

example is presented to prove the availability of our proposed scheme, and 

conclusion is given in part 5. 
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2. Problem formulation 

Firstly, we consider the following nonlinear Gaussian system: 

 
( )

( )
1 1k k k

k k k

x f x v

z h x w

− −= +


= +
 (1) 

where xn

kx R  denotes the state vector of the system; zn

kz R  denotes the 

measurement vector of the system; ( ) : x u xn n n
f R R R  →  and 

( ) : x u zn n nh R R R  →  are the nonlinear state function and measurement function, 

respectively; xn

kv R  and zn

kw R  are process noises and measurement noises 

satisfy constraints as below:  

 

 
 

0

0

0

k

k

T

k j

E v

E w

E v w

 =


=


  =  

 (2) 

and 

T

k j kj

T

k j kj

E v v Q

E w w R





   =  


  =  

 (3) 

which means that Q  is a non-negative definite symmetric matrix about kv  with 

x xn n
 
dimensions, meanwhile R  is a positive definite symmetric matrix about kw  

with z zn n  dimensions, kj  is the Kronecker −  function. 

For simplicity, the following notations are used: 

 
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m
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1
i

m
 =  

where 1,2,3, ,i m= , 2 xm n= , m  denotes the total number of cubature 

points,  1
i
 is the i th column of  1 . 
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Remark 1: 

The nonlinear Gaussian system (1) describes a common class of system 

model with additive noises from both internal and external sources that often be 

seen in various domains, such as aerospace, automotive engineering, power system, 

manufacturing industry and so on. Our goal is to estimate the additive noises with 

three general situations, one of Q and R is unknown and Q and R are both unknown, 

respectively. 

Remark 2: 

The CKF algorithm provides a novel scheme for nonlinear systems to 

handle the filtering problems, it’s main core is a spherical-radial cubature rule used 

to calculate cubature points. There are two basic steps about the CKF, for the first 

step, the history posterior density at previous step is used to calculate the predicted 

error covariance, while for the second step, the calculated error covariance at first 

step is used to compute the error covariance, and it is obviously an iterative process. 

3. Noise Statistic Estimation based on EM Algorithm 

From the above, we can see that the effectiveness of CKF is influenced by 

noise statistics Q  and R , and we introduce a novel adaptive CKF that combines 

EM algorithm and MLP approach to estimate Q  and R  effectively. 

3.1 Noise Statistic Estimation Model based on MLP 

Let  ,Q R = , based on the MLP, we can estimate   as follows: 

 ( ) 1: 0:arg max ln ,k kL z x


  =    (4) 

where ( )1: 0:,k kL z x  is the likelihood function about  . Then we have: 

 ( ) ( ) ( )1: 0: 0: 1: 0:, ,k k k k kL z x p x p z x  =  (5) 

On account of the system (1) is a first-order Markov process [10], then (5) 

is factorized as: 

 ( ) ( ) ( ) ( )1: 0: 0 1

1 1

, , ,
k k

k k j j j j

j j

p z x p x p x x p z x   −

= =

=     (6) 

Provided that the initial state and the noises obey normal distribution, then 

(6) can be rewritten as: 
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Take the logarithm of (7) both side, we obtain: 
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According to the above,   can be obtained as follows: 
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Remark 3: 

According to the above deduction, the summation range is from 1j =  to k , 

and with the calculation process continues, the computational range will continue 

to increase as well, this is unrealistic when dealing with practical problems. To 

solve this problem, we introduce the MHE as below. 

3.2 Noise Statistic Estimation Model Optimized by MHE 

Denote the moving horizon steps as N , let 

 : 1, ,N jX x j k N k= = − + ,  : 1, ,N jZ z j k N k= = − + , then   can be 

rewritten as: 

 ( )  arg max ln ,N NL Z X =  (10) 

where ( ),N NL Z X can be calculated as follows: 
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To simplify the analysis, assume that ( ) ( )ˆ ,k N k N k Np x N x P− − −  is the 

common practice, then (11) can be further rewritten as: 
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Take the logarithm of (12) both sides, we obtain: 
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According to the above,   can be obtained as follows: 
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3.3 Noise Statistic Estimation with EM Algorithm 

Based on the above-mentioned analyses, then the EM algorithm is 

introduced to iteratively estimate the noise statistics. 

(1) E step: 

Firstly, we calculate the expectation of log-likelihood function: 

( ) ( )

( )( ) 

( ) ( )1 1

1 1

1
ln , 1 ln 2 ln ln ln

2 2 2 2 2

1
ˆ ˆ

2

1 1

2 2

x z
N N k N

TT

k N k N k N k N k N

k k
T T

j j j j

j k N j k N

Nn Nn N N
E L Z X P Q R

E tr P x x x x

E tr Q v v E tr R w w

  −

− − − − −

− −

= − + = − +

 
 − = + + + + + +  

 

 − − +
 

   
+   

   
 

 

(15) 

Then ignoring the constant term of (15), let: 
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(2) M step: 

Let 0
J

Q


=


 and 0

J

R


=


 respectively, system noise estimator can be 

obtained as follows: 
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Substituting the filter estimate into the above equations (17) and (18), sub-

optimal noise estimator is concluded: 
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Remark 4: 

From (19) and (20), we can see that the calculate of the obtained sub-optimal 

noise estimator is a process of iterative summation, and the summation range is 

from 1k N− +  to k . In order to reduce computational complexity, when we design 

program code to calculate the noise at time k , the previous calculation result at 

time 1k −  can be used, so the summation from 1k N− +  to 1k −  is omitted, this 

operation can significantly reduce the computational burden. 

3.4 Calculation of Optimized Moving Horizon Steps 

Both considering the accuracy and speed of noise estimation, we need to 

choose the optimized steps of moving horizon. 

Provided that the minimum steps of moving horizon is p , and the 

maximum steps is q , then we should initialize some related parameters in time 

domain from first step to q th step. The initializing method is presented as follows. 

We define the index function ( ) 1 2k kf t l =  + , where kt  is the elapsed 

time of the estimation algorithm at sampling time k , kl is the accuracy index of the 

algorithm defined as (37). 1  and 2  are two known constant represent the weight 

value of accuracy and speed and satisfy that 1 2 1 + = . 
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Then the calculation of optimized moving horizon steps can be described as 

follows: 
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Remark 5: 

In order to keep the validity of the optimal steps in the moving horizon 

estimation, while reduce the computational cost, it is suggested to update the 

optimal steps every certain number of steps. 

4. Performance Evaluation and Discussions 

At last, an experiment is implemented to prove the availability of the scheme 

we propose. The following nonlinear Gaussian system is given, and satisfies 

constraints (2) and (3): 
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1 12
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−
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 (23) 
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20

k
k k k

x
z x v= + +

 

(24) 

Here, the theoretical initial state of the systems are set as 0 1x = , while the 

Kalman filter initial parameters are set as 0
ˆ 1.1x =  and 0 0.01P = . The variances of 

kv  and kw  are 0.6Q =  and 0.8R = , respectively. 

On the basis of above given parameters, we present three simulation results 

corresponding to three situations, separately. 

4.1 Situation A: Q known, R unknown 

In this situation, we assume that the variance of kv  0.6Q =
 
is known, while 

the variance of kw
 

0.8R =  is unknown, simulation results are displayed as follows. 

Fig. 1 shows the system state kx , Fig. 2 shows the measurement noise variance R , 

Fig. 3 shows the estimated error of system state. 

 

   
Fig. 1 system state and its estimated value(situation A) Fig. 2 variance of measurement noise(situation A) 



120                                         Xiaoyi Zheng, Xiaomin Fang, Peijiang Li 

 

 
Fig. 3 estimated error of system state(situation A) 

4.2 Situation B: Q unknown, R known 

In this situation, we assume that the variance of kv  0.6Q =
 
is unknown, 

while the variance of kw
 

0.8R =  is known, simulation results are displayed as 

follows. Fig. 4 shows the system state kx , Fig. 5 shows the process noise variance 

Q , Fig. 6 shows the estimated error of system state. 

 

   
 

Fig. 4. system state and its estimated value (situation B) Fig. 5. variance of process noise (situation B) 
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Fig. 6 estimated error of system state(situation B) 

4.3 Situation C: Q unknown, R unknown 

In this situation, we assume that the variance of kv  0.6Q =
 
and the variance 

of kw
 

0.8R =  are all unknown, simulation results are displayed as follows. Fig. 7 

shows the system state kx , Fig. 8 shows process noise variance Q , Fig. 9 shows 

the measurement noise variance R , Fig. 10 shows the estimated error of system 

state. 

 

 

Fig. 7 system state and its estimated value (situation C) Fig. 8 variance of process noise(situation C) 
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Fig. 9 variance of measurement noise (situation C) 

 
Fig. 10 estimated error of system state(situation C) 

Remark 6: 

On the above, we design three situations to test the validity of the algorithm 

we propose. The test results indicate that in all three situations, the noises can be 

quickly estimated in a relative small error, and the calculated state value can track 

the actual state well. 

Remark 7: 

At the same time, we should also recognize the limitations of the scheme 

we propose. Firstly, 1  and 2  in the index function ( ) 1 2k kf t l =  + are assumed 

to be known, therefore the selection of 1  and 2  values will affect the 

experimental results. Secondly, the experiment we designed only consider the first-

order scenario, while higher-order scenarios are more common in reality. 

5. Conclusions 

The problem of adaptive CKF with noise statistic estimator based on MLP 

and EM algorithm is investigated in this paper. In order to reduce the calculation 

complexity, the moving horizon steps is introduced and optimized by the given 

index function. The scheme is verified by an illustrative example with three 

situations, and the noise statistic estimator can estimate the noises well, meanwhile 

the adaptive CKF with the noise statistic estimator give a good performance to 

estimate the system state. Our next step of work is how to calculate the moving 

horizon steps by using neural network algorithms, such as Genetic Algorithm to 

improve the steps calculation. 
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