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RESEARCH ON CLUSTERING MATCHING STRATEGY OF 

3D RECONSTRUCTION BASED ON IMAGE FUSION 

FEATURES 

Tiebo SUN 1,2, Jinhao LIU 1,*, Jiangming KAN 1, Tingting SUI 1, Jiang LI 1, 

Miaoxin JI 1 

In an attempt to remedy the low efficiency of many 3D reconstructions of 

high-resolution sequence images from UAV tilt photography for forestry surveys, 

based on the existing motion recovery structure algorithm, a reconstruction 

algorithm using UAV image fusion features is proposed in this paper. First, the 

GPS/IMU information of the UAV image was extracted. Second, the UAV image was 

downsampled and blocked, and the color invariant standard deviation of each image 

block was calculated simultaneously. Then, the texture features, such as the angular 

second moments of the downsampled images, were calculated based on GLCM 

theory by using the above feature components. The L2 norm was normalized, and 

then the image description vector was constructed. In addition, the p-stable 

distribution LSH algorithm was used to cluster the matched images and the 

clustering results were used to perform image matching. The method described in 

this paper can effectively reduce the image matching range in the reconstruction 

process and improve reconstruction efficiency. The experimental results showed that 

the algorithm mentioned in this paper improved the reconstruction efficiency by 

approximately three times, and the number of dense point clouds was only 3% lower 

than that of the global match reconstruction algorithms. The target details, such as 

the trees in the core area of the slope photographs, were well restored. The 

accuracy of the point cloud data obtained by this algorithm was more than 85% in 

comparison with the measured data, with a crown width R2 of 0.972, and a tree 

height R2 of 0.979. The method provided in this paper can meet the 3D 

reconstruction requirements of forestry surveys and has the ability to guaranteeing 

accuracy. 

Keywords: forestry survey, unmanned aerial vehicle, three-dimensional 

reconstruction, fusion feature, image matching, image clustering1 

1. Introduction 

A vital index reflecting the main forest characteristics is the biomass of 

forest ground vegetation. There is a positive correlation between plant biomass 

and height [1]. Image-based 3D reconstruction technology has advanced rapidly 
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due to the continuous progress and improvement of feature point detection, 

matching algorithms [2,3], self-calibration algorithms [4-6], structure from motion 

[7,8], and multiview stereopsis [9,10]. It has been widely used in forestry resource 

investigations, stand studies, and 3D reconstruction of standing trees. UAVs have 

the advantages of flexible views and quick sampling because they fly at low 

altitudes. A large number of uncalibrated image sequences with a continuous view 

of the same scene can be obtained by using a UAV. At the same time, the three-

dimensional information of the scene can be obtained by combining it with SFM 

technology. A new solution to increase the speed of 3D reconstruction of UAV 

sequence images is urgently needed because of the high resolution and overlap of 

UAV images and the low efficiency of SFM processing. 

The most time-consuming step of the SFM processing of UAV sequence 

images is image feature matching and bundle adjustment. To recover more details 

during SFM 3D reconstruction, an exhaustive strategy is adopted and global 

matching occurs during the calculation of the constrained relationships of the 

sequence images. The time complexity can be obtained as O (n2), where O is the 

number of images. Shum H and other analyses indicated that the time complexity 

in the process of bundle adjustment reached O (n4). The effective matching 

relationship of the image and the removal of redundant matching calculations are 

the primary objectives of efficient 3D reconstruction of UAV sequence images. 

Snavely and other authors [11] have used a skeleton extraction strategy 

based on a feature to reconstruct groups of images to improve processing 

efficiency, which effectively improves the efficiency of reconstruction; however, 

the picture features were not fully considered. Jared Heinly and other authors [12] 

proposed a reconstruction computing framework for SFM based on streams. The 

algorithm was suitable for large-scale 3D reconstruction of internet images, but it 

failed to also take image features into account. Farenzena M and other authors 

[13] created an image of a tree by measuring the overlapping distances and 

following the order of leaves to roots during reconstruction. This method 

decomposed the whole reconstruction problem into smaller instances, solved them 

separately and combined them. The method has lower computational complexity, 

but there was redundancy in the distance matching of small scenes. AliAkbarpour 

and the other authors [14] used the shooting time constraints to reduce the image 

matching complexity and used the continuous frame strategy to match image 

features, which significantly improved the matching efficiency. KunSun and other 

authors [15] proposed centrally driven image set partitioning and clustered images 

by calculating the overlap degree of images and introduced image relationships 

into a three-dimensional reconstruction, which improved the efficiency of the 

three-dimensional reconstruction but did not consider other features of the images. 

Xu Zhihua and other authors [16] proposed a reconstruction method for the 

topological relationships of images based on GPS information, limited the image 
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matching to topological relationships of the images during the process of 3D 

reconstruction, which reduced the matching time; the situation of the same camera 

position but a completely different shooting angle was not considered. Song 

Zhengxi and other authors [17] divided images into blocks and constructed an 

image kd tree by extracting the SIFT features and then matched the images. 

However, the initial image clustering still uses SIFT features, and the clustering 

efficiency was not very high. 

To solve the above problems, this paper proposed a reconstruction 

matching strategy that combines POS information and the color texture 

information of UAV images. The pre-reconstruction images were clustered 

according to the characteristics of the UAV image to avoid the exhaustive 

matching process of global match reconstruction algorithms. The results showed 

that the proposed method can significantly improve the efficiency of three-

dimensional reconstruction of oblique photographic images, and the 

reconstruction details of trees and other objects had better accuracy. 

2. Clustering Algorithms based on UAV Sequence Images 

The sequence images taken by the UAV had position information that was 

accurate to 10 meters and attitude information that was accurate to 5 degrees. At 

the same time, its course overlap and side overlap were relatively high. Because 

of the above characteristics, the image clustering in this study considered both the 

pose/attitude information and its characteristics, and the steps were mainly 

divided into GPS/IMU feature extraction, color and texture feature extraction, 

eigenvector generation and clustering. 

2.1. Image features 

(1) Position and attitude characteristic components. The UAV's airborne 

GPS/IMU system recorded the UAV's spatial information and attitude information 

when images were formed at the time of exposure and written into the EXIF file. 

The output pose information from the airborne GPS/IMU system was as follows: 

 |i i iC R t= , where iR  is a 3-order rotation matrix, and it  is a three-dimensional 

space vector containing the position and attitude information of the camera. The 

position and attitude information obtained by the UAV flight control system 

includes the yaw angle, roll angle and pitch angle ( , , )   of the IMU body 

coordinate system relative to the navigation coordinate system. The outer azimuth 

element ( , , )   of the image space coordinate system in the ground 

measurement coordinate system can be determined by a coordinate 

transformation. The image position and attitude vector components were 

composed of the converted IMU information, and the UAV position coordinate 
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vectors in the coordinate system of earth-centered earth-fixed can be expressed as 
[ , , ]r r r rG x y z= . 

(2) Color feature components. Color is the global image feature that can 

provide the most intuitive information during the process of image classification. 

This study used color information as an image feature component because of the 

abundant color information provided by unmanned aerial vehicle (UAV) images. 

There are many expressions of color. We calculated the color invariants along 

with the features of illumination and rotation invariants based on the Kubelka-

Munk theory and used the color invariants to measure the color similarity 

component. 

According to the Kubelka-Munk theory, the model of spectral radiation 

characteristics of objects in the opaque state is as follows [18]: 
2, = ( , )[1 ( )] ( , ) ( , ) ( )f fE x e x x R x e x x     − +（ ）                        (1) 

where is the wavelength of the light, x is the position of the imaging 

plane, ( , )e x is the intensity of the spectrum, ( )f x is Fresnel's reflection 

coefficient under x , ( , )R x is the reflectivity of the materials, and ,E x（ ）is the 

reflection spectra at the observation sites. Normally, ( , )e x  is relevant to the 

position only. ( , )e x was rewritten as ( )i x , which changed (1) into the 

following: 
2, = ( ){[1 ( )] ( , ) ( )}f fE x i x x R x x   − +（ ）                              (2) 

The color invariant K can be obtained by dividing the first derivative and 

the second derivative of   from the above formula as follows: 
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The K value was only related to the object reflectivity from formula (3). 

We used the linear transformation and Gauss color model to obtain the conversion 

relationship of ( ), ,E E E   and the RGB components, following the CIE-1964-

XYZ standard and human visual characteristics as follows: 
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The steps of constructing a color descriptor were as follows: first, the 

image was segmented into 4×4 areas according to the size of the image, after 

which the color invariant K standard deviation of the feature points distributed in 

4×4 regions was counted, and finally, a 16-dimensional color descriptor was 

formed as follows: 1 2 16[ , ,... ,..., ]iC C C C C= . Cq was constructed in the 

corresponding region q with m n pixels, and Cq can be defined as follows: 
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where ( , )K i j is the color invariants of line i and column j in region q and is the 

mean value of color invariants in region q. 

(3) Texture feature description vectors. Texture is essential information for 

describing image features. The gray-level cooccurrence matrix (GLCM) is a very 

effective method for describing image texture features, as shown by relevant 

research. The GLCM is a second-order statistical feature that can describe image 

texture, and it represents image texture through joint probability density functions 

between different locations. It can reflect the overall distribution characteristics of 

the same brightness and the location distribution characteristics of areas with 

similar brightness values simultaneously. If a two-dimensional digital image with 

the gray level Ng and size M×N is expressed by ( , )f x y , then the image GLCM 

can be represented as follows: 

0 0
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F( , )
g gN N

i j

i j
G i j

i j
= =
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                                                (6) 

where ( , )F i j  is the points logarithm of ( , )f x y , which satisfies the 

1 1 2 2 1 1 2 2{( , ),( , ) | ( , )= , ( , ) }x y x y M N f x y i f x y j  =  condition in image ( , )f x y . Further, 

G is the gN -order square matrix. The distance between two points 1 1( , )x y  and 

2 2( , )x y  is d, and the angle of the line between the two points and the coordinate 

axis is θ. The components of the GLCM can be calculated from d and θ as 

follows: ( , , , )G i j d  . 

Various features describing image texture can be obtained according to the 

GLCM components, and fourteen image texture features can be defined based on 

the GLCM. In this paper, eight texture features and the texture similarity between 

images were selected for calculation, including the correlation (COR), entropy 

(ENT), moment of inertia (CON), heterogeneity (DIS), angular second moment 

(ASM), inverse difference moment (HOM), average value (u) and standard 

deviation ( ). 

The image collected by the UAV was first sampled eight times when 

calculating the GLCM because of the large number of calculations.

 1, 0 ,45 ,90 ,135o o o od =  and the GLCM in four directions was calculated, and 

then 32-dimensional vectors that described the image texture features were 

obtained by calculating eight texture feature values in four directions. 

(4) Fusion feature description vector. To eliminate the dimension influence 

between features and facilitate the comparison and matching work of the fusion 
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feature descriptors in the later stage of fusion work, it was necessary to 

standardize the eigenvalues of the three described subcomponents because of the 

different dimensions in the GPS/IMU feature, color feature and texture feature. In 

this paper, the L2 norm method was used to standardize the three sets of feature 

data above. The L2 norm of the vector 1 2( , , , )nX X X X  was defined as follows: 

2 2 2

1 2( ) nnorm x x x x= + ++                                      (7) 

where 1 was chosen as the upper limit to standardize the data and the mapping x 

of x can be established according to the following formula: 

( )
2 2 2

1 2
1
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= =                                (8) 

The following conclusion can be drawn: 

( )

i
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 =                                               (9) 

2.2. p-Stable Locally Sensitive Image Hash Clustering Algorithm 

The high-dimensional vector had good performance in the locality-

sensitive hashing (LSH) [19]. Different hash effects can be produced by different 

hash function clusters according to the characteristics of LSH [20]. 

If under the condition 0p  , n random variables 1 2, , , nX X X  in D are 

compared to n real numbers 1 2, ,..., na a a , then the following is true: 

1
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                                 (10) 

Then, D can be defined as a p-stable distribution. 

P-stable distributions can calculate the Euclidean distance between vectors 

directly and reduce the high-dimensional features dimension at the same time 

according to their natures. Specifically, the random function of the p-stable 

distribution was used to generate an independent random vector a. For the 54-

dimensional image fusion feature vector v, a v can be used to estimate
p||v|| . 

The function cluster of LSH under the p-stable distribution was defined as 

follows: 

, ( )a b

a v b
h v

w

 + 
=   

                                         (11) 

where a is a d-dimensional vector generated by a random function that satisfies 

the requirements of a p-stable distribution. Letter b is a random real number with 

a range of [0, ]w . Specifically, the fused eigenvector v was mapped to vector a; at 
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the same time, b was used to correct the deviation caused by the mapping process, 

then quantitative disposal was conducted with interval w. In this way, similar 

vectors can be mapped to the same intervals. 

1 2|| || ( )p pc v v f t= −  was set as the absolute value of the p-stable 

distribution probability density function of two arbitrary vectors v1 and v2 in the 

dataset, so 1 2| |a v a v w−   was the mapping of eigenvectors v1 and v2 to a, that is, 

1 2| ( ) |v v a w−  ; further, the following was obtained: 

1 2|| || | |pv v X cX w− =                                         (12) 

The collision probability between v1 and v2 obtained by formula (11) was 

as follows: 

1 2
0

1
( ) ( ( ) ( )) 1

w

r r p

t t
p c p h v h v f dt

c c w

  
= = = −  

  
                     (13) 

From formula (13), the probability decrease with the increase in c in the 

case of w was unchanged. A set of dimension-reduced hash values can be 

obtained by sequence image fusion features through the LSH algorithm p-stable 

distribution, which enters 1 2, , , kh h h  into the hash table. 

2.3. Algorithmic Flow 

The motion recovery structural algorithm based on the fused features in 

this paper includes four steps: feature generation, image clustering, feature 

matching, and motion recovery structure. The structure of motion recovery was 

the same as that of the SFM algorithm. The flow chart of the fusion feature 

matching algorithm for the UAV sequence images was as follows: 

Step 1. The GPS/IMU values were extracted from the aerial sequence 

images, and the six-dimensional positions and pose feature components were 

obtained. 

Step 2. The 16-dimensional color feature component of the color invariant 

component was extracted from the image in 4×4 blocks through 8-fold down 

sampling and 4-dimensional 32-dimensional texture feature descriptor extraction. 

The 54-dimensional fusion feature vectors of UAV sequence images were 

obtained by standardized data processing and combined. 

Step 3. To construct the L functions, an independently randomly selected 

hash function in the LSH function cluster of the p-stable distribution from 

Formula (11) was used. 

Step 4. The 54-dimensional feature vectors of the UAV image sequence 

were mapped by the LSH function. The high-similarity images were mapped into 

a hash bucket. 

javascript:showjdsw('jd_t','j_')
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Step 5. The Euclidean distances of the vectors in the hash bucket were 

calculated one by one. The distance calculation results were arranged, and the first 

k images were taken to form the set of images to be matched. 

Step 6. The matching relationship between the query image and the image 

set to be matched was calculated based on the hash value. The matching 

relationships were recorded and the process of the reconstruction matching 

operation was substituted.  

According to the algorithm, there were k images matching each image, but 

the number of images to be matched was less than k. In this case, it was 

considered that all images matched the current image. 

3. Experimental Results and Discussion 

The experimental image data of the two scenes, the sole tree species 

nursery area and the complex woodland with water in the core area were obtained 

(the SFM algorithm is more likely to lose details in the process of water surface 

reconstruction), and the DJI Mavic Air UAV was used to test and verify the 

effectiveness of the algorithm proposed in this paper. Experimental site 1 included 

farmland, low trees, and roads. The altitude was set at 25 meters, and images 

within the core area of 50×50 m2 of low trees were taken in five directions. The 

image size was 4056 pixels×3040 pixels, the pixel size was 1.5 μm, and the total 

number of scene images was 870. Experimental site 2 includes landscape trees, 

shrubs and water surfaces. The altitude was set at 80 meters, and images were 

taken in five directions within the core 500×500 m2 area of low trees. The total 

number of images for the site was 582. Experimental site 3 was from an open 

dataset (rising valley NIR) provided by OpenDroneMap and was selected to test 

the algorithm. The UAV had a flight height of 430 m, including trees, low 

vegetation and buildings. There were 566 images in the dataset, and each image 

was 4048 pixels × 3048 pixels. The experimental environment was as follows: 

Linux 16.04 64-bit operating system with an Intel i9-9900K Processor and 64G of 

memory. The degree of frontlap and sidelap of the two flights was 80%. 

The image matching module of the SFM reconstruction framework was 

replaced with the algorithm presented in this paper. The CMVS/PMVS module 

was used for dense point cloud reconstruction, and the two groups of experimental 

data above were used for three-dimensional reconstruction. This paper compared 

the global match SFM algorithms Bundler [21] and VSFM [22] and analyzed the 

reconstruction efficiency and reconstruction effect. Table 1 shows the POS 

information of some of the experimental data. 
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Table 1 

Partial POS information in experimental data 

PhotoID X Y Z 
Pitch 

 angle 

Rolling 

 angle 

Navigation 

angle 

0072 33.44956207 119.02542877 80.5 45.09776 0.50770 0.50595 

0073 33.44957352 119.02534485 80.5 45.09924 0.29517 0.29414 

0074 33.44958496 119.02520752 80.6 45.09956 0.22428 0.22350 

0075 33.44960403 119.02503204 80.6 44.99924 0.29497 0.29454 

0076 33.44962692 119.02483368 80.5 45.09924 0.29489 0.29394 

3.1. Matching Times 

The image matching strategy is exhaustive under the global match SFM 

framework. Specifically, 
2 ( 1) / 2nC n n-=  . The image of this algorithm is 

matched with a fixed number of datasets. For N n , the size of the combined 

test area and the quantity of images in this experiment, set k was 30 in site 1, and k 

was 25 in site 2. The matching times of the three sites are shown in Fig. 1. 

 

 

Fig. 1. Matching times of the three sites 

3.2. Time of Reconstruction 

The reconstruction times of this method and other methods in different 

stages are shown in Table 2. The image of site 1 contains more details because of 

the lower flight altitude and because more pictures were taken. The feature 

extraction, matching, and reconstruction were more time-consuming than those of 

site 2. The time wastage was basically the same in the link of feature extraction 

because the SIFT feature extraction method was adopted in all cases. The time 

consumption was high during feature matching after the feature points were 

extracted because the exhaustive method was used with the traditional global 
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match SFM algorithm. The efficiency of this algorithm in feature matching was 

much higher than that of the global match algorithm. The total time consumed 

was proportional to the number of images. The matching times for site 1 and site 2 

were more than 5 times less than that of the global match algorithm. The 

efficiency of three-dimensional reconstruction was increased by approximately 

three times. At the same time, the implementation of the algorithm without hash 

mapping was verified. The image was directly subjected to Euclidean distance 

clustering through the fusion feature vector, and the k value was unchanged. It can 

be seen that when there was no hash map to index, the feature matching time 

increased considerably because the Euclidean distance between two images had to 

be calculated. 
 

Table 2 

Time of different stages of reconstruction using ours method and other methods 

(Unit: min) 

Algorithm 

time 

consuming 

site1 site2 site3 

Bundler VSFM Ours Bundler VSFM Ours Bundler VSFM Ours 

Feature 

extraction 
45.6 40.5 40.6 30.4 30.1 30.4 32.4 32.2 32.2 

Feature 

matching 
170.8 158.4 24.3 114.2 98.6 16.8 126.6 121.5 17.6 

Non-LSH - - 70.5 - - 50.6 - - 52.3 

Reconstruction 30.3 28.6 22.5 17.7 14.7 12.6 19.2 15.9 14.6 

Total time 246.7 227.5 87.4 162.3 143.4 59.8 178.2 169.6 64.4 

 

Five hundred images were matching time-consuming curves separately in 

site 1. Based on the algorithms in this paper and testing a single image with the 

global match algorithms, the curve is shown in Fig. 2. The total matching time of 

a single image in the global match algorithms increased with the number of 

images, as shown in Fig. 2. This is because in the exhaustive method, a single 

image needs to be matched with all other images, and the different number of 

features in the image to be matched increases the matching time, leading to a 

larger change in the curve. The matching time of this algorithm does not increase 

with the number of images because the number of matches remains unchanged. 

However, the matching time changes slightly due to the different numbers of 

image databases and image features. 
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Fig. 2. Matching time of single image 

 

The 102 image of site 3 and its 24 matching pairs were output as shown in 
Fig. 3. 

 

 
Fig. 3. Pair of matched images 

3.3. Effect of the Dense Point Cloud Reconstruction 

On the basis of the reconstruction completed in the last step and the 

obtained sparse point clouds and the dense point clouds from the two scenarios 

generated by CMVS/PMVS, the number of point clouds obtained is shown in Fig. 

4. The proposed algorithm was slightly reduced compared with those of the 

Bundler and VSFM judging from the number of point clouds. Site 1 was reduced 
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by approximately 2.5%, site 2 was reduced by approximately 2.8%, and site 3 was 

reduced by approximately 2.3%. 

 

Fig. 4. Number of dense point clouds in three sites  

 

All three algorithms completed the 3D reconstruction of the target area by 

combining the method in this paper with the other two global matching SFM 

methods from the final result of the dense point clouds. The reconstructions are 

shown in Figs. 5-7. Site 1 contained water bodies; as a result, the three algorithms 

did not effectively recreate the water, which is also a common problem with the 

SFM algorithm. The point cloud details in the oblique photographic boundary 

region were not as good as those of the two global match algorithms compared 

with the algorithm proposed in this paper.  

       
(a)                                                                          (b) 

Fig. 5. Site 1 Dense Point Cloud. (a) A typical picture of Site 1; (b) Site 1 dense point cloud under 

Bundler 
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(c)                                                                 (d) 

Fig. 5. Site 1 Dense Point Cloud. (c) Site 1 dense point cloud under VSFM; (d) Site 1 dense point 

cloud under Ours method 

 

       
(a)                                                                      (b) 

 

     
(c)                                                                       (d) 

 

Fig. 6. Site 2 Dense Point Cloud. (a) Site 2 typical pictures; (b) Site 2 dense point cloud in 

Bundler; (c) Site 2 dense point cloud in VSFM; (d) Site 2 dense point clouds under Ours method 
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(a)                                                                       (b) 

    
(c)                                                                     (d) 

Fig. 7. Site 3 Dense Point Cloud. (a) A typical picture of Site3; (b) Site3 dense point cloud under 

Bundler; (c) Site 3 dense point cloud under VSFM; (d) Site3 dense point cloud under Ours method 

 
One of the reasons was that the peripheral area imaged through tilt 

photography had fewer matching features due to the single photographic angle, 
and another reason was the failure of the partial image association in the boundary 
region due to the dramatic IMU information changes induced by the sudden turns 
of the UAV. 

The ability of the algorithm to reconstruct the detailed of the core area 
detail through slope photography was comparable to that of the two global match 
algorithms.  

3.4. Accuracy of the Dense Point Cloud Reconstruction 

Ten trees in the center of the tilted photographic area under site 1 and site 

2 were selected, and manual measurement data of the tree crown width and height 

were compared with the point cloud data to verify the accuracy of the 

reconstructed dense point cloud. The point cloud size was obtained by calculating 

the minimum bounding rectangle after manual segmentation of the individual 

trees. The crown size was half of the sum of the length and width of the outer 

rectangle, and the tree height was the height of the outer rectangle, the point cloud 

of single tree and external rectangle are shown in Fig. 8. 
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Fig. 8. Segmented individual tree point clouds and circumscribed rectangle diagram of the point 

cloud 

The measured crown amplitude data and point cloud crown amplitude data 

were obtained as shown in Table 3: 
 

Table 3 

Measured crown amplitude data measured and point cloud crown amplitude data 

 (Uint: m) 

 

Measured data 
Bundler point cloud 

data 

VSFM point cloud 

data 

Point cloud data 

based on ours 

method 

Crown 

width 

Tree 

height 

Crown 

width 

Tree 

height 

Crown 

width 

Tree 

height 

Crown 

width 

Tree 

height 

Site 1 

1 0.74 1.98 0.66 2.12 0.94 1.72 0.63 2.27 

2 0.62 1.67 0.54 1.45 0.71 1.86 0.72 1.91 

3 0.87 2.09 0.92 1.78 0.74 1.81 0.91 1.78 

4 0.93 2.21 1.02 2.42 0.81 2.46 0.80 1.95 

5 0.58 1.53 0.50 1.45 0.5 1.44 0.50 1.71 

6 0.63 1.87 0.54 1.67 0.55 1.65 0.72 2.14 

7 0.57 1.74 0.64 1.59 0.58 2.00 0.51 1.51 

8 0.86 2.02 0.92 2.3 0.95 2.02 0.74 1.97 

9 0.89 1.96 0.76 1.85 1.01 2.11 0.99 2.25 

10 0.61 1.24 0.52 1.14 0.52 1.09 0.53 1.1 

Site 2 

11 3.52 8.76 3.21 9.46 3.81 7.81 3.14 9.27 

12 4.69 11.54 4.81 10.78 3.99 12.51 3.99 12.57 

13 4.01 10.12 4.22 9.21 3.62 9.17 4.29 9.15 

14 3.21 9.15 2.91 8.46 3.48 9.43 2.84 9.40 

15 4.12 10.15 4.31 10.47 3.51 9.09 3.53 9.10 

16 4.53 11.25 4.03 10.23 4.79 10.28 4.78 10.19 

17 3.56 8.36 3.14 7.78 3.79 8.66 3.03 8.57 

18 3.74 7.41 3.95 7.88 3.28 7.99 3.29 6.49 

19 3.11 6.66 3.32 6.01 2.82 6.05 2.65 7.06 

20 3.95 9.64 3.59 10.38 3.56 10.15 3.98 8.97 
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The absolute error of the 3D reconstructed point cloud can be obtained 

from the measured data and point cloud data, as shown in Fig. 9. The accuracy 

analysis of the point cloud data is shown in Fig. 10. 

 

Fig. 9. Absolute Error of the crown width and tree height data from the point cloud 

 

 

 

 (a)                                                 (b)                                                (c) 

Fig. 10. Accuracy analysis of the crown width and tree height data from the measured data and the 

data extracted from the point cloud. (a) Crown width accuracy of Bundler point cloud; (b) Crown 

width accuracy of VSFM point cloud; (c) Crown width accuracy of Ours point cloud; 
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 (d)                                               (e)                                                  (f) 

Fig. 10. Accuracy analysis of the crown width and tree height data from the measured data and the 

data extracted from the point cloud. (d) Tree height accuracy of Bundler point cloud; (e) Tree 

height accuracy of VSFM point cloud; (f) Tree height accuracy of Ours point cloud 

 

As shown in Fig. 9, the absolute error of the point cloud data obtained by 

this algorithm was smaller than that of the two global match algorithms, whether 

from the crown size data or tree height data, the crown width maximum error rate 

of the Bundler algorithm was 14.75%, with an RMSE of 0.2232, and the tree 

height maximum error rate was 14.83%, with an RMSE of 0.5206. The crown 

width maximum error rate of the VSFM algorithm was 14.94%, with an RMSE of 

0.3027, and the tree height maximum error rate was 14.94%, with an RMSE of 

0.564. The crown width maximum error rate of the algorithm described in this 

paper was 14.93%, with an RMSE of 0.32, and the tree height maximum error rate 

was 14.83%, with an RMSE of 0.5753. The error ranges of the three algorithms 

were consistent, and the results showed that this algorithm can guarantee the 

accuracy of the point cloud by improving matching efficiency. The RMSE of this 

algorithm was slightly larger than those of the two global matching algorithms 

because the details of the point clouds on the tree contours were lost, which was 

caused by the reduction in the number of matched images. Furthermore, the 

correlation between the algorithm described in this paper, the two global matching 

algorithms and the measured data was good, as shown in Figure 10, and the R2 

value was above 0.96. The accuracy of the point cloud data obtained by this 

algorithm can meet the needs of large-scale forestry investigations, but the data 

error data of the three algorithms in site 1 under low trees were larger than those 

in site 2. This also conformed to the technical characteristics of the SFM 

algorithm. The flight altitude, tree height and canopy density affected the 
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acquisition of forest point cloud data by the low-altitude tilt photography of the 

UAVs. 

6. Conclusions 

Aiming at the low efficiency of so many inclined image data 3D 

reconstructions in forestry surveys, an image clustering algorithm combined with 

UAV image features and pose features was proposed in this paper. This algorithm 

can realize image similarity clustering before matching, utilize GPS/IMU 

information and image color texture information of UAVs, and avoid exhaustive 

clustering with global match algorithms. For the forestry survey, two scenes of 

single tree species nursery areas and complex woodlands with water areas were 

selected to collect the tilt image data, and the effect, matching time and number of 

dense point clouds were compared between the two scenarios. The efficiency of 

the three-dimensional reconstruction proposed in this paper was approximately 

three times higher than that of the global match algorithm. Furthermore, the 

comparison of the manual measurement data of the tree crown width and height 

with the data from point clouds showed that the accuracy of the point cloud data 

obtained by this algorithm can meet the needs of large-scale forestry 

investigations. 

Although the algorithm in this paper showed considerable improvement in 

improving matching efficiency compared with the global match algorithms, there 

is still room for improvement in fusion feature generation and matching number 

selection for different sites. Subsequent research will focus on the similarities 

among the tilted images and the topological relationship between images to 

further improve the performance of the algorithm, constrain the image to be 

matched by various means, ensure the accuracy of the generated point cloud and 

simultaneously improve the algorithm performance. 
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