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Eulerian Numbers and Generalized Arithmetic-Geometric Series
Mircea I CÎRNU

Pe baza teoremei Cauchy-Mertens de înmulţire a seriilor, se obţin într-un mod simplu unele rezultate binecunoscute, cum ar fi reprezentarea numerelor Euleriene, o identitate combinatorială şi formula sumei seriilor aritmetico-geometrice generalizate. Se dau două aplicaţii.

Based on Cauchy-Mertens theorem of series multiplication, we obtain in a simple manner some  well-known results, namely  the Eulerian numbers representation, a combinatorial identity and  the formula for the sum of generalized arithmetic-geometric series. Two applications are given.
Keywords:  Eulerian numbers, generalized arithmetic-geometric series.
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1. Eulerian numbers and the sum of generalized arithmetic-geometric series
We present the formula that express the sums of generalized arithmetic-geometric series by the Eulerian numbers ([1]). It can to be considered  as the definition of these numbers. Are included  recurrence and symmetry relations    for Eulerian numbers that give the possibility to compute these numbers.
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where 
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Proof. For 
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 and so on. Hence the relations (1), (2), (3) are satisfied for 
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We shall prove the relation (1) by mathematical induction after 
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We obtain the relation (1) for 
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By identification, from (4) we obtain for the coefficients of 
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       Consequence. The Eulerian numbers satisfy  the following symmetry relation
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Proof. We prove the relation (5) by induction after 
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Using  the relation (3) and induction hypothesis under the forms (5) and (6), we have
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Remark. From relations (2) and (3), the values of Eulerian numbers 
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1               1

2               1          1

3               1          4          1

4               1         11        11          1

5               1         26        66         26        1

6               1         57       302       302      57         1

7               1        120     1191     2416    1191    120        1

2. Closed-form expression for the Eulerian numbers

 Theorem 2. Let 
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 be  a  natural number. The Eulerian  numbers are given by the formula
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For 
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and, for 
[image: image63.wmf]1

+

³

n

k

, the identity
                         
[image: image64.wmf](

)

(

)

0

1

1

1

1

0

=

+

-

÷

÷

ø

ö

ç

ç

è

æ

+

-

å

+

=

n

j

n

j

j

k

j

n

.                                     (9)

Proof. One consider the relation (1) given in theorem 1, in the form
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Using Newton's binomial theorem and changing the index 
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Denoting
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and using the Cauchy-Mertens theorem about the multiplications of  series (see for example [2]), the identity (10) can be rewritten as:
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where the coefficients 
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Identifying the coefficients in relation (11), if 
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Remarks. 1) One observe that the identity (8) follows from (9). Namely, from (9) for 
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2) Representing the combinatorial coefficients by factorials, the identities (8) and (9) may be written as:
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3. Formula for the sum of generalized arithmetic-geometric series

Replacing in formula (1) the closed-form expression of Eulerian numbers given by the formula (7), it obtains the following result (see [3] or [1]) :

Theorem 3.  Let be 
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4. Applications

4.1. Arithmetic-geometric series

Let  
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In particular, 
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