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RESEARCH ON CLUSTERING MATCHING STRATEGY OF
3D RECONSTRUCTION BASED ON IMAGE FUSION
FEATURES

Tiebo SUN 12, Jinhao LIU !*, Jiangming KAN %, Tingting SUI %, Jiang LI %,
Miaoxin JI

In an attempt to remedy the low efficiency of many 3D reconstructions of
high-resolution sequence images from UAV tilt photography for forestry surveys,
based on the existing motion recovery structure algorithm, a reconstruction
algorithm using UAV image fusion features is proposed in this paper. First, the
GPS/IMU information of the UAV image was extracted. Second, the UAV image was
downsampled and blocked, and the color invariant standard deviation of each image
block was calculated simultaneously. Then, the texture features, such as the angular
second moments of the downsampled images, were calculated based on GLCM
theory by using the above feature components. The L? norm was normalized, and
then the image description vector was constructed. In addition, the p-stable
distribution LSH algorithm was used to cluster the matched images and the
clustering results were used to perform image matching. The method described in
this paper can effectively reduce the image matching range in the reconstruction
process and improve reconstruction efficiency. The experimental results showed that
the algorithm mentioned in this paper improved the reconstruction efficiency by
approximately three times, and the number of dense point clouds was only 3% lower
than that of the global match reconstruction algorithms. The target details, such as
the trees in the core area of the slope photographs, were well restored. The
accuracy of the point cloud data obtained by this algorithm was more than 85% in
comparison with the measured data, with a crown width R? of 0.972, and a tree
height R? of 0.979. The method provided in this paper can meet the 3D
reconstruction requirements of forestry surveys and has the ability to guaranteeing
accuracy.

Keywords: forestry survey, unmanned aerial vehicle, three-dimensional
reconstruction, fusion feature, image matching, image clustering

1. Introduction

A vital index reflecting the main forest characteristics is the biomass of
forest ground vegetation. There is a positive correlation between plant biomass
and height [1]. Image-based 3D reconstruction technology has advanced rapidly
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due to the continuous progress and improvement of feature point detection,
matching algorithms [2,3], self-calibration algorithms [4-6], structure from motion
[7,8], and multiview stereopsis [9,10]. It has been widely used in forestry resource
investigations, stand studies, and 3D reconstruction of standing trees. UAVs have
the advantages of flexible views and quick sampling because they fly at low
altitudes. A large number of uncalibrated image sequences with a continuous view
of the same scene can be obtained by using a UAV. At the same time, the three-
dimensional information of the scene can be obtained by combining it with SFM
technology. A new solution to increase the speed of 3D reconstruction of UAV
sequence images is urgently needed because of the high resolution and overlap of
UAYV images and the low efficiency of SFM processing.

The most time-consuming step of the SFM processing of UAV sequence
images is image feature matching and bundle adjustment. To recover more details
during SFM 3D reconstruction, an exhaustive strategy is adopted and global
matching occurs during the calculation of the constrained relationships of the
sequence images. The time complexity can be obtained as O (n?), where O is the
number of images. Shum H and other analyses indicated that the time complexity
in the process of bundle adjustment reached O (n*). The effective matching
relationship of the image and the removal of redundant matching calculations are
the primary objectives of efficient 3D reconstruction of UAV sequence images.

Snavely and other authors [11] have used a skeleton extraction strategy
based on a feature to reconstruct groups of images to improve processing
efficiency, which effectively improves the efficiency of reconstruction; however,
the picture features were not fully considered. Jared Heinly and other authors [12]
proposed a reconstruction computing framework for SFM based on streams. The
algorithm was suitable for large-scale 3D reconstruction of internet images, but it
failed to also take image features into account. Farenzena M and other authors
[13] created an image of a tree by measuring the overlapping distances and
following the order of leaves to roots during reconstruction. This method
decomposed the whole reconstruction problem into smaller instances, solved them
separately and combined them. The method has lower computational complexity,
but there was redundancy in the distance matching of small scenes. AliAkbarpour
and the other authors [14] used the shooting time constraints to reduce the image
matching complexity and used the continuous frame strategy to match image
features, which significantly improved the matching efficiency. KunSun and other
authors [15] proposed centrally driven image set partitioning and clustered images
by calculating the overlap degree of images and introduced image relationships
into a three-dimensional reconstruction, which improved the efficiency of the
three-dimensional reconstruction but did not consider other features of the images.
Xu Zhihua and other authors [16] proposed a reconstruction method for the
topological relationships of images based on GPS information, limited the image
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matching to topological relationships of the images during the process of 3D
reconstruction, which reduced the matching time; the situation of the same camera
position but a completely different shooting angle was not considered. Song
Zhengxi and other authors [17] divided images into blocks and constructed an
image kd tree by extracting the SIFT features and then matched the images.
However, the initial image clustering still uses SIFT features, and the clustering
efficiency was not very high.

To solve the above problems, this paper proposed a reconstruction
matching strategy that combines POS information and the color texture
information of UAV images. The pre-reconstruction images were clustered
according to the characteristics of the UAV image to avoid the exhaustive
matching process of global match reconstruction algorithms. The results showed
that the proposed method can significantly improve the efficiency of three-
dimensional reconstruction of oblique photographic images, and the
reconstruction details of trees and other objects had better accuracy.

2. Clustering Algorithms based on UAV Sequence Images

The sequence images taken by the UAV had position information that was
accurate to 10 meters and attitude information that was accurate to 5 degrees. At
the same time, its course overlap and side overlap were relatively high. Because
of the above characteristics, the image clustering in this study considered both the
pose/attitude information and its characteristics, and the steps were mainly
divided into GPS/IMU feature extraction, color and texture feature extraction,
eigenvector generation and clustering.

2.1. Image features

(1) Position and attitude characteristic components. The UAV's airborne
GPS/IMU system recorded the UAV's spatial information and attitude information
when images were formed at the time of exposure and written into the EXIF file.
The output pose information from the airborne GPS/IMU system was as follows:
C =[RIt], whereR is a 3-order rotation matrix, and { is a three-dimensional
space vector containing the position and attitude information of the camera. The
position and attitude information obtained by the UAV flight control system
includes the yaw angle, roll angle and pitch angle (2.6.,¥)of the IMU body
coordinate system relative to the navigation coordinate system. The outer azimuth
element (w,o,x)of the image space coordinate system in the ground
measurement coordinate system can be determined by a coordinate
transformation. The image position and attitude vector components were
composed of the converted IMU information, and the UAV position coordinate
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vectors in the coordinate system of earth-centered earth-fixed can be expressed as
G =[x.y.z].

(2) Color feature components. Color is the global image feature that can
provide the most intuitive information during the process of image classification.
This study used color information as an image feature component because of the
abundant color information provided by unmanned aerial vehicle (UAV) images.
There are many expressions of color. We calculated the color invariants along
with the features of illumination and rotation invariants based on the Kubelka-
Munk theory and used the color invariants to measure the color similarity
component.

According to the Kubelka-Munk theory, the model of spectral radiation
characteristics of objects in the opaque state is as follows [18]:

ECA,0=e(4, )[1- o, IR, (1,%) +e(4,X)p; (X) (1)
where A is the wavelength of the light, X is the position of the imaging
plane, e(4,X)is the intensity of the spectrum, p£;(X)is Fresnel's reflection

coefficient under X, R_(4,X)is the reflectivity of the materials, and E(2,%is the
reflection spectra at the observation sites. Normally, e(4,X) is relevant to the
position only. e(4,X)was rewritten as i(X), which changed (1) into the
following:
ECLRO=I(R{[L- p; QIR (4.8) + o, (%)} )
The color invariant K can be obtained by dividing the first derivative and
the second derivative of A from the above formula as follows:
E OE /04 OR, (A4,0/104 _ -
E; “FEion R Ao R4 ®)
The K value was only related to the object reflectivity from formula (3).
We used the linear transformation and Gauss color model to obtain the conversion
relationship of (E,E,I,EM) and the RGB components, following the CIE-1964-

XYZ standard and human visual characteristics as follows:
E 0.06 063 0.27 R
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The steps of constructing a color descriptor were as follows: first, the
image was segmented into 4x4 areas according to the size of the image, after
which the color invariant K standard deviation of the feature points distributed in
4x4 regions was counted, and finally, a 16-dimensional color descriptor was

formed as follows: C=[C,C,,..C,...Cs]. Cq was constructed in the
corresponding region g with m > N pixels, and Cq can be defined as follows:
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c, =Jiii(m ) ) 5)

MXxNig =3
where K(i, j) is the color invariants of line i and column j in region g and £z is the

mean value of color invariants in region q.

(3) Texture feature description vectors. Texture is essential information for
describing image features. The gray-level cooccurrence matrix (GLCM) is a very
effective method for describing image texture features, as shown by relevant
research. The GLCM is a second-order statistical feature that can describe image
texture, and it represents image texture through joint probability density functions
between different locations. It can reflect the overall distribution characteristics of
the same brightness and the location distribution characteristics of areas with
similar brightness values simultaneously. If a two-dimensional digital image with
the gray level Ng and size MxN is expressed by f(X,Yy), then the image GLCM
can be represented as follows:

6(i, ) = —
> > FG ) ©
i=0 j=0
where F (i, J) is the points logarithm of f(x,y), which satisfies the
{0, Y1), 0, ¥,) € MxNTE (%, y,)=1, f(%,,Y,) = ]} condition in image f(x.y). Further,
G is the N,-order square matrix. The distance between two points (X, Y;) and

(X,,Y,) is d, and the angle of the line between the two points and the coordinate

axis is 6. The components of the GLCM can be calculated from d and & as
follows: G(i, j,d,0).

Various features describing image texture can be obtained according to the
GLCM components, and fourteen image texture features can be defined based on
the GLCM. In this paper, eight texture features and the texture similarity between
images were selected for calculation, including the correlation (COR), entropy
(ENT), moment of inertia (CON), heterogeneity (DIS), angular second moment
(ASM), inverse difference moment (HOM), average value (u) and standard
deviation (o).

The image collected by the UAV was first sampled eight times when
calculating the GLCM because of the large number of calculations.

d =1,6’{0°,45°,90°,135°} and the GLCM in four directions was calculated, and

then 32-dimensional vectors that described the image texture features were
obtained by calculating eight texture feature values in four directions.

(4) Fusion feature description vector. To eliminate the dimension influence
between features and facilitate the comparison and matching work of the fusion
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feature descriptors in the later stage of fusion work, it was necessary to
standardize the eigenvalues of the three described subcomponents because of the
different dimensions in the GPS/IMU feature, color feature and texture feature. In
this paper, the L2 norm method was used to standardize the three sets of feature
data above. The L2 norm of the vector X(X,X,.....X,) was defined as follows:

norm(x):\/xf+x§+...+x§ ©)

where 1 was chosen as the upper limit to standardize the data and the mapping X
of x can be established according to the following formula:

Jﬁ+@+m+ﬁ

1=norm(x (8
( ) norm(x)
The following conclusion can be drawn:
, X,
X, = [ N
" norm(x) ©)

2.2. p-Stable Locally Sensitive Image Hash Clustering Algorithm

The high-dimensional vector had good performance in the locality-
sensitive hashing (LSH) [19]. Different hash effects can be produced by different
hash function clusters according to the characteristics of LSH [20].

If under the condition p =0, n random variables X, X,,.....X, in D are

compared to n real numbers a,,d,,...,a,, then the following is true:

PoaX) = PGS fal X) (10)

Then, D can be defined as a p-stable distribution.

P-stable distributions can calculate the Euclidean distance between vectors
directly and reduce the high-dimensional features dimension at the same time
according to their natures. Specifically, the random function of the p-stable
distribution was used to generate an independent random vector a. For the 54-

dimensional image fusion feature vector v, @/ X/ can be used to estimate|[v]|".

The function cluster of LSH under the p-stable distribution was defined as
follows:

ha,b (V) = L

where a is a d-dimensional vector generated by a random function that satisfies
the requirements of a p-stable distribution. Letter b is a random real number with
a range of [0,w]. Specifically, the fused eigenvector v was mapped to vector a; at

a~v+bJ (11)
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the same time, b was used to correct the deviation caused by the mapping process,
then quantitative disposal was conducted with interval w. In this way, similar
vectors can be mapped to the same intervals.

c=lv, =V, [, f,(t) was set as the absolute value of the p-stable

distribution probability density function of two arbitrary vectors vi and vz in the
dataset, so |a/V, —av, |<w was the mapping of eigenvectors v; and v; to a, that is,
[(v, v, )al<w; further, the following was obtained:

| Vi—V, ”p X=X [<w (12)

The collision probability between v; and v, obtained by formula (11) was
as follows:

5.0~ p.(008) =) = [ 21, [ 1L 13

From formula (13), the probability decrease with the increase in c in the
case of w was unchanged. A set of dimension-reduced hash values can be
obtained by sequence image fusion features through the LSH algorithm p-stable

distribution, which enters h,h,,...,h, into the hash table.

2.3. Algorithmic Flow

The motion recovery structural algorithm based on the fused features in
this paper includes four steps: feature generation, image clustering, feature
matching, and motion recovery structure. The structure of motion recovery was
the same as that of the SFM algorithm. The flow chart of the fusion feature
matching algorithm for the UAV sequence images was as follows:

Step 1. The GPS/IMU values were extracted from the aerial sequence
images, and the six-dimensional positions and pose feature components were
obtained.

Step 2. The 16-dimensional color feature component of the color invariant
component was extracted from the image in 4x4 blocks through 8-fold down
sampling and 4-dimensional 32-dimensional texture feature descriptor extraction.
The 54-dimensional fusion feature vectors of UAV sequence images were
obtained by standardized data processing and combined.

Step 3. To construct the L functions, an independently randomly selected
hash function in the LSH function cluster of the p-stable distribution from
Formula (11) was used.

Step 4. The 54-dimensional feature vectors of the UAV image sequence
were mapped by the LSH function. The high-similarity images were mapped into
a hash bucket.
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Step 5. The Euclidean distances of the vectors in the hash bucket were
calculated one by one. The distance calculation results were arranged, and the first
k images were taken to form the set of images to be matched.

Step 6. The matching relationship between the query image and the image
set to be matched was calculated based on the hash value. The matching
relationships were recorded and the process of the reconstruction matching
operation was substituted.

According to the algorithm, there were k images matching each image, but
the number of images to be matched was less than k. In this case, it was
considered that all images matched the current image.

3. Experimental Results and Discussion

The experimental image data of the two scenes, the sole tree species
nursery area and the complex woodland with water in the core area were obtained
(the SFM algorithm is more likely to lose details in the process of water surface
reconstruction), and the DJI Mavic Air UAV was used to test and verify the
effectiveness of the algorithm proposed in this paper. Experimental site 1 included
farmland, low trees, and roads. The altitude was set at 25 meters, and images
within the core area of 50x50 m? of low trees were taken in five directions. The
image size was 4056 pixelsx3040 pixels, the pixel size was 1.5 um, and the total
number of scene images was 870. Experimental site 2 includes landscape trees,
shrubs and water surfaces. The altitude was set at 80 meters, and images were
taken in five directions within the core 500x500 m? area of low trees. The total
number of images for the site was 582. Experimental site 3 was from an open
dataset (rising valley NIR) provided by OpenDroneMap and was selected to test
the algorithm. The UAV had a flight height of 430 m, including trees, low
vegetation and buildings. There were 566 images in the dataset, and each image
was 4048 pixels x 3048 pixels. The experimental environment was as follows:
Linux 16.04 64-bit operating system with an Intel i9-9900K Processor and 64G of
memory. The degree of frontlap and sidelap of the two flights was 80%.

The image matching module of the SFM reconstruction framework was
replaced with the algorithm presented in this paper. The CMVS/PMVS module
was used for dense point cloud reconstruction, and the two groups of experimental
data above were used for three-dimensional reconstruction. This paper compared
the global match SFM algorithms Bundler [21] and VSFM [22] and analyzed the
reconstruction efficiency and reconstruction effect. Table 1 shows the POS
information of some of the experimental data.
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Table 1
Partial POS information in experimental data
Pitch Rolling Navigation
PhotolD X Y

angle angle angle
0072 33.44956207 119.02542877 80.5 45.09776 0.50770 0.50595
0073 33.44957352 119.02534485 80.5 45.09924 0.29517 0.29414
0074 33.44958496 119.02520752 80.6 45.09956 0.22428 0.22350
0075 33.44960403 119.02503204 80.6 44.99924 0.29497 0.29454
0076 33.44962692 119.02483368 80.5 45.09924 0.29489 0.29394

3.1. Matching Times

The image matching strategy is exhaustive under the global match SFM
framework. Specifically, C?=nx(n-1)/2. The image of this algorithm is

matched with a fixed number of datasets. For N =< n, the size of the combined
test area and the quantity of images in this experiment, set k was 30 in site 1, and k
was 25 in site 2. The matching times of the three sites are shown in Fig. 1.
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Fig. 1. Matching times of the three sites
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The reconstruction times of this method and other methods in different
stages are shown in Table 2. The image of site 1 contains more details because of
the lower flight altitude and because more pictures were taken. The feature
extraction, matching, and reconstruction were more time-consuming than those of
site 2. The time wastage was basically the same in the link of feature extraction
because the SIFT feature extraction method was adopted in all cases. The time
consumption was high during feature matching after the feature points were
extracted because the exhaustive method was used with the traditional global
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match SFM algorithm. The efficiency of this algorithm in feature matching was
much higher than that of the global match algorithm. The total time consumed
was proportional to the number of images. The matching times for site 1 and site 2
were more than 5 times less than that of the global match algorithm. The
efficiency of three-dimensional reconstruction was increased by approximately
three times. At the same time, the implementation of the algorithm without hash
mapping was verified. The image was directly subjected to Euclidean distance
clustering through the fusion feature vector, and the k value was unchanged. It can
be seen that when there was no hash map to index, the feature matching time
increased considerably because the Euclidean distance between two images had to
be calculated.

Table 2
Time of different stages of reconstruction using ours method and other methods
(Unit: min)
Algorithm sitel site2 site3
time
consuming Bundler VSFM Ours Bundler VSFM Ours Bundler VSFM Ours
Feature 456 405 406 304 301 304 324 322 322
extraction
Feare 4708 1584 243 1142 986 168 1266 1215 176
matching
Non-LSH - 70.5 50.6 52.3

Reconstruction  30.3 286 225 177 147 126 19.2 159 146
Total time ~ 246.7 2275 874 1623 1434 598 1782 169.6 64.4

Five hundred images were matching time-consuming curves separately in
site 1. Based on the algorithms in this paper and testing a single image with the
global match algorithms, the curve is shown in Fig. 2. The total matching time of
a single image in the global match algorithms increased with the number of
images, as shown in Fig. 2. This is because in the exhaustive method, a single
image needs to be matched with all other images, and the different number of
features in the image to be matched increases the matching time, leading to a
larger change in the curve. The matching time of this algorithm does not increase
with the number of images because the number of matches remains unchanged.
However, the matching time changes slightly due to the different numbers of
image databases and image features.
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Fig. 2. Matching time of single image

The 102 image of site 3 and its 24 matching pairs were output as shown in
Fig. 3.

Fig. 3. Pair of matched images

3.3. Effect of the Dense Point Cloud Reconstruction

On the basis of the reconstruction completed in the last step and the
obtained sparse point clouds and the dense point clouds from the two scenarios
generated by CMVS/PMVS, the number of point clouds obtained is shown in Fig.
4. The proposed algorithm was slightly reduced compared with those of the
Bundler and VSFM judging from the number of point clouds. Site 1 was reduced
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by approximately 2.5%, site 2 was reduced by approximately 2.8%, and site 3 was
reduced by approximately 2.3%.
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Fig. 4. Number of dense point clouds in three sites

All three algorithms completed the 3D reconstruction of the target area by
combining the method in this paper with the other two global matching SFM
methods from the final result of the dense point clouds. The reconstructions are
shown in Figs. 5-7. Site 1 contained water bodies; as a result, the three algorithms
did not effectively recreate the water, which is also a common problem with the
SFM algorithm. The point cloud details in the oblique photographic boundary
region were not as good as those of the two global match algorithms compared
with the algorithm proposed in this paper.

(b)
Fig. 5. Site 1 Dense Point Cloud. (a) A typical picture of Site 1; (b) Site 1 dense point cloud under
Bundler
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(d)
Fig. 5. Site 1 Dense Point Cloud. (c) Site 1 dense point cloud under VSFM; (d) Site 1 dense point
cloud under Ours method

Fig. 6. Site 2 Dense Point Cloud. (a) Site 2 typical pictures; (b) Site 2 dense point cloud in
Bundler; (c) Site 2 dense point cloud in VSFM; (d) Site 2 dense point clouds under Ours method
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Fig. 7. Site 3 Dense Point Cloud. (a) A typical picture of Site3; (b) Site3 dense point cloud under
Bundler; (c) Site 3 dense point cloud under VSFM; (d) Site3 dense point cloud under Ours method

One of the reasons was that the peripheral area imaged through tilt
photography had fewer matching features due to the single photographic angle,
and another reason was the failure of the partial image association in the boundary
region due to the dramatic IMU information changes induced by the sudden turns
of the UAV.

The ability of the algorithm to reconstruct the detailed of the core area
detail through slope photography was comparable to that of the two global match
algorithms.

3.4. Accuracy of the Dense Point Cloud Reconstruction

Ten trees in the center of the tilted photographic area under site 1 and site
2 were selected, and manual measurement data of the tree crown width and height
were compared with the point cloud data to verify the accuracy of the
reconstructed dense point cloud. The point cloud size was obtained by calculating
the minimum bounding rectangle after manual segmentation of the individual
trees. The crown size was half of the sum of the length and width of the outer
rectangle, and the tree height was the height of the outer rectangle, the point cloud
of single tree and external rectangle are shown in Fig. 8.
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101
Fig. 8. Segmented individual tree point clouds and circumscribed rectangle diagram of the point
cloud

The measured crown amplitude data and point cloud crown amplitude data
were obtained as shown in Table 3:

Table 3
Measured crown amplitude data measured and point cloud crown amplitude data
(Uint: m)
Point cloud data
based on ours
method
Crown Tree Crown Tree Crown  Tree Crown  Tree
width height  width height ~ width  height width  height

Bundler point cloud VSFM point cloud

M r
easured data data data

1 0.74 1.98 0.66 2.12 0.94 1.72 0.63 2.27
2 0.62 1.67 0.54 1.45 0.71 1.86 0.72 191
3 0.87 2.09 0.92 1.78 0.74 1.81 0.91 1.78
4 0.93 2.21 1.02 242 0.81 2.46 0.80 1.95
Site 1 5 0.58 1.53 0.50 1.45 0.5 1.44 0.50 1.71
6 0.63 1.87 0.54 1.67 0.55 1.65 0.72 2.14
7 0.57 1.74 0.64 1.59 0.58 2.00 0.51 151
8 0.86 2.02 0.92 2.3 0.95 2.02 0.74 1.97
9 0.89 1.96 0.76 1.85 1.01 211 0.99 2.25
10 0.61 1.24 0.52 1.14 0.52 1.09 0.53 11
11 3.52 8.76 3.21 9.46 3.81 7.81 3.14 9.27
12 4.69 11.54 481 10.78 3.99 12.51 3.99 12.57
13 4.01 10.12 4.22 9.21 3.62 9.17 4.29 9.15
14 3.21 9.15 291 8.46 3.48 9.43 2.84 9.40
Site 2 15 4.12 10.15 431 10.47 3.51 9.09 3.53 9.10
16 4.53 11.25 4.03 10.23 4.79 10.28 4.78 10.19
17 3.56 8.36 3.14 7.78 3.79 8.66 3.03 8.57
18 3.74 7.41 3.95 7.88 3.28 7.99 3.29 6.49
19 3.11 6.66 3.32 6.01 2.82 6.05 2.65 7.06

N
o

3.95 9.64 3.59 10.38 3.56 10.15 3.98 8.97
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The absolute error of the 3D reconstructed point cloud can be obtained
from the measured data and point cloud data, as shown in Fig. 9. The accuracy
analysis of the point cloud data is shown in Fig. 10.

= Crown width Error of Bundler algorithm  Tree height Error of Bundler algorithm
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Fig. 9. Absolute Error of the crown width and tree height data from the point cloud
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Fig. 10. Accuracy analysis of the crown width and tree height data from the measured data and the
data extracted from the point cloud. (a) Crown width accuracy of Bundler point cloud; (b) Crown
width accuracy of VSFM point cloud; (c) Crown width accuracy of Ours point cloud;
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As shown in Fig. 9, the absolute error of the point cloud data obtained by
this algorithm was smaller than that of the two global match algorithms, whether
from the crown size data or tree height data, the crown width maximum error rate
of the Bundler algorithm was 14.75%, with an RMSE of 0.2232, and the tree
height maximum error rate was 14.83%, with an RMSE of 0.5206. The crown
width maximum error rate of the VSFM algorithm was 14.94%, with an RMSE of
0.3027, and the tree height maximum error rate was 14.94%, with an RMSE of
0.564. The crown width maximum error rate of the algorithm described in this
paper was 14.93%, with an RMSE of 0.32, and the tree height maximum error rate
was 14.83%, with an RMSE of 0.5753. The error ranges of the three algorithms
were consistent, and the results showed that this algorithm can guarantee the
accuracy of the point cloud by improving matching efficiency. The RMSE of this
algorithm was slightly larger than those of the two global matching algorithms
because the details of the point clouds on the tree contours were lost, which was
caused by the reduction in the number of matched images. Furthermore, the
correlation between the algorithm described in this paper, the two global matching
algorithms and the measured data was good, as shown in Figure 10, and the R?
value was above 0.96. The accuracy of the point cloud data obtained by this
algorithm can meet the needs of large-scale forestry investigations, but the data
error data of the three algorithms in site 1 under low trees were larger than those
in site 2. This also conformed to the technical characteristics of the SFM
algorithm. The flight altitude, tree height and canopy density affected the
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acquisition of forest point cloud data by the low-altitude tilt photography of the
UAVs.

6. Conclusions

Aiming at the low efficiency of so many inclined image data 3D
reconstructions in forestry surveys, an image clustering algorithm combined with
UAYV image features and pose features was proposed in this paper. This algorithm
can realize image similarity clustering before matching, utilize GPS/IMU
information and image color texture information of UAVSs, and avoid exhaustive
clustering with global match algorithms. For the forestry survey, two scenes of
single tree species nursery areas and complex woodlands with water areas were
selected to collect the tilt image data, and the effect, matching time and number of
dense point clouds were compared between the two scenarios. The efficiency of
the three-dimensional reconstruction proposed in this paper was approximately
three times higher than that of the global match algorithm. Furthermore, the
comparison of the manual measurement data of the tree crown width and height
with the data from point clouds showed that the accuracy of the point cloud data
obtained by this algorithm can meet the needs of large-scale forestry
investigations.

Although the algorithm in this paper showed considerable improvement in
improving matching efficiency compared with the global match algorithms, there
is still room for improvement in fusion feature generation and matching number
selection for different sites. Subsequent research will focus on the similarities
among the tilted images and the topological relationship between images to
further improve the performance of the algorithm, constrain the image to be
matched by various means, ensure the accuracy of the generated point cloud and
simultaneously improve the algorithm performance.
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