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ACCURATE INTEGRATION OF FORCED AND DAMPED
OSCILLATORS

Fernando GARCIA-ALONSO'", Monica CORTES-MOLINA', Yolanda
VILLACAMPA', José Antonio REYES'

The new methods accurately integrate forced and damped oscillators. A
family of analytical functions is introduced known as T-functions which are
dependent on three parameters. The solution is expressed as a series of T-functions
calculating their coefficients by means of recurrences which involve the
perturbation function. In the T-functions series method the perturbation parameter
is the factor in the local truncation error. Furthermore, this method is zero-stable
and convergent.

An application of this method is exposed to resolve a physic IVP, modeled by
means of forced and damped oscillators.

The good behavior and precision of the methods, is evidenced by contrasting
the results with other-reputed algorithms implemented in MAPLE.

Keywords: Numerical solutions of ODE’s, perturbed and damped oscillators,
Initial Value Problems (IVP).

1. Introduction

In the nineteen seventies, Stiefel and Bettis [1], published the first
numerical methods for solving this type of oscillators, that were fixed-step non-
linear multistep codes. Stiefel and Scheifele [2] developed methods based on the
use of a series of so-called G-functions in place of the Taylor series. Both
methods, although they differ, share the important property of integrating
harmonic oscillations in a frequency without truncation error. Subsequently, other
methods have been developed for integrating oscillators by applying different
ideas and with different motivations, Deuflhard [3], Neta and Ford [4], Denk [5].

Methods were designed using ¢ -function series [6], in place of G-function

series, which also integrate the homogeneous problem without truncation error.
The methods presented in this paper generalize codes based on series of G-
function and ¢-function, and are designed for the integration of forced and
damped oscillators of type:

X"(O)+ X' () +ax(t)y =& f (t,x(1),x'(t)), x(0) =Xy and X'(0)=xj, (1)
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with ¢ being a small perturbation parameter, and & a known constant frequency
and y the damping constant.

It is accepted that the perturbation function  g(t)=
f (t, X(t, X0, X0, t), X'(t, X9, X0, tg)) defined throughout the solution X(t), X'(t) of
IVP (Initial Value Problem) (1), admits in [0, T], a power series expansion
absolutely convergent, in the following manner ¢(t) = z:o:() Ch (tn / n!) .

In order to carry out the exact integration of the IVP (1), the differential
linear operator, D? + ,82 , 1s defined with £ being a third frequency. In the case

of a more complex perturbation, which cannot cancel, simpler expressions of it
would be obtained, which would facilitate numerical integration of the IVP (1).
For this purpose new functions are defined, the T-functions. For y =0,

they coincide with the Ferrandiz ¢-functions [6] and verify equations which relate
them to the Scheifele [2] G-functions. The numerical algorithm, based on T-
function series, generalises the original Scheifele method and permits integration
of the non perturbed problem without truncation error.

2. Basic ideas and formulations
We shall consider the following equations:
X"(t)+ X' (M) +axt)=&- f (£, x(1),X' (1)), x(0)=xy and X'(0)=Xg, (2)
which formulate an IVP corresponding to a forced and damped oscillator with
a,y € R" frequencies, where ¢is a perturbation parameter, usually small.

The solution of (1), X(t) obtained for the initial given conditions, is
analytic in the [O,T] c R interval. In terms of the differential operator D, where

D" represents (d n / dtn) , (1) may be expressed in the following manner:
(D2 +yD+ a)x(t) = - f (LX), X(1)), X(0)=Xg , X'(0) = Xj. 3)

By applying the differential operator D? + ﬂ2 a (3), in order to cancel
perturbation, the following superior order equation is obtained:

D*x(t)+ ;/D3X(t)+(a+ ,6’2) D2X(t)+ A2/ DX(t) + af2X (1) =g( D%+ ﬁz) ftxX) (@)
Given that X(0) = X, X'(0) =Xy as X"(t) =—ax(t)—yX'(t)+&f (£, (1), X'(t))
then X"(0) = —aXq— Xy +&- f(0,X.X0) = X§ - (5)
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In addition  X"(t) =—ax'(t)-yX"(t)+& VI (t,x(0),X'1))(Lx'(t),X"(t)),
then X"(0)=-ax'(0)—yX"(0)+& VF (0,%9, %)) (L X0, X)) = X - (6)

Note that the equations (5) and (6) are defined throughout the solution of
(1). The equations (4), (5) and (6) permit a new auxiliary [VP to be defined:

DAX(t) + yDX(t) + (a T ﬂz) D2X(t) + A% DX(t) + aBx(t) (7)

= g-(D2 + ,82) f (£, x(t),X'(1)), X(0) = Xg, X'(0)=xj, X"(0)=x§, X"(0) = x{,

which has the same exact solution as (1) in the [0, T] interval. For the purpose of
brevity a more compact expression is introduced, known as:

L (X()) =((D2 +ﬂz)(D2 +}/D+a)) X(t). ®)

With the help of Taylor development of g(t), the IVP (7), may be
formulated by the equations:

Lo (x0) =X o[ ena £ |17 [, X(0) =20, X (O =%, X O) =X, X"©) =35 (©)

As is usual, the solution X(t) of the IVP (9), can split divided into two
parts, one corresponding to the solution Xy(t) associated with the homogeneous
IVP with the given initial conditions and the other part is the non homogeneous
IVP solution in which this and its first three derivatives are cancelled in t = 0.

With this last taking into account the principle of superposition of
solutions, it may be obtained by calculating the following IVP particulars:

Ly (x(1)) = tn/n! , X(0)=x'(0)=x"(0)=x"(0) =0, with n >0, combining in an

adequate form with ¢, ¢, and £.
3. Definition and properties of the T-functions

We consider the following I[VP's

Ly (X)) =t"/nt, x(0) = X(0) = X"(0)=X"(0)=0 with n>0.  (10)
Definition 1: T',(t) = x,(t), VneN.
That is, the functions I',(t), Vn e N, verify:
Ly (T (1)) :t”/n!, ['h(0)=TH(0)=T/(0)=T/(0)=0.
Proposition 1: T',(t)=T_;(t), VneN with n>1.
Proposition 2: The functions I',,(t), ¥n e N verify the following recurrence law:
Fa®+7 T+ (@ + 57| Caa 0+ B2 Toa 0+ Toea® =t"/(n+4):

We shall consider the homogeneous problem:
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Ly (X(t)) =0, X(0)=Xg, X'(0) =Xy, X"(0) =X, X"(0) =X . (11)
Definition 2: Let Ty, T;,T,,T; be the solutions of L,(x(t))=0 with initial
conditions T(0) =6 ;, i,j=0,1,2,3.

In its most general case, they are described by means of the equations:

To =(a/L)((a—ﬂz)cos(ﬂt)+ﬁysin(ﬂt)) (12)
( 2/ 2ML))((N1+MP) o M)/Z_(NI_MP)e—t(;/+M)/2)’
=((pL) ([ -a)? +a )SIH(ﬂt)—ﬂ3ycos(ﬁt)) (13)
( £2/(2ML )( (M 4Ny )e M2 (o _Nz)e—t(y+M)/2)’
T, =(1/(AL))(~BP cos(Bt) + aysin( 1)) (13)
+1/(2ML ( MP + N e t(7~M)72 +(|\/|P_|\|1)e_t(7+M)/2)’

T3 = (Y(BL)) (=2 Jsin(5t)~ s cos (1)) (15)
+(1/(2ML))( (Ny+7M)e 7 M)/z—(Nz—yM)e_t(7+M)/2).

Where L=(a—,6’2) +]/2ﬂ2, M=(72_405)}é, P:,B2+]/2_a,
N; :7/(—3a+,82 +7/2)and N, =2ﬁ2 +72 -2a
Proposition 3: The {Ty(t),Ty(t),To(t), T3(t)} is a fundamental system for equation
solutions Ly (x(t)) =0
Theorem 1: The general solution (11) is Xy (t) =XyTo(t)+ XoT () + XpTo (1)
+X6T3(t).

Theorem 2: The general solution for (9) is:
KO =4 O+ 37 o(Cniz + A7 |Tn (D).

Using a more compact notation, if

o®=(To) Ti®) T Ty)  and  x=(x % % %),
then x(D(0) = Z::o(cmz + ﬂzcn)rgﬂ(m +o D (0)-x = x{1, with

] =0,1,2,3. Thus x(t) is the solution to (9).
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Using the functions I', (1), it is possible to extend the functions T (t), in

the following manner.
Definition 3: T,,4(t) =T (t) with n>0.
Thus the solution of (9) may be written as:
0 2
X(O =) x+23 1 (Cnsa + B7n | Trea(®). (16)
It is possible to extend the T-functions, the law of derivation given in
proposition 1, obtaining the following relations: T = —af°T;, T{ =Ty —8°T;,
T3=T —(a+ﬂ2)T3, T3=Ty=7T3, Tn =Ty, n=4.
In [6] to integrate the perturbed oscillator
X"+ a’x=eg(t) x(0)=Xy,X'(0)=xp, (17)
methods based on ¢ -functions are applied, which depend on the oscillator
frequency @ and the free frequency £ . The latter frequency is associated with an

differential operator D’ + °.
If n>0, ¢ -functions are solutions of IVP’s:

n .

(D2 +ﬁ2)(D2 +a2)(pn+4(t)=%, (D 0)=0, j=0,1,2,3. (18)

The first four ¢ -functions are expressed by:
(po(t)z( 2cos(,Bt)—,B2 cos(at))/(az—ﬁz) (19)
o (t)= ((az/ﬁ)sin(ﬂt)—(ﬂ2/a)sin(at))/(a2 —[3’2) (20)
) (t)=(cos(,8t)—cos(at))/(a2—,6'2) (21)
(03(t)=(sin(ﬂt)/ﬁ—sin(at)/a)/(a2—ﬂz). (22)

In addition:
w+a’Fo=1. g +a’ o5t =t (23)
n

mO+(a?+ 2 ona O+ a2 Bon a0 = V=2, @4)

Furthermore, relations may be established between the T-functions, the G-
functions and the ¢-functions, for this purpose we introduce the notations
Tta,B,y), on(t,a,) and G,(t,a), associated with the IVP’s

X"+ X +ax=eg(t), X"+ a’x=eg(t) and X"+’

Obtaining the following equalities [2, 6, 7]:

X =¢eg(t) respectively.
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To a2, 8,0)= gy (t,at, B), withn >0 25)
T.(L,a2, 4,0) = (aan(t,a) — BG4, ﬂ)) / (a2 - ﬂz), with n>2  (26)
Gy (t,a) =Ty (t,a?, 8,0)+ BT, 5 (t,a?, B,0) withn > 2. (27)

4. T-functions series method

We should consider the IVP (1) and with x(t) being the solution, which we
consider to be analytical in the interval [0,T] =R, thatis, X(t)= Z:O:() ant" / n!
and that the perturbation function g(t) admits in [0, T], a development in powers

series, which is absolutely convergent in the form ofg(t) = 2.1():0(:” (tn/ n!) .
As X"+ yx'(t)+ax(t)=eg(t), then: Z:O:Oamzt”/n!

+7ZC::0 an+1tn/n I+ “Z::o antn/n = 82;0:0 Ch (tn/n!) , from whence it may be
deduced that:

Ao +8n, + a8, =£C,, YN0, ¢, =D"g(0), ay=Xp,a =X).  (28)

By (5) and (6), it is possible to propose the following recurrence: a, = X,

a; = X, ay =—ya) —aagy +&Cy =—ya; —ady + & (0,x(0),X'(0)) = x{,

"

a3 =-ya, —aa; + &€ =-ya, —aa; +&f'(0,x(0),x'(0)) = x{ ,

-2 1
8y =—78n_| — 0B +£6y_ =8y — 0@ o+t 7 (0,%(0).X(0)), n 24
Through theorem 2 it is known that

x(t) = o(t) - X + 52:20(%2 + ﬂzcn)Tn+4(t), defining: by=2a,, b =a.
by =ay, by=a;, b, = g(cn_2 + ﬁzcn_4), with n>4, of (28) it is deduced
that: b, =a, +yan_; + (a + ﬂz)an_2 + yﬁzan_3 + aﬂzan_4, n >4, therefore,

X(t) = Z :O: 0 b Th (1), which, dispensing with truncations, is analogous to the

expressions obtained for developments in G-functions [2, 7] and ¢-functions [6].

n

If for X;, X{, X{ and X{" we denote the approximations to X(h), x'(h),
X"(h) and x"(h) respectively, where h is the step size, the approximation to the
solution, using (p+1) T-functions will be given by:
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D =S TP+ XD BT 0, 0123 @)

We assume the approximation to the solution xj = x(ih) and X{ = X'(ih)

has been calculated.
ay =Xj,a =X, =X, a3 =X,

8, =—ya, | —ady o +ef2) (ih, x(ih), x'(ih)), n>2,
bi=ai,i=0,1,2,3, (30)
_ 2 2 2
b, =an +7an_ +(a+,8 )an_2 + B van_3+af an_4,Nn24,
. 3 _ _
W= T+ X P bt j(h). j=0.1,2.3.
5. Zero-stability and convergence

The solution X(t) to the given IVP (1) admits a Taylor expansion about
any point tp, €[0,T] of the form, x(t) = Z:O:() ap (t—ty )n/n! :

Let us define a function:
Im(®) = f (£ X(t:X(tm), X (t )t ) X' (£ X(t ), X (b))

€1y

0 n

=> oG (t=tm) /n!,

upon substitution of the last X(t) into (1), we find the recursion relation:
ap=X(tn), a;=X(tm), 8y =—yan_1—a@y o +&Ch_, N22. (32)

By defining auxiliary constants b, as in the above section, the exact
solution can be expanded as X, (t) = Z::O b, Ty (t —tm)-
Notice that b, 4 (n>0) is the n order derivative of the function
Gm (1) = 5(D2 + ,82) Om (), at t=ty,. Therefore, the definition of the T-functions
allows us to obtain the identities for i =0,1:
: : (04l :
xXD)=3" byTy (t—ty ) +6\P* )(gﬂn)TF‘}+1 (t—tm), tn <&n <t, p=4. (33)
Given a sequence of points {ty, }2:0 withty =0, ty =T, evenly spaced or
not, we can compute approximations (Xm , X,’n) to the exact wvalues

(X(tm).X(tm))by truncating (33) as:
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Xm+1 = ZEZO bTh (tnat —tm)» X1 = ZE:O BT (tms1 —tm)» (34)
where b, are computed from the recurrences by setting a8y=Xy, 8] = Xmn41>
instead of ay=Xy, a =% . When t,, —-t,=h, m=0,...,N -1 the local
truncation error is easily derived from (33) and (34) as

XDt - x® _Qr(np“)( m)T(i) (t_tm)zo(ghp“‘i), i=0,1. (35)

m+1 — p+1

The numerical scheme given in (34) is consistent, of order p for the
solution x(t). The stability of (34) is easy to prove directly. Taking into account
equations (32), the algorithm can be written, for i1 =0,1, as
Xgill = (To(i) - aTz(i) + a;/T3(i) ) Xp + (Tl(i) —;/Tz(i) + (7/2 —a)T3(i) ) Xn 36)
+hd; (t, %, Xp, T),
when all T-functions are evaluated at h, (36) can be transformed into

! t ’ t t
(Xn+1 Xn+1) ZA(Xn Xn) +h(q)0 (Dl) ,where:

e7Y2((/M)sinh(My/2) +cosh(Mt/2)) 2(e‘7‘/ 2/ M)sinh( Mt/2)

a2 /M)sinh(My2) e 72 (cosh(Mt/2) -(/M)sinh(My/2))

This equation owns the form of equation (2-4) of Lambert’s book [8], p.
24. We have to notice that the assumptions there are fulfilled, because the

function @ =(®, CDI)t vanishes whenever f(t)=0, since then ¢, =0,

Vvn > 0 and it verifies a Lipschitz condition, since f was assumed to be analytic.

On the other hand, the eigenvalues of matrix A are e(i(M Al 2), then the
root condition holds. Therefore, the application of Lambert’s Theorem 2.1 [§]
shows that
Proposition 4 : The scheme given by (33) is zero-stable.

Notice that the Lipschitz condition coming from the differentiability of f
implies that the single-step method (34) is regular, and by virtue of its consistency
we could have established directly the following
Proposition 5 : The method (36) is convergent.

6. Numerical examples

Example 1. This stiff problem has been selected in order to demonstrate
not only the accuracy of the T-functions series method, when the perturbation
function is cancelled, but also the fact that the T-functions generalize the ¢-
functions. Let’s consider the following I'VP stiff problem, which appears in [9].
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, 37
X3 (1) = =(7+2) % (1) + (17 + (X (1) — cos(t) +sin(t)) G

with initial conditions X;(0) =2, X,(0) =3 and solution, independent of 7:
x;(t) =27 +sin(t), Xy(t) =2e "' +cos(t). (38)
The eigenvalues of the system are —1 and 77, which enables its degree of

stiffness to be regulated. For the case 1 =-1000, the stiff problem (37), proposed
in [8] is expressed as an oscillator:

(D2 +1001D+1000)X(t)=100100s(t)+999sin(t),X(O)=2, X(0)=-1. (39)

{xi (1) = =2 (t) + X, (t) + 2 sin(t)

Applying the operator D? + /32 , with f#=1, the following IVP is
obtained:
xV) () +1001X" () + 1001X"(t) + 1001X'(t) + 1000x(t) = 0,
x(0)=2,x'(0)=-1,x"(0)=2,x"(0) =-3,
which it is possible to integrate accurately by means of the T-functions series

method. Having carried out the integration using the algorithm described in (30),
particularized to this problem:

8 = Xj,ay = X{,a, =—1000a, —1001a, +(1001cos(ih) +999sin(ih)), (41)
a; = 10003, —1001a, + (999 cos(ih) —1001sin(ih)),
a, =-1000a,_, ~1001a,_; +(1001cos(ih+(n-2)7/2)+999sin(n-2)7/2)),

bO = ao,bl = al,bz = az,b3 = a3,bn =ap +1001(an_1 +an_2 +an_3)+1000an_4,

3 / 3 /
Xi+] = ijobjTj(h)a Xi4] = ijobjTj(h)a nx4.

(40)
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Fig. 1. X(t) position with four T-functions.
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Fig. 1 shows the graph obtained, with 100 digits of the absolute value
logarithm of the relative error of the solution x(t) with ¢ =1, calculated by means
of (30), with four T-functions and step size h =0.9, compared with the graphs
corresponding for the logarithm of the absolute value of the relative error of the

methods of LSODE[BACKFUNC] with tol =10_16, MGEAR  with
errorper = Float(1,—13) and GEAR with errorper = Float(1,—18).

(SE Iy

. LSODE
~
1)
‘\’i\
¥ (-14)

AN,

GEAR

log{arror)

(15 d)

log(error)

T - functions
{18 ¢)

(20 d)

(224)

0 0.5 1 1.5 2 25 k| 35
log(time)

Fig. 2. Efficiency plot for the integration of the coordinate X (top graph) and X’ (bottom
graph) at last point t = 100 versus computation time for different methods (d = digits).

Fig. 2 shows an efficiency plot where T-functions series integrations are
compared with integrations using well known general purpose codes. The
computation time is represented in the horizontal axis, in logarithmic scale, and
the decimal logarithm of the integration error at the last point, t = 100, is shown



Accurate integration of forced and damped oscillators 203

in the vertical axis. The tolerances used in the standard codes are displayed in the
figure into parentheses, marking each time-error point.

Example 2. The problem proposed by [2], which is a linear oscillator with
quadratic perturbation function will be considered:

X"(1)+ax(t) =ex’(t), x(0)=1y x'(0)=0, (42)
that admits a first integral H (x(t),X'(t)) = (1/2)( X’ (®)+ X" (1) |- (£/3) X (V).

It has been selected this problem to test the behaviour of the T-functions
series method when the differential operator D”+ f*does not cancel the
perturbation.

For the case a =1 and £=10", applying the operator D* + #*> with =2 to
(42), the next IVP is obtained
XM (1) +5X'(t) + 4x(t) = £(D” +4) (1), (43)
x(0)=1, x'(0)=0, x"(0)=10" -1 and x"(0)=0.

After obtaining the value of the T-functions, and if X, and X are the
approximations of x(ih) and x'(ih), respectively, each step of integration is
completed by following algorithm:

a,=X,a=x,a =-a,+10"a, a,=—a +2-10"a,a,, (44)
n-2

k
-3
a, =-a,_,+10 jzo(Jajak_j, 4<n<p,

b=a,i=0123,b =a,+5a,,+4a,_,, 4<n<p,
16 ' 16 '
Xi+1 = Zn:() bnTn(h) b Xi+1 = Z n=0 bnTn (h) .

(-13) ~~__LSODE
-10} -
(-13)= ( 15‘]‘\“-5\“&[‘-’_6}
e [-15) T~
14 (-13) (17 4d) _(-16) -i"'--ml__lg'
~1d e . ~
~ -~
) ~ (-15) e
516 (19d) ~_ (-18) (-21)
g 1204) {-19)
.18t
7-functions 1) MGEAR
20T (234q) (-19) ™~ .
T GEAR
22 -21)
(25 d)

112 14 18 18 2 23 24 286
log(time)
Fig. 3. Efficiency plot for the integration of the coordinate X at last point t = 100 versus
computation time for different methods (d = digits).
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The information in Fig. 3, with step size h=0.1 is organized in the same
way as in Fig. 2.

7. Conclusions

A family of analytical functions has been defined, known as T-functions,
dependent on three parameters «, £ and » studying their properties and
establishing their relation with the G-functions and ¢-functions. Based on the T-
functions and with certain hypotheses, a series method has been constructed
which permits precise numerical integration of a wide range of problems. Amount
T -functions series method is zero-stable and convergent. The T-functions series
method integrates exactly forced and damped oscillators.. The T-functions series
method may successfully compete with known integrators.
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